萬淑君,孔祥,呂坤
皖南醫(yī)學(xué)院重大疾病非編碼RNA轉(zhuǎn)化研究安徽普通高校重點(diǎn)實(shí)驗(yàn)室,皖南醫(yī)學(xué)院弋磯山醫(yī)院中心實(shí)驗(yàn)室,蕪湖241001
糖尿病是以高血糖為主要病理特征的慢性代謝性疾病,已嚴(yán)重威脅人類健康。超過50%的糖尿病患者死于血管病變,且隨病程延長,糖尿病患者血管病變的發(fā)生率顯著升高[1]。糖尿病血管病變包括微血管及大血管病變,其微血管病變主要包括糖尿病視網(wǎng)膜病變、糖尿病腎病及糖尿病微血管病變引發(fā)的糖尿病神經(jīng)病變[2]。據(jù)報(bào)道,近60%的2型糖尿病患者在確診后的10年內(nèi)出現(xiàn)各種程度的視網(wǎng)膜病變[3]。腎臟微血管病變是導(dǎo)致糖尿病患者終末期腎病的主要原因[4]。此外,病程超過5年的1型糖尿病患者及早期的2型糖尿病患者中,約50%會(huì)發(fā)生糖尿病神經(jīng)病變[5]。因此,早期診斷和治療糖尿病血管病變,對(duì)于預(yù)防疾病發(fā)展,降低其致死率和致殘率具有重要意義。近年來的研究[6]表明,非編碼RNA(noncoding RNA,ncRNA)存在于多種組織細(xì)胞及循環(huán)血液中,在多個(gè)水平調(diào)控基因表達(dá),參與各種生理病理過程。ncRNA按其片段大小主要分為微RNA(microRNA,miRNA)、長 鏈 非 編 碼RNA(long non coding RNA,lncRNA)及 環(huán) 狀RNA(circular RNA,circRNA)。miRNA在糖尿病微血管并發(fā)癥患者血液中發(fā)生顯著變化,有成為潛在生物標(biāo)志物的可能性[7]。lncRNA存在于多種血管內(nèi)皮細(xì)胞(endothelial cell,EC)中,可在轉(zhuǎn)錄、轉(zhuǎn)錄后及表觀遺傳學(xué)水平調(diào)控基因表達(dá),參與細(xì)胞的增殖、分化及凋亡,其異常表達(dá)與糖尿病血管病變的發(fā)生、發(fā)展密切相關(guān),可成為潛在治療靶點(diǎn)。circRNA廣泛存在于真核細(xì)胞中,具有顯著的基因調(diào)節(jié)功能,可與miRNA競爭結(jié)合位點(diǎn),參與糖尿病血管病變的多種分子機(jī)制[1]。本文闡述miRNA、lncRNA及circRNA在糖尿病血管病變中作用的研究進(jìn)展,以期為糖尿病血管病變的診斷和治療提供新思路。
miRNA為一類長20~22 nt的非編碼小分子單鏈RNA,通過完全或不完全互補(bǔ)配對(duì)原則與相應(yīng)靶基因信使RNA(mRNA)的3′端結(jié)合,并在轉(zhuǎn)錄后水平調(diào)控靶基因表達(dá),參與機(jī)體的多種生理病理過程[7]。miRNA可調(diào)控體內(nèi)約60%的mRNA表達(dá),單一miRNA可影響上百種不同基因的表達(dá),而單一靶基因又可受多種miRNA的調(diào)控。miRNA與糖脂代謝異常存在重要聯(lián)系,多種異常表達(dá)的miRNA可參與糖尿病及其血管并發(fā)癥的發(fā)生、發(fā)展[8-9]。
1.1.1 miRNA參與糖尿病視網(wǎng)膜病變EC異常增殖是糖尿病視網(wǎng)膜病變發(fā)生的主要誘因,而miRNA在EC異常增殖中發(fā)揮重要作用。鏈脲霉素(streptozotocin,STZ)誘導(dǎo)的糖尿病大鼠視網(wǎng)膜中的miR-200b表達(dá)顯著降低,進(jìn)而導(dǎo)致血管內(nèi)皮生長因子相關(guān)mRNA及蛋白表達(dá)增加,促使糖尿病視網(wǎng)膜發(fā)生病變[10]。過表達(dá)miR-200b不僅逆轉(zhuǎn)上述過程,還可抑制高糖誘導(dǎo)下血管內(nèi)皮生長因子升高所引起的人臍靜脈內(nèi)皮細(xì)胞異常增生和血管通透性增加,進(jìn)一步證實(shí)了miR-200b參與糖尿病視網(wǎng)膜病變的發(fā)生、發(fā)展[11]。低氧條件下,miR-126在糖尿病視網(wǎng)膜細(xì)胞中低表達(dá),過表達(dá)miR-126可抑制血管內(nèi)皮生長因子及基質(zhì)金屬蛋白酶-9高表達(dá),阻斷EC增殖,抑制血管異常增生[12]。過表達(dá)miR-21可抑制促凋亡介質(zhì)-死亡結(jié)構(gòu)域相關(guān)蛋白表達(dá),從而逆轉(zhuǎn)高糖誘導(dǎo)的內(nèi)皮細(xì)胞凋亡;反之,抑制miR-21表達(dá)可顯著增強(qiáng)高糖誘導(dǎo)的內(nèi)皮細(xì)胞損傷[13]。在糖尿病大鼠中,miR-320可負(fù)向調(diào)控高糖誘導(dǎo)的血管內(nèi)皮生長因子和纖維連接蛋白(fibronectin,F(xiàn)N),抑制小管形成和內(nèi)皮細(xì)胞遷移[14]。
1.1.2 miRNA參與糖尿病腎臟病變STZ誘導(dǎo)的糖尿病小鼠腎臟中miR-1表達(dá)降低后,內(nèi)皮素-1(endothelin-1,ET-1)和FN表達(dá)增加。FN可介導(dǎo)細(xì)胞增殖與分化,作為細(xì)胞黏附和遷移的支架,致使腎臟微血管血栓形成[15],引發(fā)糖尿病腎病。miR-29c和miR-93可通過特異性機(jī)制調(diào)控糖尿病腎病的發(fā)生、發(fā)展。在糖尿病小鼠模型中,抑制miR-29c表達(dá)可靶向作用生長因子同源蛋白1(sprouty homolog 1,Spry1),減少蛋白尿和腎臟系膜中基質(zhì)沉積。Spry1是絲裂素活化蛋白激酶抗血管生成作用的重要調(diào)節(jié)因子,因此miR-29c可能與血管生成存在聯(lián)系,影響糖尿病腎臟微血管形成[16]。與前者相比,miR-93參與糖尿病腎病發(fā)生、發(fā)展的方式更直接。糖尿病小鼠腎臟足細(xì)胞中過表達(dá)miR-93可靶向作用于有絲分裂原和應(yīng)激激活激酶2(mitogen and stress-activated kinase 2,Msk2),影響其底物組蛋白H3 Ser10(Histone H3 Ser10,H3S10)磷酸化,進(jìn)而調(diào)節(jié)相關(guān)染色質(zhì)重組,顯著改善糖尿病腎病。此外,高糖抑制腎臟miR-93表達(dá),加強(qiáng)其下游血管內(nèi)皮生長因子信號(hào)轉(zhuǎn)導(dǎo),促使膠原蛋白及FN合成增多,加速糖尿病腎病的發(fā)生、發(fā)展[17]。糖尿病腎病患者血清中游離miRNA存在差異性變化,同時(shí)其miRNA復(fù)合體及胞間囊泡(extracellular vesicle,EV)miRNA也發(fā)生顯著變化。糖尿病腎病患者血清中miR-660-Ago-2(protein Argonaute-2)復(fù)合體及EV中miR-21和miR-126水 平 升 高,miR-132-HDL(high-density lipoprotein)復(fù)合體水平降低[18]。這些非游離差異表達(dá)miRNA的發(fā)現(xiàn),提高了miRNA作為糖尿病腎病臨床標(biāo)志物的敏感性。
1.1.3 miRNA參與糖尿病神經(jīng)病變多種miRNA參與糖尿病神經(jīng)病變的發(fā)生、發(fā)展。miR-146a與微血管及糖尿病神經(jīng)病變密切相關(guān),能特異性抑制內(nèi)皮細(xì)胞的炎癥反應(yīng)和改善神經(jīng)元功能[19]。miR-146a在糖尿病小鼠坐骨神經(jīng)組織中低表達(dá),致使其靶蛋白白介素-1受體相關(guān)激酶1(IL-1R-associated kinase-1,IRAK1)、腫瘤壞死因子受體相關(guān)因子6(tumor necrosis factor-associated factor 6,TRAF6)及活化B細(xì)胞核因子光鏈增強(qiáng)子活性增強(qiáng),其下游促炎因子單核細(xì)胞趨化蛋白-1(monocyte chemotactic protein-1,MCP-1)和血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)水平升高。此外,有研究[20]表明,對(duì)周圍神經(jīng)病變的糖尿病小鼠系統(tǒng)性給予外源性miR-146a可顯著抑制IRAK1及TRAF6表達(dá),使其下游核因子κB(nuclear factor-κB,NF-κB)信號(hào)通路失活,MCP-1及VCAM-1水平降低,從而改善坐骨神經(jīng)組織局部血流和功能。胸腺素β4(thymosin-β4,Tβ4)治療糖尿病小鼠,可升高坐骨神經(jīng)組織中miR-146a含量,抑制其下游促炎因子表達(dá),顯著改善坐骨運(yùn)動(dòng)神經(jīng)和感覺神經(jīng)傳導(dǎo)速度。體外實(shí)驗(yàn)中,抑制miR-146a可減弱Tβ4促背根神經(jīng)元軸突和毛細(xì)血管生長的功能[21]。因此,Tβ4可能通過miR-146a調(diào)控IRAK1、TRAF6表達(dá),促使下游NF-κB炎癥通路失活,降低MCP-1及VCAM-1水平,從而改善糖尿病小鼠神經(jīng)血管重塑和功能。miRNA在糖尿病微血管及周圍神經(jīng)病變的發(fā)生、發(fā)展中發(fā)揮重要作用,但其機(jī)制有待進(jìn)一步研究。
心血管疾?。╟ardiovascular disease,CVD)是糖尿病最常見的大血管病變[22]。體內(nèi)及體外研究均表明高糖引起的miRNA異常表達(dá)可導(dǎo)致CVD相關(guān)的EC、血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)、血小板及巨噬細(xì)胞功能障礙和脂質(zhì)代謝異常[23]。并且,某些miRNA可作為糖尿病大血管病變的潛在生物標(biāo)志物和治療靶點(diǎn)[24]。
miR-126在內(nèi)皮細(xì)胞凋亡體中豐富表達(dá),可調(diào)控趨化因子CXCL12的產(chǎn)生及血管內(nèi)皮生長因子的應(yīng)答,對(duì)血管具有一定的保護(hù)作用[25]。miR-126和miR-132作為內(nèi)皮細(xì)胞特異性miRNA,具有促進(jìn)血管再生的作用。相關(guān)研究[26]表明,與正常對(duì)照相比,2型糖尿病小鼠心肌組織中miR-126和miR-132表達(dá)減少,可使血管內(nèi)皮生長因子水平降低,抗血管生長因子相關(guān)EVH1結(jié)構(gòu)域蛋白1(sprouty-related EVH1 domain-containing protein1,Spred1)和p120 Ras鳥苷三磷酸酶激活蛋白(p120 Ras GTPase-activating protein,p120RasGAP)表達(dá)增加,促使糖尿病心臟病發(fā)生;此外,2型糖尿病心臟病前期患者循環(huán)血液中miR-126和miR-132異常表達(dá),有成為早期預(yù)測指標(biāo)的潛能。與2型糖尿病患者及健康對(duì)照相比,2型糖尿病冠狀動(dòng)脈性疾病患者血清miR-342及miR-450差異性表達(dá),可作為其診斷及預(yù)測指標(biāo);且miR-342、miR-450及NADPH氧化酶(NADPH oxidases,NOX-4)之間存在密切聯(lián)系,miR-342上調(diào)及miR-450下調(diào)可增強(qiáng)NOX-4活性,導(dǎo)致活性氧(reactive oxygen species,ROS)產(chǎn)物增加,形成有利于動(dòng)脈粥樣硬化斑塊和2型糖尿病冠狀動(dòng)脈性疾病發(fā)生的炎癥環(huán)境[27]。miR-4513 rs2168518與糖尿病患者血壓、血脂及血糖具有一定相關(guān)性,miR-499 rs3746444和miR-423 rs6505162與血壓及高密度脂蛋白相關(guān)[28]。miR-1和miR-21可預(yù)測2型糖尿病無癥狀患者急性心力衰竭的發(fā)生,與糖尿病大血管病變有密切的聯(lián)系,可能參與其發(fā)生、發(fā)展[24]。
目前,人們對(duì)lncRNA的了解遠(yuǎn)未達(dá)miRNA水平。但近年來,lncRNA作為機(jī)體重要的生物調(diào)控因子越來越受到關(guān)注。lncRNA是一類長度超過200 nt的RNA分子,不編碼蛋白,但其呈現(xiàn)結(jié)構(gòu)和功能的異質(zhì)性,可在轉(zhuǎn)錄、轉(zhuǎn)錄后及表觀遺傳學(xué)水平調(diào)控基因表達(dá),參與細(xì)胞的增殖、分化及凋亡,其異常表達(dá)與多種疾病的發(fā)生、發(fā)展密切相關(guān),如癌癥、神經(jīng)系統(tǒng)疾病及糖脂代謝異常等[29]。lncRNA可作為鄰近或遠(yuǎn)距離蛋白編碼基因的調(diào)控因子,參與轉(zhuǎn)錄后調(diào)控、蛋白質(zhì)復(fù)合物組織、細(xì)胞間信號(hào)傳遞及蛋白質(zhì)變構(gòu)調(diào)節(jié)等生物過程。有研究[30]顯示,lncRNA可與其他因子協(xié)同打開染色質(zhì)結(jié)構(gòu),參與各種基因的轉(zhuǎn)錄激活,并與轉(zhuǎn)錄因子(transcription factor,TF)結(jié)合,加強(qiáng)以上生物過程。此外,lncRNA也可與特殊位點(diǎn)結(jié)合或與TF位點(diǎn)重合,抑制基因轉(zhuǎn)錄;并且lncRNA可裂解成長度更短的沉默RNA(silencing RNA,siRNA),抑制相關(guān)基因表達(dá)[31]。
lncRNA影響基因表達(dá),是機(jī)體重要的生物調(diào)控因子,可參與多種疾病的生理病理過程[32]。lncRNA可通過影響內(nèi)皮細(xì)胞氧化應(yīng)激、纖維化及凋亡等,參與糖尿病微血管病變的發(fā)生、發(fā)展。此外,某些lncRNA在糖尿病腎病、視網(wǎng)膜病變及神經(jīng)病變中異常表達(dá),有成為糖尿病微血管病變潛在生物標(biāo)志物的可能[33]。
2.1.1 lncRNA參與糖尿病視網(wǎng)膜病變高糖可使糖尿病視網(wǎng)膜內(nèi)皮細(xì)胞中l(wèi)ncRNA MIAT高表達(dá)。MIAT可抑制內(nèi)皮細(xì)胞增殖、遷移和血管形成,沉默MIAT基因可改善糖尿病引起的視網(wǎng)膜微血管功能障礙。MIAT作為一種競爭性內(nèi)源性lncRNA,與血管內(nèi)皮生長因子及miR-150-5p形成反饋通路,調(diào)控內(nèi)皮細(xì)胞功能。細(xì)胞凋亡是糖尿病視網(wǎng)膜病變的特征性表現(xiàn)[34]。有報(bào)道[35]稱,糖尿病視網(wǎng)膜病變患者體內(nèi)MIAT和NF-κB含量均升高,MIAT可與NF-κB結(jié)合介導(dǎo)細(xì)胞凋亡。此外,MIAT與miR-29b之間存在調(diào)控關(guān)系,抑制MIAT表達(dá)可顯著逆轉(zhuǎn)高糖所致的miR-29b低表達(dá)、miR-29b靶蛋白Sp1高表達(dá)及細(xì)胞凋亡。以上研究表明,MIAT可通過NF-κB和miR-29b調(diào)控細(xì)胞凋亡,從而參與糖尿病視網(wǎng)膜病變的發(fā)生、發(fā)展。
高血糖可使視網(wǎng)膜內(nèi)皮細(xì)胞lncRNA ANRIL高表達(dá),影響血管內(nèi)皮生長因子的表達(dá)及功能。在糖尿病動(dòng)物的視網(wǎng)膜內(nèi)皮細(xì)胞中,ANRIL通過與組蛋白乙酰化因子p300和多梳抑制復(fù)合物2(polycomb repressive complex 2,PRC2)相互作用,使血管內(nèi)皮生長因子表達(dá)增加,促使視網(wǎng)膜中微血管再生;反之,敲除小鼠ANRIL或抑制人視網(wǎng)膜內(nèi)皮細(xì)胞中ANRIL表達(dá),可顯著降低EC生長因子組蛋白甲基化轉(zhuǎn)移酶(enhancer of zeste homolog 2,EZH2)和p300 mRNA的含量,從而抑制視網(wǎng)膜中微血管再生[36]。
2.1.2 lncRNA參與糖尿病腎臟病變有研究[37]表明,糖尿病小鼠的腎組織中約有1 018個(gè)lncRNA異常表達(dá),其中l(wèi)ncRNA CYP4B1-PS1-001顯著下調(diào);過表達(dá)lncRNA CYP4B1-PS1-001可抑制糖尿病腎組織系膜細(xì)胞的增殖及纖維化,改善糖尿病腎臟微循環(huán),從而抑制糖尿病腎病的發(fā)生、發(fā)展。LncRNA MALAT1在多種細(xì)胞中表達(dá),并在糖尿病大鼠和STZ誘導(dǎo)的糖尿病小鼠模型中高表達(dá)[38]。STZ誘導(dǎo)的糖尿病大鼠腎組織及高糖培養(yǎng)的人近端腎小管上皮細(xì)胞中MALAT1表達(dá)上調(diào),而miR-23c表達(dá)含量降低;同時(shí),抑制MALAT1或過表達(dá)miR-23c可使ELAV樣RNA結(jié)合蛋白1(ELAV like RNA binding protein 1,ELAVL1)、NOD樣受體熱蛋白結(jié)構(gòu)域-3(NOD-like receptor pyrin domain containing-3,NLRP3)、凋亡蛋白酶-1(Caspase-1)及促炎因子白介素-1β(interleukin-1β,IL-1β)表達(dá)降低,腎小管上皮細(xì)胞凋亡改善[39]。此外,STZ誘導(dǎo)的糖尿病腎病小鼠腎臟皮質(zhì)層中的MALAT1高表達(dá)[40],進(jìn)一步表明MALAT1與糖尿病腎病有著密切的聯(lián)系,可能參與糖尿病腎病的病理生理過程,對(duì)未來糖尿病腎病的潛在治療靶點(diǎn)研究具有重要意義。
2.1.3 lncRNA參與糖尿病神經(jīng)病變高糖和高游離脂肪酸環(huán)境可使交感神經(jīng)樣嗜鉻細(xì)胞瘤(pheochromocytoma,PC12)中l(wèi)ncRNA NONRATT021972表 達(dá) 增 加,抑 制lncRNA NONRATT021972可顯著降低高糖高脂環(huán)境PC12細(xì)胞中升高的白介素6(interleukin-6,IL-6)和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α),改善糖尿病神經(jīng)周圍血管病變[41]。此外,該研究還發(fā)現(xiàn)糖尿病大鼠頸上神經(jīng)節(jié)中l(wèi)ncRNA NONRATT021972表達(dá)增加,應(yīng)用siRNA特異性抑制lncRNA NONRATT021972可降低TNFα表 達(dá),抑 制 胰 島 素 受 體 底 物1(insulin receptor substrate1,IRS1)絲氨酸磷酸化,促使IRS1含量增加,改善神經(jīng)功能。糖尿病神經(jīng)細(xì)胞中存在差異表達(dá)的lncRNA,其靶基因通常位于細(xì)胞因子-細(xì)胞因子受體相互作用的復(fù)合體、趨化因子信號(hào)通路及細(xì)胞黏附分子中,通過調(diào)控免疫應(yīng)答、細(xì)胞遷移、防御反應(yīng)及趨化等過程中相關(guān)基因表達(dá),參與糖尿病神經(jīng)周圍血管病變的發(fā)生、發(fā)展[42]。
lncRNA在不同病理生理狀態(tài)下特異性表達(dá),提示其作為疾病潛在生物標(biāo)志物和治療靶標(biāo)的可能性;且發(fā)現(xiàn)越來越多的lncRNA參與糖尿病CVD的發(fā)生、發(fā)展[43],但其病理機(jī)制仍不明了。
lncRNA不僅參與心血管正常發(fā)育過程,差異表達(dá)的lncRNA在CVD中也發(fā)揮重要作用。lncRNA SENCR和lncRNA H19廣泛存在于各種CVD中,SENCR可促進(jìn)VSMC增殖和遷移,其過表達(dá)可抵抗高糖對(duì)VSMC的氧化應(yīng)激作用。此外,SENCR在2型糖尿病小鼠模型VSMC中低表達(dá),與早期冠狀動(dòng)脈性心臟?。╟oronary heart disease,CAD)的 發(fā) 生、發(fā) 展 密 切 相 關(guān)[44]。LncRNA H19可抑制細(xì)胞增殖,是哺乳動(dòng)物發(fā)育和疾病發(fā)展過程中的重要調(diào)節(jié)因子。胰島素樣生長因子2(insulinlike growth factor 2,IGF2)/H19位點(diǎn)的甲基化與糖代謝、糖尿病的發(fā)生和發(fā)展、腎臟的發(fā)育、先兆子癇及主動(dòng)脈狹窄存在一定的相關(guān)性[45]。LncRNA E330013P06在2型糖尿病小鼠巨噬細(xì)胞中高表達(dá),促進(jìn)免疫炎癥反應(yīng)及泡沫細(xì)胞形成,與2型糖尿病動(dòng)脈粥樣硬化性疾病密切相關(guān)。糖尿病患者體內(nèi)增加的血管緊張素Ⅱ可使VSMC中的lncRNA Ang362上調(diào),促進(jìn)下游miR-221及miR-222表達(dá)增加,進(jìn)而使血管平滑肌細(xì)胞增殖,與糖尿病高血壓及動(dòng)脈粥樣硬化性疾病的發(fā)生有關(guān)[46]。此外,lncRNA ANRIL可通過激活NF-κB信號(hào)通路,增強(qiáng)血管內(nèi)皮生長因子對(duì)血管的增生作用,參與糖尿病大血管病變[47]。
circRNA是一類首尾共價(jià)相連的圓形RNA分子,近年來逐漸受到關(guān)注。circRNA具有顯著的基因調(diào)節(jié)功能,可與miRNA競爭結(jié)合位點(diǎn),參與包括腫瘤在內(nèi)的多種疾病的發(fā)生、發(fā)展[48]。
有研究[49]表明,circRNA HIPK3在糖尿病視網(wǎng)膜中顯著升高,可作為競爭性內(nèi)源RNA與miR-30a相互作用,促進(jìn)視網(wǎng)膜內(nèi)皮細(xì)胞增殖,導(dǎo)致血管功能障礙。circRNA PWWP2A和miR579通過內(nèi)源性競爭作用上調(diào)血管生成素1/封閉蛋白/去乙?;?蛋白,促進(jìn)糖尿病視網(wǎng)膜病變的發(fā)生。circRNA 0005015在糖尿病視網(wǎng)膜病變患者血漿、玻璃體及纖維血管膜中表達(dá)增加;沉默circRNA 0005015可抑制人視網(wǎng)膜EC的增殖、遷移和血管形成,改善糖尿病視網(wǎng)膜病變[50]。研究[51]表明,糖尿病視網(wǎng)膜病變小鼠模型中circRNA ZNF609表達(dá)量升高,促使炎癥介質(zhì)IL-6和TNF-α分泌增加,導(dǎo)致視網(wǎng)膜血管滲透性增加和毛細(xì)血管退化;沉默ZNF609基因可減少病理性血管生成和改善視網(wǎng)膜血管功能;此外,高糖及缺氧應(yīng)激可顯著上調(diào)視網(wǎng)膜血管中circRNA ZNF609的表達(dá)量。因此circRNA ZNF609與糖尿病視網(wǎng)膜病變密切相關(guān),可成為糖尿病視網(wǎng)膜病變的潛在治療靶點(diǎn)和診斷標(biāo)志物。
circRNA 15698在糖尿病小鼠及高糖誘導(dǎo)的小鼠腎臟系膜細(xì)胞中高表達(dá)。并且,通過生物信息學(xué)及熒光素酶報(bào)告發(fā)現(xiàn)circRNA 15698與miR-185競爭結(jié)合位點(diǎn),調(diào)控轉(zhuǎn)化生長因子-β1(transforming growth factor-β1,TGF-β1)表達(dá),促進(jìn)腎臟細(xì)胞外基質(zhì)相關(guān)蛋白的合成及糖尿病腎病的發(fā)展[52]。此外,有研究[53]表明,circRNA 008045可與miR-24-3p相結(jié)合,抑制系膜細(xì)胞的增殖和纖維化,改善糖尿病腎臟病變。
circRNA HIPK3不僅在糖尿病視網(wǎng)膜病變中發(fā)生變化,其在糖尿病神經(jīng)病變患者血清中也存在差異性表達(dá)。鞘內(nèi)注射circRNA HIPK3抑制劑可顯著改善糖尿病大鼠周圍性神經(jīng)痛。在糖尿病周圍神經(jīng)病變的體外模型中,自噬相關(guān)circRNA可通過下調(diào)miRNA-145-3p緩解神經(jīng)細(xì)胞凋亡、自噬和氧化應(yīng)激,改善糖尿病神經(jīng)病變[54]。
糖尿病小鼠心臟和血管緊張素Ⅱ誘導(dǎo)的小鼠心臟成纖維細(xì)胞中circRNA 000203高表達(dá),可作為糖尿病心臟纖維化的潛在診斷指標(biāo)和治療靶點(diǎn)[55]。有研究[56]表明,circRNA 010567可通過調(diào)控miR-141/TGF-β1通路促進(jìn)糖尿病心肌纖維化。circRNA 0076631(細(xì)胞caspase-1-相關(guān)circRNA)在高糖培養(yǎng)的心肌細(xì)胞及糖尿病患者血清中高表達(dá),可通過miR-214-3p/caspase-1通路介導(dǎo)糖尿病性心肌細(xì)胞的炎癥性壞死,促進(jìn)糖尿病CVD的發(fā)生[57]。此外,circRNA ANKRD36在糖尿病炎癥性CVD中異常表達(dá),可作為其監(jiān)測指標(biāo)[58]。循環(huán)血液中circRNA 11783-2與冠狀動(dòng)脈性疾病及2型糖尿病具有一定相關(guān)性[59]??傊琧ircRNA參與糖尿病CVD的發(fā)生、發(fā)展,但其具體機(jī)制尚處于初步探究階段。
miRNA影響體內(nèi)大部分mRNA表達(dá),可在轉(zhuǎn)錄后水平調(diào)控糖尿病血管病變的多種病理過程。并且,miRNA在組織細(xì)胞及循環(huán)血液中穩(wěn)定表達(dá),具有組織特異性,能較好地反映病變組織器官功能狀態(tài),且變化較早,有望成為糖尿病血管病變患者的早期診斷標(biāo)志物及監(jiān)測指標(biāo)。lncRNA可在轉(zhuǎn)錄、轉(zhuǎn)錄后及表觀遺傳學(xué)水平調(diào)控基因表達(dá),參與細(xì)胞的增殖、分化及凋亡,其異常表達(dá)與糖尿病血管病變的發(fā)生、發(fā)展密切相關(guān)。相較于miRNA,lncRNA進(jìn)化保守程度及穩(wěn)定性較低,且數(shù)量較少;但lncRNA具有高度的組織特異性和時(shí)間特異性,可隨疾病的發(fā)展不斷變化,及時(shí)反映疾病發(fā)展過程。近年來,circRNA在糖尿病血管病變中的作用逐漸受到關(guān)注。circRNA的環(huán)形閉合結(jié)構(gòu)有異于其他線性RNA,使其具有高度的穩(wěn)定性和進(jìn)化保守程度,并且其在糖尿病血管病變中異常表達(dá),有成為其診斷標(biāo)志物的潛能。此外,circRNA與miRNA相互作用,競爭結(jié)合位點(diǎn),可在轉(zhuǎn)錄后水平調(diào)控基因表達(dá),參與糖尿病血管病變的發(fā)生、發(fā)展,但其具體機(jī)制仍需進(jìn)一步闡明。ncRNA作為一類不編碼蛋白的RNA分子,在糖尿病血管病變中差異表達(dá),并參與調(diào)控其多種分子機(jī)制;對(duì)ncRNA的深入研究將為探索糖尿病血管病變非侵襲性診斷標(biāo)志物及制定個(gè)體化治療方案提供思路。
參·考·文·獻(xiàn)
[1]Beltrami C,Angelini TG,Emanueli C.Noncoding RNAs in diabetes vascular complications[J].J Mol Cell Cardiol,2015,89:42-50.
[2]Cefalu WT,Buse JB,Tuomilehto J,et al.Update and next steps for realworld translation of interventions for type 2 diabetes prevention:reflections from a diabetes care editors expert forum[J].Diabetes Care,2016,39(7):1186-1201.
[3]Rübsam A,Parikh S,Fort P.Role of inflammation in diabetic retinopathy[J].Int J Mol Sci,2018,19(4):942.
[4]Tang J,Yao DY,Yan HY,et al.The role of MicroRNAs in the pathogenesis of diabetic nephropathy[J].Int J Endocrinol,2019,2019:8719060.
[5]Ahmed F,Bakhashab S,Bastaman I,et al.Anti-angiogenic miR-222,miR-195,and miR-21a plasma levels in T1DM are improved by metformin therapy,thus elucidating its cardioprotective effect:the MERIT study[J].Int J Mol Sci,2018,19(10):3242.
[6]DiStefano JK.Beyond the protein-coding sequence:noncoding RNAs in the pathogenesis of type 2 diabetes[J].Rev Diabet Stud,2015,12(3/4):260-276.
[7]Howangyin KY,Silvestre JS.Diabetes mellitus and ischemic diseases:molecular mechanisms of vascular repair dysfunction[J].Arterioscler Thromb Vasc Biol,2014,34(6):1126-1135.
[8]Feng J,Xing WL,Xie L.Regulatory roles of MicroRNAs in diabetes[J].Int J Mol Sci,2016,17(10):1729.
[9]Paul P,Chakraborty A,Sarkar D,et al.Interplay between miRNAs and human diseases[J].J Cell Physiol,2018,233(3):2007-2018.
[10]Liu TT,Hao Q,Zhang Y,et al.Effects of microRNA-133b on retinal vascular endothelial cell proliferation and apoptosis through angiotensinogen-mediated angiotensin II-extracellular signal-regulated kinase 1/2 signalling pathway in rats with diabetic retinopathy[J].Acta Ophthalmol,2018,96(5):e626-e635.
[11]Li EH,Huang QZ,Li GC,et al.Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene[J].Biosci Rep,2017,37(2):BSR20160572.
[12]Costantino S,Paneni F,Lüscher TF,et al.MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart[J].Eur Heart J,2016,37(6):572-576.
[13]Zhong X,Chung ACK,Chen HY,et al.miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J].Diabetologia,2013,56(3):663-674.
[14]Chandy M,Ishida M,Shikatani EA,et al.C-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells[J].PLoS One,2018,13(8):e0202778.
[15]de Gonzalo-Calvo D,Cenarro A,Civeira F,et al.microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers[J].Clínica E Investig En Arterioscler,2016,28(4):167-177.
[16]Long JY,Wang Y,Wang WJ,et al.MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1,and its in vivo knockdown prevents progression of diabetic nephropathy[J].J Biol Chem,2011,286(13):11837-11848.
[17]Badal SS,Wang Y,Long JY,et al.miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy[J].Nat Commun,2016,7:12076.
[18]Florijn BW,Duijs JMGJ,Levels JHM,et al.Diabetic nephropathy alters the distribution of circulating angiogenic microRNAs among extracellular vesicles,HDL,and ago-2[J].Diabetes,2019,68(12):2287-2300.
[19]Cheng HS,Sivachandran N,Lau A,et al.MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways[J].EMBO Mol Med,2013,5(7):1017-1034.
[20]Liu XS,Fan BY,Szalad A,et al.MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J].Diabetes,2017,66(12):3111-3121.
[21]Wang L,Chopp M,Lu XR,et al.miR-146a mediates thymosinβ4 induced neurovascular remodeling of diabetic peripheral neuropathy in type-II diabetic mice[J].Brain Res,2019,1707:198-207.
[22]de Gonzalo-Calvo D,Vilades D,Martinezcamblor P,et al.Circulating microRNAs in suspected stable coronary artery disease:a coronary computed tomography angiography study[J].J Intern Med,2019,286(3):341-355.
[23]Barber JL,Zellars KN,Barringhaus KG,et al.The effects of regular exercise on circulating cardiovascular-related microRNAs[J].Sci Rep,2019,9(1):7527.
[24]Al-Hayali MA,Sozer V,Durmus S,et al.Clinical value of circulating microribonucleic acids miR-1 and miR-21 in evaluating the diagnosis of acute heart failure in asymptomatic type 2 diabetic patients[J].Biomolecules,2019,9(5):193.
[25]王磊,王紅娜,祖曉麟.血漿miR-126水平與冠狀動(dòng)脈慢血流現(xiàn)象的關(guān)系[J].中華醫(yī)學(xué)雜志,2019,99(17):1323-1327.
[26]Rawal S,Munasinghe PE,Shindikar A,et al.Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy[J].Cardiovasc Res,2017,113(1):90-101.
[27]Seleem M,Shabayek M,Ewida HA.MicroRNAs 342 and 450 together with NOX-4 activity and their association with coronary artery disease in diabetes[J].Diabetes Metab Res Rev,2019,35(5):e3130.
[28]Pernomian L,Moreira JD,Gomes MS.In the view of endothelial microparticles:novel perspectives for diagnostic and pharmacological management of cardiovascular risk during diabetes distress[J].Exp Diabetes Res,2018,2018:9685205.
[29]Davidovich C,Cech TR.The recruitment of chromatin modifiers by long noncoding RNAs:lessons from PRC2[J].RNA,2015,21(12):2007-2022.
[30]He XY,Ou CL,Xiao YH,et al.LncRNAs:key players and novel insights into diabetes mellitus[J].Oncotarget,2017,8(41):71325-71341.
[31]Salviano-Silva A,Lobo-Alves SC,de Almeida RC,et al.Besides pathology:long non-coding RNA in cell and tissue homeostasis[J].Non-Coding RNA,2018,4(1):3.
[32]Zhu AD,Sun YY,Ma QJ,et al.lncRNA-ATB promotes viability,migration,and angiogenesis in human microvascular endothelial cells by sponging microRNA-195[J].J Cell Biochem,2019,120(9):14360-14371.
[33]Feng YM,Chen S,Xu JR,et al.Dysregulation of lncRNAs GM5524 and GM15645 involved in high glucose induced podocyte apoptosis and autophagy in diabetic nephropathy[J].Mol Med Rep,2018,18(4):3657-3664.
[34]Abdulle LE,Hao JL,Pant OP,et al.MALAT1 as a diagnostic and therapeutic target in diabetes-related complications:a promising longnoncoding RNA[J].Int J Med Sci,2019,16(4):548-555.
[35]Zhang JY,Chen MC,Chen JW,et al.Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis[J].Biosci Rep,2017,37(2):BSR20170036.
[36]Thomas AA,Feng B,Chakrabarti S.ANRIL:a regulator of VEGF in diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2017,58(1):470.
[37]Wang M,Wang SY,Yao D,et al.A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy[J].Mol Cell Endocrinol,2016,426:136-145.
[38]Yang Y,Lv X,Fan QL,et al.Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy:differential expression profile of circulating lncRNA[J].Clin Nephrol,2019,92(1):25-35.
[39]Li X,Zeng L,Cao CW,et al.Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J].Exp Cell Res,2017,350(2):327-335.
[40]Hu MS,Wang R,Li XB,et al.LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay withβ-catenin[J].J Cell Mol Med,2017,21(11):2732-2747.
[41]Yu W,Zhao GQ,Cao RJ,et al.LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes[J].Behav Neurol,2017,2017:2941297.
[42]Fachrul M,Utomo DH,Parikesit AA.lncRNA-based study of epigenetic regulations in diabetic peripheral neuropathy[J].Silico Pharmacol,2018,6(1):1-5.
[43]Pant T,Dhanasekaran A,Fang J,et al.Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy[J].BMC Cardiovasc Disord,2018,18(1):1-10.
[44]Wu G,Cai J,Han Y,et al.LincRNA-p21 regulates neointima formation,vascular smooth muscle cell proliferation,apoptosis and atherosclerosis by enhancing p53 activity[J].Circulation,2014,130(17):1452-1465.
[45]Reddy MA,Chen Z,Park JT,et al.Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA[J].Diabetes,2014,63(12):4249-4261.
[46]Das S,Senapati P,Chen Z,et al.Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells[J].Nat Commun,2017,8(1):1467.
[47]Zhang B,Wang D,Ji TF,et al.Overexpression of lncRNA ANRIL upregulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model[J].Oncotarget,2017,8(10):17347-17359.
[48]Zaiou M.CircRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications[J].Cells,2020,9(3):659.
[49]Yan QJ,He XY,Kuang GY,et al.CircRNA cPWWP2A:an emerging player in diabetes mellitus[J].J Cell Commun Signal,2020,14(3):351-353.
[50]Zhang SJ,Chen X,Li CP,et al.Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J].Investig Ophthalmol Vis Sci,2017,58(14):6500-6509.
[51]Liu C,Yao MD,Li CP,et al.Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J].Theranostics,2017,7(11):2863-2877.
[52]Hu W,Han Q,Zhao L,et al.Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1[J].J Cell Physiol,2019,234(2):1469-1476.
[53]Liu HF,Wang X,Wang ZY,et al.Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11[J].J Cell Physiol,2020,235(5):4520-4529.
[54]Wang L,Luo TY,Bao ZH,et al.Intrathecal circHIPK3shRNA alleviates neuropathic pain in diabetic rats[J].Biochem Biophys Res Commun,2018,505(3):644-650.
[55]Tang CM,Zhang M,Huang L,et al.CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p,Col1a2 and CTGF,in cardiac fibroblasts[J].Sci Rep,2017,7:40342.
[56]Zhou B,Yu JW.A novel identified circular RNA,circRNA_010567,promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1[J].Biochem Biophys Res Commun,2017,487(4):769-775.
[57]Yang F,Li A,Qin Y,et al.A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA[J].Mol Ther Nucleic Acids,2019,17:636-643.
[58]Xu HY,Guo S,Li W,et al.The circular RNA Cdr1as,via miR-7 and its targets,regulates insulin transcription and secretion in islet cells[J].Sci Rep,2015,5:12453.
[59]Li CY,Zhao L,Jiang W,et al.Correct microarray analysis approaches in'Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus'[J].Diabetes Vasc Dis Res,2018,15(1):92-93.