袁露,葛婷婷,牛長(zhǎng)敏,徐文華,鄭英
精子變形過(guò)程中組蛋白–魚精蛋白替換調(diào)控機(jī)制
袁露1,2,葛婷婷1,2,牛長(zhǎng)敏1,2,徐文華1,2,鄭英1,2
1. 揚(yáng)州大學(xué)醫(yī)學(xué)院組織學(xué)與胚胎學(xué)教研室,揚(yáng)州 225009 2. 江蘇省非編碼RNA基礎(chǔ)與臨床轉(zhuǎn)化重點(diǎn)實(shí)驗(yàn)室,揚(yáng)州 225009
精子形成是精子發(fā)生的最后階段,圓形精子細(xì)胞經(jīng)歷了一系列的形態(tài)變化和染色質(zhì)凝聚,形成了具有物種特異性的成熟精子。組蛋白–魚精蛋白替換是精子形成過(guò)程中的重要事件。在組蛋白–魚精蛋白替換過(guò)程中,組蛋白首先被睪丸特異性的組蛋白變體所替代,隨后過(guò)渡蛋白整合到細(xì)胞核中,最后過(guò)渡蛋白被魚精蛋白取代。組蛋白–魚精蛋白替換缺陷可能導(dǎo)致無(wú)精子癥、少精子癥或畸精癥,從而導(dǎo)致男性不育。本文系統(tǒng)總結(jié)了組蛋白–魚精蛋白替換過(guò)程中的調(diào)控機(jī)制研究進(jìn)展,以期為男性不育癥的診斷和治療提供理論基礎(chǔ)。
精子發(fā)生;組蛋白–魚精蛋白替換;翻譯后修飾
在精子發(fā)生過(guò)程中,精原干細(xì)胞(spermatogonial stem cells, SSC)經(jīng)歷自我更新并分化為精原細(xì)胞,精原細(xì)胞通過(guò)有絲分裂產(chǎn)生初級(jí)精母細(xì)胞,后者再經(jīng)過(guò)兩次連續(xù)的減數(shù)分裂產(chǎn)生單倍體精細(xì)胞,再經(jīng)過(guò)精子變態(tài)產(chǎn)生成熟的精子。在精子形成過(guò)程中,一個(gè)極為明顯的形態(tài)學(xué)特點(diǎn)是精子頭部圓球形的細(xì)胞核逐漸轉(zhuǎn)變?yōu)槁褕A形或鐮刀狀的細(xì)胞核。精子頭部塑形是精子變形過(guò)程中的核心事件,而組蛋白–魚精蛋白替換是其中的重要步驟之一。在這個(gè)過(guò)程中,大多數(shù)組蛋白首先被睪丸特異的組蛋白變體取代,隨后過(guò)渡蛋白(transition proteins, TP)被整合到精子細(xì)胞的細(xì)胞核中,魚精蛋白(protamines, PRM)進(jìn)一步取代晚期精子細(xì)胞中的TP,將基因組包裝到高度濃縮的精子核中[1]。目前已經(jīng)發(fā)現(xiàn)許多基因參與組蛋白–魚精蛋白替換調(diào)控,這些基因的缺失或突變可能會(huì)導(dǎo)致組蛋白–魚精蛋白替換缺陷,從而導(dǎo)致精子形成異常,雄性生育力下降甚至不育(表1)。目前,新的研究發(fā)現(xiàn)對(duì)過(guò)去的一些結(jié)論也提出了挑戰(zhàn)與質(zhì)疑,一些調(diào)控因子在組蛋白–魚精蛋白替換過(guò)程中的作用還有待進(jìn)一步深入探索。本文系統(tǒng)總結(jié)了組蛋白–魚精蛋白替換過(guò)程中的調(diào)控機(jī)制研究進(jìn)展,以期為男性不育癥的診斷和治療提供理論基礎(chǔ)。
在真核生物中,核小體是DNA的基本結(jié)構(gòu)單位,包含4種核心組蛋白(H2A、H2B、H3和H4)和連接組蛋白H1。在精子發(fā)生的組蛋白–魚精蛋白替換過(guò)程中,多種組蛋白變體呈時(shí)空特異性表達(dá),在多種翻譯后修飾(post-translational modification, PTM)的參與下產(chǎn)生高度不穩(wěn)定的核小體(圖1)。
表1 組蛋白–魚精蛋白替換調(diào)控相關(guān)基因
1.1.1 H1變體
在哺乳動(dòng)物中,大約有11種不同的組蛋白H1亞型,包括體細(xì)胞和睪丸特異性亞型。其中H1T、H1T2和HILS1是睪丸特異表達(dá)的H1變體。在小鼠()睪丸中,H1T在中晚期的粗線期精母細(xì)胞至早期單倍體細(xì)胞中表達(dá),但基因敲除小鼠組蛋白–魚精蛋白替換正常,精子發(fā)生過(guò)程不受影響,小鼠具有正常的生育能力。但其他H1亞型的表達(dá)有所升高,可能是對(duì)基因缺失的完全代償[2]。最近的研究表明,H1T可能誘導(dǎo)局部染色質(zhì)松弛,以募集抑制異染色質(zhì)和轉(zhuǎn)座因子(transposable element, TE)所必需的蛋白質(zhì)因子,最終的生物學(xué)效應(yīng)是形成封閉的染色質(zhì)抑制結(jié)構(gòu)[3]。
H1T2是另一種睪丸特異性的組蛋白H1變體,定位于圓形精子細(xì)胞核頂極。H1T2首先在IV期的圓形精子細(xì)胞中檢測(cè)到弱表達(dá),在V-VIII期表達(dá)明顯增加。H1T2在細(xì)胞核內(nèi)的定位高度極性,集中表達(dá)于核膜內(nèi)周的帽狀結(jié)構(gòu)中,顯示了精子細(xì)胞核內(nèi)固有的極性。但H1T2極性定位機(jī)制尚不清楚[4]。與H1T不同,H1T2對(duì)精子發(fā)生至關(guān)重要。純合突變雄性小鼠由于精子細(xì)胞的核凝聚異常和伸長(zhǎng)異常而不育,在H1T2缺失的精子中,魚精蛋白水平顯著降低,說(shuō)明H1T2在魚精蛋白取代組蛋白的過(guò)程中起著關(guān)鍵作用[4,5]。序列分析表明,大鼠()H1T2蛋白的C-末端結(jié)構(gòu)域中存在Walker基序、SR結(jié)構(gòu)域和卷曲螺旋結(jié)構(gòu)域。免疫沉淀和質(zhì)譜分析表明,H1T2相關(guān)的染色質(zhì)結(jié)構(gòu)域存在H4乙?;绕渌M蛋白的翻譯后修飾(post-transla-tional modification, PTM),其中H4乙?;菃?dòng)組蛋白解聚的關(guān)鍵,表明H1T2參與精子發(fā)生中染色質(zhì)重塑的啟動(dòng),并進(jìn)一步促進(jìn)組蛋白–魚精蛋白替換。H1T2相關(guān)染色質(zhì)的相互作用蛋白主要為核骨架成分、RNA結(jié)合蛋白及其伴侶蛋白。這些發(fā)現(xiàn)為后續(xù)研究精子發(fā)生過(guò)程中染色質(zhì)重塑的分子機(jī)制奠定了基礎(chǔ)[6]。
圖1 組蛋白–魚精蛋白替換的關(guān)鍵時(shí)間點(diǎn)及翻譯后修飾
HILS1 (spermatid-specific linker histone H1-like protein, HILS1)是保守程度最低的H1變體,在組蛋白變體H1T消失的同時(shí),精子細(xì)胞染色質(zhì)中出現(xiàn)了HILS1。與其他組蛋白H1變體(如H1T和H1D)相比,HILS1具有顯著較低的α-螺旋度,對(duì)DNA和染色質(zhì)的凝集力較差。在哺乳動(dòng)物精子發(fā)生的組蛋白替代過(guò)程中,HILS1可能在特定的位點(diǎn)為精子細(xì)胞提供了一個(gè)開(kāi)放的染色質(zhì)結(jié)構(gòu),用于其他堿性蛋白的募集和沉積[7]。生物信息學(xué)分析發(fā)現(xiàn):小鼠基因由1個(gè)外顯子組成,無(wú)內(nèi)含子。目前尚未見(jiàn)其基因敲除小鼠的報(bào)道。
1.1.2 H2A和H2B變體
已經(jīng)在哺乳動(dòng)物中發(fā)現(xiàn)了多種睪丸特異的H2A和H2B組蛋白變體,包括TH2A、TH2B、H2AL1、H2AL2、H2AL3和H2A.B等。
TH2A和TH2B分別是組蛋白H2A和H2B的睪丸特異性變體,Shinagawa等[8]研究發(fā)現(xiàn),在和雙基因敲除小鼠中,TP2的染色質(zhì)摻入受損,H2B表達(dá)水平升高,這表明TH2A和TH2B可能具有調(diào)節(jié)染色質(zhì)開(kāi)放或總組蛋白水平的功能,以促進(jìn)精子形成期間的組蛋白替換。由于基因敲除可以通過(guò)組蛋白H2B表達(dá)增加和相應(yīng)的翻譯后修飾增加實(shí)現(xiàn)代償,其基因敲除的雄性小鼠精子發(fā)生和生育力均正常[9],和雙敲除雄性小鼠中的組蛋白替換缺陷可能是TH2A耗盡或它們的協(xié)同作用缺陷所致。
組蛋白H2A的變體H2AL2在減數(shù)分裂后的長(zhǎng)形精子細(xì)胞中特異表達(dá),且與TP的表達(dá)相關(guān)。Barral等[10]通過(guò)比較基因敲除的小鼠和野生型小鼠,證明H2AL2對(duì)于組蛋白–魚精蛋白替換過(guò)程中核小體上TP的裝載和PRM的高效摻入是必需的。后續(xù)研究發(fā)現(xiàn)在組蛋白解聚后,一小部分H2AL2在長(zhǎng)形精子細(xì)胞核以及附睪中的精子中有保留。H2AL2具有靶向定位于染色質(zhì)凝聚區(qū)域的特性,其定位受其N端RNA結(jié)合基序控制,這種特殊結(jié)構(gòu)可能對(duì)受精后男性異染色質(zhì)的結(jié)構(gòu)和轉(zhuǎn)錄有重要影響,但其特異性保留在成熟精子染色質(zhì)凝聚區(qū)域的具體機(jī)制仍未闡明[11]。
H2A.B在粗線期精母細(xì)胞到圓形精子細(xì)胞中均有表達(dá)[12]。體外研究表明,H2A.B能夠破壞染色質(zhì)的穩(wěn)定性,并對(duì)染色質(zhì)具有去折疊特性,說(shuō)明H2A.B可能促進(jìn)TP置換組蛋白[13]。Anuar等[14]用TALEN技術(shù)構(gòu)建了基因敲除FVB/NJArc小鼠模型,發(fā)現(xiàn)由于精子形成異常和生精小管堵塞,基因敲除的雄性小鼠生育力下降。在H2A.B缺失的長(zhǎng)形精子細(xì)胞中,在著絲粒周圍的異染色質(zhì)中無(wú)法檢測(cè)到H2AL2,魚精蛋白取代TP1的過(guò)程推遲。這些結(jié)果表明,H2A.B可能通過(guò)調(diào)節(jié)H2AL2和TP1染色質(zhì)的摻入和解聚來(lái)參與組蛋白–魚精蛋白替換。而在另一項(xiàng)研究中,基因敲除的C57BL6/J小鼠并未觀察到H2A.B缺失對(duì)精子發(fā)生、精子或睪丸形態(tài)的影響;另外,研究還發(fā)現(xiàn)H2A.B的主要生物學(xué)作用似乎是在受精后的發(fā)育中,在完全缺乏H2A.B的情況下,胚胎在移植后的存活率會(huì)降低[15]。
1.1.3 H3變體
組蛋白H3具有多種變體,例如H3.1、H3.2、H3.3、H3T、CENP-A、H3.X、H3.Y和H3.5,除組蛋白變體H3.1和H3.2以外,H3.3、H3T和H3.5均在哺乳動(dòng)物中表達(dá),且在男性生殖中起重要作用[1]。
哺乳動(dòng)物和兩個(gè)基因均可編碼H3.3,或基因敲除可導(dǎo)致雄性不育?;蚯贸龝?huì)產(chǎn)生異常精子,而基因敲除會(huì)導(dǎo)致小鼠生長(zhǎng)缺陷和出生后死亡,存活的基因敲除雄性表現(xiàn)出完全不育[16]。H3f3b缺失的生殖細(xì)胞染色質(zhì)重組異常,魚精蛋白摻入減少,H3.3有助于形成開(kāi)放的染色質(zhì)構(gòu)型,是染色質(zhì)重組和組蛋白–魚精蛋白替換所必需[17]。
Tachiwana等[18]研究表明,含有H3T的核小體可以形成更開(kāi)放的構(gòu)型,說(shuō)明H3T可能在組蛋白–魚精蛋白替換中起到開(kāi)放染色質(zhì)的作用。后續(xù)的研究發(fā)現(xiàn),H3T僅在精母細(xì)胞中表達(dá),在長(zhǎng)形精子細(xì)胞中表達(dá)減弱。由于缺失小鼠睪丸中沒(méi)有精母細(xì)胞和精子細(xì)胞,敲除可導(dǎo)致無(wú)精子癥。因此,H3T在精子形成中的具體功能仍有待進(jìn)一步研究[19]。
H3.5是組蛋白H3的變體之一,人H3.5表達(dá)于睪丸精原細(xì)胞和初級(jí)精母細(xì)胞中。體外研究表明,H3.5可降低核心組蛋白H4的疏水作用[20]。另有研究發(fā)現(xiàn),H3.5在非梗阻性無(wú)精子癥(non-obstructive azoospermia, NOA)患者中顯著降低[21],但H3.5在精子發(fā)生中的確切作用目前仍不清楚。
組蛋白翻譯后修飾普遍存在于精子發(fā)生染色質(zhì)重塑過(guò)程中,組蛋白H4超乙?;诖龠M(jìn)染色質(zhì)解聚和開(kāi)放過(guò)程中起著至關(guān)重要的作用[22](圖2)。H4乙?;诰影l(fā)生過(guò)程中呈階段性,H4K5ac、H4K8ac和H4K12ac在精原細(xì)胞和細(xì)線前期精母細(xì)胞中出現(xiàn),在細(xì)線期到粗線期精母細(xì)胞中消失,在長(zhǎng)形精細(xì)胞中重新出現(xiàn),最后在成熟精子中消失,而H4K16ac只能在長(zhǎng)形精子細(xì)胞中檢測(cè)到[23,24]。
EPC1 (enhancer of polycomb homolog 1)/TIP60 (Tat-interactive protein, 60 kDa)等核小體乙?;D(zhuǎn)移酶復(fù)合物參與組蛋白超乙?;?。EPC1和TIP60是哺乳動(dòng)物H4的核小體乙?;D(zhuǎn)移酶(nucleosome acet-yltransferase of H4,NuA4)復(fù)合物的兩個(gè)組成部分,共同定位于圓形精子細(xì)胞和長(zhǎng)形精子細(xì)胞頂體附近的核外圍,或的缺失擾亂了組蛋白的超乙?;?,特別是H4乙酰化,并影響了精子發(fā)生過(guò)程中的組蛋白替換[25]。
泛素–蛋白連接酶RNF8 (ring finger protein 8)在組蛋白–魚精蛋白替換過(guò)程中有重要的調(diào)控作用。在基因敲除小鼠的成熟精子中可以檢測(cè)到常規(guī)組蛋白,睪丸中泛素化的H2A和H2B降低,H4K16ac也顯著減少[26]。進(jìn)一步研究表明,RNF8主要在H2A和H2B的單泛素化中起作用,與組蛋白乙酰化酶 MOF (males absent of the first)協(xié)同誘導(dǎo)H4K16的乙?;瑥亩{(diào)控組蛋白的解聚[27]。
RNF8的活性同樣受到上游蛋白的調(diào)節(jié)。MIWI通過(guò)不依賴于piRNAs的方式與早期精子細(xì)胞胞漿中的RNF8結(jié)合,而泛素連接酶APC/C (anaphase promoting complex/cyclosome)介導(dǎo)的MIWI在晚期精子細(xì)胞中的降解是RNF8核轉(zhuǎn)位的關(guān)鍵。D-box的雜合突變會(huì)導(dǎo)致MIWI泛素化修飾障礙從而無(wú)法降解,使得后期MIWI異常積累在胞質(zhì)中,而泛素–蛋白連接酶RNF8由于與MIWI蛋白相互作用,也被滯留在精子細(xì)胞胞質(zhì)中,無(wú)法進(jìn)入胞核啟動(dòng)組蛋白H2A和H2B的泛素化修飾和后期組蛋白–魚精蛋白的替換[28]。L3MBTL2 (lethal (3) malignant brain tumor like 2)也可與RNF8相互作用。L3MBTL2是與染色質(zhì)凝聚相關(guān)的MBT結(jié)構(gòu)域蛋白之一,L3MBTL2條件性基因敲除小鼠畸形精子數(shù)量增多、精子數(shù)進(jìn)行性下降,睪丸早衰。L3MBTL2缺乏還導(dǎo)致長(zhǎng)形精子細(xì)胞中RNF8和組蛋白泛素化水平降低,從而進(jìn)一步影響精子發(fā)生過(guò)程中PRM1的摻入和染色質(zhì)凝聚[29]。
值得注意的是,RNF8在組蛋白–魚精蛋白替換過(guò)程中的作用仍存在爭(zhēng)議。有研究認(rèn)為,RNF8主要在減數(shù)分裂過(guò)程中性染色體的泛素化和減數(shù)分裂后精子細(xì)胞中性染色體相關(guān)基因的激活中具有重要功能[30]。最近也有研究報(bào)道:RNF8既與組蛋白解聚的啟動(dòng)信號(hào)H4K16乙?;療o(wú)關(guān),也不影響魚精蛋白的摻入,RNF8并不是組蛋白–魚精蛋白替換所必需[31]。RNF8在組蛋白–魚精蛋白替換過(guò)程中的作用還需進(jìn)一步驗(yàn)證。
組蛋白乙酰化可能被一些染色質(zhì)重構(gòu)體識(shí)別以傳遞下游信號(hào)。BET (bromodomain and extra-terminal)蛋白家族是BRD (bromodomain proteins)家族的一個(gè)亞類,包括廣泛表達(dá)的BRD2、BRD3、BRD4及正常情況下僅表達(dá)于睪丸組織的BRDT。BRDT能特異性識(shí)別乙?;嚢彼釟埢强梢耘c乙?;M蛋白結(jié)合并調(diào)節(jié)精子發(fā)生中染色質(zhì)結(jié)構(gòu)和組織變化的關(guān)鍵表觀遺傳閱讀器[32]。BRDT與超乙?;M蛋白H4尾部結(jié)合,并與乙酰化的H4共同定位在長(zhǎng)形精子細(xì)胞中[33]。在敲除的BD1結(jié)構(gòu)域小鼠的長(zhǎng)形精子細(xì)胞中,TP和PRM保留在細(xì)胞質(zhì)中,沒(méi)有發(fā)生組蛋白替換,這表明BRDT介導(dǎo)乙?;M蛋白的替換是實(shí)現(xiàn)組蛋白到魚精蛋白的替換所必需的[34]。此外,有證據(jù)表明BRDT可與SMARCE1 (SWI/SNF- related matrix-associated actin-dependent regulator of chromatin subfamily E member 1)的N端結(jié)合,SMARCE1是ATP依賴的染色質(zhì)重塑復(fù)合物SWI/ SNF家族的成員,BRDT可能與SMARCE1共同作用,啟動(dòng)組蛋白解聚和被TP取代的過(guò)程[35]。
PHF7 (PhD finger protein 7)是小鼠睪丸中一種H2A泛素化連接酶。PHF7特異性地定位于長(zhǎng)形精子細(xì)胞核中,基因敲除會(huì)導(dǎo)致精子數(shù)量的減少和異常精子比例的增加,雄性小鼠不育。PHF7可通過(guò)其PHD結(jié)構(gòu)域識(shí)別H3K4me3/me2,并通過(guò)其環(huán)區(qū)催化H2A泛素化。在PHF7缺失的精子細(xì)胞中,H2A泛素化顯著降低,導(dǎo)致組蛋白保留和魚精蛋白替換缺陷[37]。還有研究發(fā)現(xiàn),基因敲除會(huì)導(dǎo)致早期精子細(xì)胞中BRDT的表達(dá)降低,精子細(xì)胞中組蛋白滯留;通過(guò)進(jìn)一步實(shí)驗(yàn)發(fā)現(xiàn)PHF7介導(dǎo)組蛋白泛素化有助于穩(wěn)定BRDT,從而促進(jìn)精子細(xì)胞中組蛋白的解聚[38]。
綜上所述,由EPC1/Tip60或其他一些核小體乙?;D(zhuǎn)移酶復(fù)合物介導(dǎo)組蛋白超乙?;?,然后關(guān)鍵賴氨酸的乙?;M(jìn)一步破壞了核小體的穩(wěn)定,組蛋白H4尾部的超乙酰化為BRDT的招募提供了一個(gè)平臺(tái)。BRDT與SWI/SNF家族蛋白相互作用,啟動(dòng)組蛋白解聚和被TP取代的過(guò)程(圖2)。
泛素(ubiquitin, Ub)是由76個(gè)氨基酸組成的蛋白質(zhì),通過(guò)附著在靶蛋白上,調(diào)節(jié)蛋白質(zhì)降解、自噬、DNA損傷反應(yīng)等細(xì)胞過(guò)程。泛素-蛋白酶體途徑(ubiquitin–proteasome pathway, UPP)主要由泛素、泛素激活酶(ubiquitin-activating enzyme, UBA, E1)、泛素結(jié)合酶(ubiquitin-conjugating enzyme, UBC, E2)、泛素–蛋白質(zhì)連接酶(ubiquitin-protein ligase, E3)及蛋白酶體組成,在整個(gè)生精過(guò)程中起著至關(guān)重要的作用[39]。泛素結(jié)合酶UBC4是E2酶的睪丸特異性亞型,在圓形精子細(xì)胞和早期長(zhǎng)形精子細(xì)胞表達(dá)。UBC4與睪丸特異的泛素連接酶LASU1在精原細(xì)胞至早期精母細(xì)胞促進(jìn)組蛋白泛素化,但可能與靶向組蛋白通過(guò)蛋白酶體降解無(wú)關(guān)[40]。在大鼠長(zhǎng)形精子細(xì)胞中組蛋白多泛素化的位點(diǎn)也與蛋白酶體在細(xì)胞核的定位不一致[41]。這樣,多泛素化可能并不能介導(dǎo)組蛋白通過(guò)蛋白酶體降解。
圖2 組蛋白-魚精蛋白替換的調(diào)控機(jī)制
此外,PA200是20S蛋白酶體的激活劑,在睪丸中高表達(dá),基因敲除導(dǎo)致嚴(yán)重的精子發(fā)生缺陷,雄性小鼠生育力大幅下降[42]。在精子發(fā)生過(guò)程中,PA200能顯著促進(jìn)乙?;M蛋白的非ATP依賴性蛋白酶體降解,但不能促進(jìn)多泛素化蛋白的降解[43]。因此,PA200特異性地識(shí)別乙?;M蛋白,并在精子發(fā)生過(guò)程中通過(guò)蛋白酶體介導(dǎo)乙?;慕M蛋白降解。睪丸特異性蛋白酶體亞基α4s定位于聯(lián)會(huì)復(fù)合體的中心區(qū),可能促進(jìn)PA200與核心顆粒的組裝,其缺失會(huì)導(dǎo)致PA200顯著降低[44]。
以前的研究普遍認(rèn)為:精子細(xì)胞核中組蛋白解聚和魚精蛋白摻入過(guò)程中,90%的組蛋白被TP1和TP2取代,隨后魚精蛋白取代了過(guò)渡蛋白[45]。但最近的研究報(bào)道了 TP有助于濃縮精子DNA的另一種機(jī)制。組蛋白變體H2AL2被結(jié)合到核小體中,并通過(guò)開(kāi)放核小體來(lái)啟動(dòng)轉(zhuǎn)換過(guò)程,隨后TP與H2AL2及精子DNA結(jié)合,以促進(jìn)魚精蛋白的結(jié)合和加工[10]。
TP1和TP2分別由和編碼,功能相似,但并不完全相同。TP堿性區(qū)域在體外與裸露的DNA結(jié)合并濃縮,但TP2對(duì)DNA的親和力強(qiáng)于TP1。在小鼠中,TP1的表達(dá)量是TP2的2倍左右。或的單一敲除都會(huì)導(dǎo)致雄性小鼠生育力下降和輕微的精子形態(tài)變化,在缺失和缺失的精子細(xì)胞中分別觀察到TP2和TP1蛋白升高[46,47]。而和雙基因敲除小鼠表現(xiàn)出精子尾部形態(tài)異常,活力普遍下降,雄性不育。同時(shí)可以檢測(cè)到嚴(yán)重的組蛋白保留,染色質(zhì)凝聚受到干擾[48]。這可能是由于TP1和TP2可以相互代償,因而單基因敲除或不會(huì)影響精子形成。在組蛋白–魚精蛋白替換過(guò)程中,TP在染色質(zhì)凝聚、魚精蛋白摻入等過(guò)程中發(fā)揮重要作用。
隨著染色質(zhì)的濃縮,染色質(zhì)的轉(zhuǎn)錄機(jī)制逐漸沉默。TP在精子發(fā)生后期短暫表達(dá),這種表達(dá)必須從生殖細(xì)胞發(fā)育的早期轉(zhuǎn)錄和儲(chǔ)存的mRNA中產(chǎn)生,TP表達(dá)的時(shí)機(jī)對(duì)生育能力至關(guān)重要。有研究發(fā)現(xiàn)TP2 mRNA在圓形精子細(xì)胞中提前翻譯會(huì)導(dǎo)致雄性小鼠不育,相關(guān)的翻譯調(diào)控因子對(duì)TP在精子發(fā)生過(guò)程中產(chǎn)生重要作用[49]。Phillips等[50]利用蛋白質(zhì)組學(xué)方法,確定了6種與TP mRNA相關(guān)的蛋白質(zhì):CSDE1、ELAVL1、IGF2BP3、LRPPRC、MATR3和DAZL。通過(guò)免疫熒光發(fā)現(xiàn)這些候選的TP mRNA調(diào)控因子在表達(dá)TP的mRNA的生殖細(xì)胞中表達(dá),說(shuō)明這些mRNA調(diào)控因子可能對(duì)TP的表達(dá)產(chǎn)生重要的調(diào)控作用。由于大多數(shù)RNA調(diào)節(jié)蛋白控制多種不同的RNA,RNA調(diào)節(jié)蛋白作用于TP mRNA的分子機(jī)制還有待進(jìn)一步研究。
和基因的表達(dá)受JMJD1A (Jumonji domain-containing 1A, JMJD1A)調(diào)控,JMJD1A是一種組蛋白去甲基化酶,可特異性地使H3K9me1/me2去甲基化,而不會(huì)使H3K9me3去甲基化。有研究認(rèn)為JMJD1A可直接與和基因啟動(dòng)子上甲基化的H3K9相結(jié)合,從而進(jìn)一步調(diào)節(jié)精子的染色質(zhì)凝聚[51]?;蚯贸∈蟪霈F(xiàn)生殖細(xì)胞廣泛凋亡,嚴(yán)重的少精子癥、小睪丸,雄性不育。生殖細(xì)胞中組蛋白乙?;浇档?,cAMP反應(yīng)元件調(diào)節(jié)器(cAMP response element modulator, CREM)的募集減少,CREM共激活因子及其靶基因、、和的表達(dá)減少,而這些蛋白是精子染色質(zhì)凝聚所必需的[52]。這些結(jié)果表明,Jmjd1a控制的組蛋白修飾對(duì)于CREM調(diào)控的基因表達(dá)和精子發(fā)生是至關(guān)重要的。Eelaminejad等[53]研究發(fā)現(xiàn),JMJD1A在患有圓形精子細(xì)胞成熟停滯(round spermatid maturation arrest, SMA)的人睪丸中低表達(dá),提示JMJD1A可能在人中有類似的作用,其表達(dá)不足可能是SMA的原因之一。
魚精蛋白是在晚期精子細(xì)胞中取代TP的基本蛋白質(zhì)[54]。魚精蛋白通過(guò)一個(gè)中心富含精氨酸的DNA結(jié)合域與DNA相互作用,高水平的精氨酸使其與DNA強(qiáng)烈結(jié)合,而半胱氨酸促進(jìn)魚精蛋白間和魚精蛋白內(nèi)二硫鍵的形成,促進(jìn)染色質(zhì)凝聚[45]。
與基因不同,或基因的缺失會(huì)導(dǎo)致小鼠雄性不育[55]。精蛋白有多個(gè)PTM位點(diǎn),目前在小鼠精子精蛋白上共發(fā)現(xiàn)了11個(gè)PTM,包括乙酰化、磷酸化和甲基化[56]。其中一個(gè)位點(diǎn)是CAMK4 (Ca2+/calmodulin-dependent protein kinase IV, CAMK4),基因敲除的雄性小鼠不育,PRM2置換過(guò)渡蛋白被干擾,CAMK4缺失的精子細(xì)胞中PRM2特異性丟失和TP2保留[57]。在體外,PRM2可以被CAMK4磷酸化,這意味著在精子發(fā)生過(guò)程中魚精蛋白的摻入需要CAMK4介導(dǎo)的PRM2磷酸化。Ppp1cc磷酸酶(Ppp1cc phosphatase)可使魚精蛋白2第56位絲氨酸(Prm2Ser56)去磷酸化,其基因敲除后表現(xiàn)為小鼠雄性不育和精子頭部畸形,說(shuō)明PRM2第56位絲氨酸去磷酸化是小鼠精子成熟的關(guān)鍵[58]。
肌醇六磷酸激酶(inositol hexakisphosphate kinases, IP6Ks)是一種合成肌醇焦磷酸5-二磷酸肌醇五磷酸(inositol pyrophosphate 5-diphosphoinositol pentakis-phosphate, 5-IP7)酶,已知其調(diào)節(jié)多種生理過(guò)程。在小鼠睪丸中,IP6K1在粗線期晚期精母細(xì)胞和圓形精細(xì)胞中高水平表達(dá)。基因敲除小鼠的精子細(xì)胞中由于翻譯去阻遏而表現(xiàn)出TP2和PRM2的過(guò)早表達(dá)。TP2和PRM2等這些精子特異性染色質(zhì)成分的定位異常,常規(guī)組蛋白的持續(xù)存在,導(dǎo)致這些小鼠的精子細(xì)胞伸長(zhǎng)異常、精子細(xì)胞分化不完全和無(wú)精子癥[59]。這些數(shù)據(jù)表明IP6K1在圓形精子細(xì)胞中對(duì)和的轉(zhuǎn)錄后調(diào)控中發(fā)揮重要作用。
本文以精子變形的順序闡述了組蛋白–魚精蛋白替換的動(dòng)態(tài)變化過(guò)程,總結(jié)了該過(guò)程中每一步驟可能的調(diào)控機(jī)制。盡管在過(guò)去的研究中已經(jīng)有許多有價(jià)值的發(fā)現(xiàn),但仍有很多問(wèn)題未能得到解答,例如組蛋白變體的摻入是如何啟動(dòng)的?過(guò)渡蛋白摻入以及解聚的確切機(jī)制也鮮有研究,魚精蛋白誘導(dǎo)精子DNA構(gòu)象改變和染色質(zhì)凝聚的機(jī)制也不清楚。這些問(wèn)題都需要在未來(lái)進(jìn)一步的深入探索。
總之,組蛋白–魚精蛋白替換是精子發(fā)生過(guò)程中的關(guān)鍵步驟,已有許多研究表明組蛋白–魚精蛋白替換環(huán)節(jié)的許多缺陷都會(huì)導(dǎo)致無(wú)精癥或少、弱、畸精子癥,從而導(dǎo)致男性不育。系統(tǒng)、全面地研究其動(dòng)態(tài)變化過(guò)程和調(diào)控機(jī)制將為人們了解男性不育的致病機(jī)制提供重要的理論支撐,也為男性不育癥的診斷和治療提供了潛在靶標(biāo)。
[1] Hao SL, Ni FD, Yang WX. The dynamics and regulation of chromatin remodeling during spermiogenesis., 2019, 706: 201–210.
[2] Lin Q, Sirotkin A, Skoultchi AI. Normal spermatogenesis in mice lacking the testis-specific linker histone H1t., 2000, 20(6): 2122–2128.
[3] Mahadevan IA, Kumar S, Rao MRS. Linker histone variant H1t is closely associated with repressed repeat- element chromatin domains in pachytene spermatocytes.,2020, 13(1): 9.
[4] Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis., 2005, 102(8): 2808–2813.
[5] Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K, Okabe M, Nishimune Y. HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility., 2005, 25(16): 7107–7119.
[6] Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids., 2021, 14(1): 3.
[7] Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, Rao MRS. Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements., 2018, 11(1): 43.
[8] Shinagawa T, Huynh LM, Takagi T, Tsukamoto D, Tomaru C, Kwak HG, Dohmae N, Noguchi J, Ishii S. Disruption of Th2a and Th2b genes causes defects in spermatogenesis.,2015, 142(7): 1287–1292.
[9] Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Héry P, Curtet S, Jamshidikia M, Barral S, Holota H, Bergon A, Lopez F, Guardiola P, Pernet K, Imbert J, Petosa C, Tan MJ, Zhao YM, Gérard M, Khochbin S. Chromatin-to- nucleoprotamine transition is controlled by the histone H2B variant TH2B., 2013, 27(15): 1680–1692.
[10] Barral S, Morozumi Y, Tanaka H, Montellier E, Govin J, de Dieuleveult M, Charbonnier G, Couté Y, Puthier D, Buchou T, Boussouar F, Urahama T, Fenaille F, Curtet S, Héry P, Fernandez-Nunez N, Shiota H, Gérard M, Rousseaux S, Kurumizaka H, Khochbin S. Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells.,2017, 66(1): 89–101.e8.
[11] Hoghoughi N, Barral S, Curtet S, Chuffart F, Charbonnier G, Puthier D, Buchou T, Rousseaux S, Khochbin S. RNA-guided genomic localization of H2A.L.2 histone variant.,2020, 9(2): 474.
[12] Soboleva TA, Nekrasov M, Pahwa A, Williams R, Huttley GA, Tremethick DJ. A unique H2A histone variant occupies the transcriptional start site of active genes., 2011, 19(1): 25–30.
[13] Soboleva TA, Parker BJ, Nekrasov M, Hart-Smith G, Tay YJ, Tng WQ, Wilkins M, Ryan D, Tremethick DJ. A new link between transcriptional initiation and pre-mRNA splicing: the RNA binding histone variant H2A.B.,2017, 13(2): e1006633.
[14] Anuar ND, Kurscheid S, Field M, Zhang L, Rebar E, Gregory P, Buchou T, Bowles J, Koopman P, Tremethick DJ, Soboleva TA. Gene editing of the multi-copy H2A.B gene and its importance for fertility.,2019, 20(1): 23.
[15] Molaro A, Wood AJ, Janssens D, Kindelay SM, Eickbush MT, Wu S, Singh P, Muller CH, Henikoff S, Malik HS. Biparental contributions of the H2A.B histone variant control embryonic development in mice.,2020, 18(12): e3001001.
[16] Tang MCW, Jacobs SA, Mattiske DM, Soh YM, Graham AN, Tran A, Lim SL, Hudson DF, Kalitsis P, O'Bryan MK, Wong LH, Mann JR. Contribution of the two genes encoding histone variant H3.3 to viability and fertility in mice.,2015, 11(2): e1004964.
[17] Yuen BTK, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS. Histone H3.3 regulates dynamic chromatin states during spermatogenesis.,2014, 141(18): 3483–3494.
[18] Tachiwana H, Kagawa W, Osakabe A, Kawaguchi K, Shiga T, Hayashi-Takanaka Y, Kimura H, Kurumizaka H. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T.,2010, 107(23): 10454–10459.
[19] Ueda J, Harada A, Urahama T, Machida S, Maehara K, Hada M, Makino Y, Nogami J, Horikoshi N, Osakabe A, Taguchi H, Tanaka H, Tachiwana H, Yao T, Yamada M, Iwamoto T, Isotani A, Ikawa M, Tachibana T, Okada Y, Kimura H, Ohkawa Y, Kurumizaka H, Yamagata K. Testis-specific histone variant H3t gene is essential for entry into spermatogenesis.,2017, 18(3): 593– 600.
[20] Urahama T, Harada A, Maehara K, Horikoshi N, Sato K, Sato Y, Shiraishi K, Sugino N, Osakabe A, Tachiwana H, Kagawa W, Kimura H, Ohkawa Y, Kurumizaka H. Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis.,2016, 9: 2.
[21] Shiraishi K, Shindo A, Harada A, Kurumizaka H, Kimura H, Ohkawa Y, Matsuyama H. Roles of histone H3.5 in human spermatogenesis and spermatogenic disorders.,2018, 6(1): 158–165.
[22] Luense LJ, Wang XS, Schon SB, Weller AH, Lin Shiao E, Bryant JM, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Comprehensive analysis of histone post- translational modifications in mouse and human male germ cells., 2016, 9: 24.
[23] Bao JQ, Bedford MT. Epigenetic regulation of the histone to protamine transition during spermiogenesis., 2016, 151(5): R55–R70.
[24] Ketchum CC, Larsen CD, McNeil A, Meyer-Ficca ML, Meyer RG. Early histone H4 acetylation during chromatin remodeling in equine spermatogenesis.,2018, 98(1): 115–129.
[25] Dong YX, Isono KI, Ohbo K, Endo TA, Ohara O, Maekawa M, Toyama Y, Ito C, Toshimori K, Helin K, Ogonuki N, Inoue K, Ogura A, Yamagata K, Kitabayashi I, Koseki H. EPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice.,2017, 37(19): e00082–e00117.
[26] Lu LY, Wu JX, Ye L, Gavrilina GB, Saunders TL, Yu XC. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis.. 2010, 18(3): 371–384.
[27] Guo YL, Song YF, Guo Z, Hu MJ, Liu B, Duan HY, Wang L, Yuan TX, Wang DG. Function of RAD6B and RNF8 in spermatogenesis., 2018, 17(2): 162–173.
[28] Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li DS, Fu XD, Li JS, Shi HJ, Liu MF. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermio-genesis.,2017, 169(6): 1090–1104.e13.
[29] Meng CL, Liao JY, Zhao DF, Huang HH, Qin JZ, Lee TL, Chen DG, Chan WY, Xia Y. L3MBTL2 regulates chromatin remodeling during spermatogenesis.,2019, 26(11): 2194–2207.
[30] Sin HS, Barski A, Zhang F, Kartashov AV, Nussenzweig A, Chen JJ, Andreassen PR, Namekawa SH. RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids., 2012, 26(24): 2737–2748.
[31] Abe H, Meduri R, Li ZW, Andreassen PR, Namekawa SH. RNF8 is not required for histone-to-protamine exchange in spermiogenesis., 2021, ioab132.
[32] Berkovits BD, Wolgemuth DJ. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis.,2013, 102: 293–326.
[33] Miller TCR, Simon B, Rybin V, Gr?tsch H, Curtet S, Khochbin S, Carlomagno T, Müller CW. A bromodomain- DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT.,2016, 7: 13855.
[34] Gaucher J, Boussouar F, Montellier E, Curtet S, Buchou T, Bertrand S, Hery P, Jounier S, Depaux A, Vitte AL, Guardiola P, Pernet K, Debernardi A, Lopez F, Holota H, Imbert J, Wolgemuth DJ, Gérard M, Rousseaux S, Khochbin S. Bromodomain-dependent stage-specific male genome programming by Brdt., 2012, 31(19): 3809–3820.
[35] Dhar S, Thota A, Rao MRS. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis., 2012, 287(9): 6387–6405.
[36] Guo YL, Song YF, Guo Z, Hu MJ, Liu B, Duan HY, Wang L, Yuan TX, Wang DG. Function of RAD6B and RNF8 in spermatogenesis.,2018, 17(2): 162–173.
[37] Wang XK, Kang JY, Wei LX, Yang XG, Sun HD, Yang SM, Lu L, Yan M, Bai MZ, Chen YY, Long JJ, Li N, Li DS, Huang J, Lei M, Shao Z, Yuan W, Zuo EW, Lu KH, Liu MF, Li JS. PHF7 is a novel histone H2A E3 ligase prior to histone-to-protamine exchange during spermiogenesis.,2019, 146(13): dev175547.
[38] Kim CR, Noda T, Kim H, Kim G, Park S, Na Y, Oura S, Shimada K, Bang I, Ahn JY, Kim YR, Oh SK, Choi HJ, Kim JS, Jung I, Lee H, Okada Y, Ikawa M, Baek SH. PHF7 modulates BRDT stability and histone-to-protamine exchange during spermiogenesis., 2020, 32(4): 107950.
[39] Berruti G. Destruction or reconstruction: a subtle liaison between the proteolytic and signaling role of protein ubiquitination in spermatogenesis., 2021, 1288: 215–240.
[40] Liu ZQ, Miao DS, Xia QW, Hermo L, Wing SS. Regulated expression of the ubiquitin protein ligase, E3(histone)/ LASU1/Mule/ARF-BP1/HUWE1, during spermatogenesis., 2007, 236(10): 2889–2898.
[41] Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Tokumoto T, Hoshi K, Yokota S. Possible function of caudal nuclear pocket: degradation of nucleoproteins by ubiquitin- proteasome system in rat spermatids and human sperm., 2007, 55(6): 585–595.
[42] Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP. Proteasome activator PA200 is required for normal spermatogenesis., 2006, 26(8): 2999–3007.
[43] Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu YD, Zhang XX, Huang HT, Miao SY, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai YG, Komatsu T, Tsuruta F, Li HT, Cao C, Li W, Li GH, Cheng YF, Chiba T, Wang LF, Goldberg AL, Shen Y, Qiu XB. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis.,2013, 153(5): 1012–1024.
[44] Zhang ZH, Jiang TX, Chen LB, Zhou WH, Liu YX, Gao F, Qiu XB. Proteasome subunit α4s is essential for formation of spermatoproteasomes and histone degradation during meiotic DNA repair in spermatocytes., 2021, 296: 100130.
[45] Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis.,2014, 1839(3): 155–168.
[46] Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, Weil MM, Behringer RR, Meistrich ML. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice., 2000, 97(9): 4683–4688.
[47] Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM, Russell LD, Behringer RR, Meistrich ML. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice., 2001, 21(21): 7243–7255.
[48] Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice., 2004, 71(4): 1220–1229.
[49] Tseden K, Topaloglu O, Meinhardt A, Dev A, Adham I, Müller C, Wolf S, B?hm D, Schlüter G, Engel W, Nayernia K. Premature translation of transition protein 2 mRNA causes sperm abnormalities and male infertility., 2007, 74(3): 273–279.
[50] Phillips BT, Williams JG, Atchley DT, Xu XJ, Li JL, Adams AL, Johnson KL, Hall TMT. Mass spectrometric identification of candidate RNA-binding proteins associated with transition nuclear protein mRNA in the mouse testis.,2019, 9(1): 13618.
[51] Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis., 2007, 450(7166): 119–123.
[52] Liu ZL, Zhou SL, Liao L, Chen X, Meistrich M, Xu JM. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis., 2010, 285(4): 2758–2770.
[53] Eelaminejad Z, Favaedi R, Sodeifi N, Sadighi Gilani MA, Shahhoseini M. Deficient expression of JMJD1A histone demethylase in patients with round spermatid maturation arrest.,2017, 34(1): 82–89.
[54] Bao JQ, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis., 2016, 151(5): R55–R70.
[55] Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM. Haploinsufficiency of protamine-1 or -2 causes infertility in mice., 2001, 28(1): 82–86.
[56] Brunner AM, Nanni P, Mansuy IM. Epigenetic marking of sperm by post-translational modification of histones and protamines.,2014, 7(1): 2.
[57] Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4., 2000, 25(4): 448–452.
[58] Itoh K, Kondoh G, Miyachi H, Sugai M, Kaneko Y, Kitano S, Watanabe H, Maeda R, Imura A, Liu Y, Ito C, Itohara S, Toshimori K, Fujita J. Dephosphorylation of protamine 2 at serine 56 is crucial for murine sperm maturation.,2019, 12(574): eaao7232.
[59] Malla AB, Bhandari R. IP6K1 is essential for chromatoid body formation and temporal regulation ofandexpression in mouse spermatids., 2017, 130(17): 2854–2866.
Regulation of histone-to-protamine transition during spermiogenesis
Lu Yuan1,2, Tingting Ge1,2, Changmin Niu1,2, Wenhua Xu1,2, Ying Zheng1,2
Spermiogenesis is the final stage of spermatogenesis, in which round spermatids differentiate into mature sperms through a complex process including morphological changes and chromatin condensation. Histone-to-protamine transition during spermiogenesis is a critical part of this biological process. Histones are initially replaced by testis-specific histone variants, then transition proteins integrate into the nucleus, and are in turn replaced by protamine. Impaired histone-to-protamine transition may cause azoospermia, oligospermia or teratospermia, which lead to male infertility. In this review, we summarize the research progress of regulatory mechanisms of the histone-to-protamine transition, thereby providing the theoretical basis for the diagnosis and treatment of male infertility.
spermiogenesis; histone-to-protamine transition; post-translational modification
2021-06-10;
2021-10-27
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):82071696,82101674),江蘇省高校自然科學(xué)研究重大項(xiàng)目(編號(hào):20KJA310002)和揚(yáng)州大學(xué)研究生科研創(chuàng)新計(jì)劃項(xiàng)目(編號(hào):XKYCX20_35)資助[Supported by the National Natural Science Foundation of China (Nos. 82071696, 82101674), the Key Scientific Project for Jiangsu Provincial Universities (No. 20KJA310002) and the Postgraduate Scientific Research Innovation Program of Yangzhou University (No. XKYCX20_35)]
袁露,在讀碩士研究生,專業(yè)方向:生殖醫(yī)學(xué)。E-mail: 2920054914@qq.com
鄭英,教授,博士生導(dǎo)師,研究方向:生殖醫(yī)學(xué)。E-mail: yzzkl@163.com
10.16288/j.yczz.21-205
2021/11/12 09:59:20
URI: https://kns.cnki.net/kcms/detail/11.1913.r.20211110.1349.002.html
(責(zé)任編委: 史慶華)