宋苗 方思齊 李瀟 劉文波 林春花 繆衛(wèi)國
摘 ?要:堿性亮氨酸拉鏈bZIP是真核生物轉錄因子家族之一,通過調控基因的表達來參與調控生長發(fā)育及生物、非生物脅迫應答等生理過程。已有報道表明bZIP轉錄因子Atf1與多種病原真菌的生長發(fā)育及致病力相關。由于轉錄因子通常能夠在其他互作蛋白的參與下與順式作用元件特異性結合,從而調節(jié)靶基因表達,因此篩選其互作蛋白對深入了解轉錄因子的調控機制有重要意義。本研究克隆獲得來自橡膠樹炭疽病的暹羅炭疽菌(Colletotrichum siamense)的一個bZIP轉錄因子CsAtf1,并對CsAtf1互作蛋白進行了篩選和鑒定。研究結果顯示,暹羅炭疽菌CsAtf1的DNA大小為1758 bp,cDNA為1611 bp,編碼536個氨基酸,包含2個內含子,具有3個Aft1結構域和1個BRLZ結構域;利用酵母雙雜技術,以pGBKT7-CsAtf1為誘餌,從暹羅炭疽菌cDNA酵母文庫中篩選獲得12個候選互作蛋白,包括細胞壁蛋白PhiA、Rodlet蛋白、乙醇脫氫酶、線粒體缺氧反應區(qū)蛋白、發(fā)育調控的MAPK相互作用蛋白、自噬相關蛋白、葡萄糖-甲醇-膽堿氧化還原酶、β-葡萄糖苷酶、c-4甲基固醇氧化酶、甲基轉移酶和2個假定蛋白;研究還進一步利用免疫共沉淀技術證實了轉錄因子CsAtf1能夠與線粒體缺氧反應區(qū)蛋白CsHIG發(fā)生體內互作。
關鍵詞:橡膠樹;暹羅炭疽菌;轉錄因子;互作蛋白
中圖分類號:S763.7 ? ? ?文獻標識碼:A
Identification and Screening of Proteins Interacting with CsAtf1 Transcription Factor in Colletotrichum siamense
SONG Miao, FANG Siqi, LI Xiao, LIU Wenbo, LIN Chunhua*, MIAO Weiguo*
College of Plant Protection, Hainan University / Key Laboratory of Green Forest Control and Prevention, Ministry of Education Haikou, Hainan 570228, China
Abstract: The basic leucine zipper (bZIP) is one of the eukaryotic transcription factor families. It participates in the regulation of biological, abiotic stress responses and developmental physiological processes by regulating the expression of genes. It has been reported that bZIP transcription factor Atf1 is related to the growth, development and pathogenicity of many pathogenic fungi. Transcription factors can specifically bind to cis-acting elements with the participation of other interacting proteins, thereby regulating the expression of target genes. Thus, screening the interacting proteins is of great significance to further understand the regulatory mechanism of bZIP transcription factor. In this study, a bZIP transcription factor CsAtf1 from Colletotrichum siamense (the causative species of rubber tree anthracnose in China) was cloned and the proteins interacting with CsAtf1 were screened and identified. The homologous sequence of Atf1 was searched from the transcriptome database of C. siamense HN08 by local BLAST, using genomic DNA and cDNA as the template for PCR amplification respectively. Sequence analysis revealed that CsAtf1 was 1758 bp, a cDNA of 1611 bp, encoding 535 amino acids, including two introns, three Aft1 domains and one BRLZ domain. Then, the CsAtf1 gene was cloned into the yeast expression vector pGBKT7, and identified by PCR and sequencing. The recombinant bait plasmid pGBKT7-CsAtf1 was transformed into yeast strain Y2H Gold competent cells. Besides, self-activation and toxicity detection of bait plasmid yeast showed that pGBKT7-CsAtf1 didn’t have self-activation and toxicity in yeast strains. These results demonstrated that the yeast bait protein expression vector was successfully constructed, then yeast two-hybrid (Y2H) system was adopted to screen interacting proteins of baiting vector pGBKT7-CsAtf1 in cDNA library of C. siamense. The results confirmed that 12 proteins may interact with CsAtf1, including cell wall protein PhiA, rodlet protein, alcohol dehydrogenase, mitochondrial hypoxia responsive domain containing protein, developmentally regulated MAPK interacting protein, autophagy-related protein, glucose-methanol-choline oxidoreductase, c-4 methylsterol oxidase, methyltransferase, secreted beta-glucosidase sun1 and two hypothetical proteins. Furthermore, in order to verify that CsAtf1 can interact with CsHIS in vivo, the expression vector pCB1532-CsAtf1-G containing the sulfonylurea resistant gene ILV1 and CsAtf1-GFP fusion protein was constructed by double restriction-enzyme digestion, meanwhile, the expression vector pXY203-CsHIG-S containing the hygromycin transferase gene HPH and CsHIG-S fusion protein was constructed using homologous recombination in yeast. Plasmids pCB1532-CsAtf1-G and pXY203-CsHIG-S were co-transformed into wild-type strain to obtain transformants. The results of co-IP indicated that the mitochondrial hypoxia response region protein CsHIG could interact with CsAtf1 in C. siamense. In summary, this research screened candidate proteins by the yeast two-hybrid system and confirmed an interaction between the transcription factor CsAtf1 and CsHIG, which would lay a foundation for further study of the function and regulation mechanism of CsAtf1.
Keywords: rubber tree; Colletotrichum siamense; transcription factor; interaction protein
DOI: 10.3969/j.issn.1000-2561.2022.01.008
轉錄因子(transcription factor, TF)通過與特定位點結合在基因的表達和調控中發(fā)揮重要作用。ATF類轉錄因子是ATF/CREB蛋白家族中的一員,在真菌中,該類轉錄因子能夠在多種應激脅迫中發(fā)揮作用,還參與真菌毒素的產生以及菌體生長發(fā)育、致病等過程。已經證實VdAtf1是通過介導菌體對氮元素的代謝調節(jié)大麗輪枝菌的致病力[1]。稻瘟菌中的MoAtf1及鐮刀菌中的Foatf1均通過調節(jié)過氧化物酶的轉錄來抑制活性氧介導的植物防御,進而影響致病性[2-3]。寄生曲霉中的AtfB基因不僅參與氧化應激反應,還影響黃曲霉毒素的合成[4]。在裂殖酵母中已證實ATF家族蛋白為絲裂原活化蛋白激酶(mitogen-activated protein kinases, MAPK)信號途徑的下游調控因子[5]。曲霉中的AtfA為HOG MAPK途徑的下游轉錄因子[6-7],該通路參與調節(jié)分生孢子及菌絲的脅迫耐受,影響分生孢子的休眠和萌發(fā)[8-10]。
橡膠樹炭疽病是橡膠樹的重要葉部病害[11]。在開春時節(jié),該病為害嚴重會造成橡膠樹新抽嫩葉的反復落葉,導致割膠時間推遲,造成經濟損失[12]。橡膠樹炭疽病的病原菌有多種,其中膠孢炭疽菌復合群中的暹羅炭疽菌(Colletotrichum siamense)為我國橡膠樹田間主要病原菌[13]。課題組前期克隆了膠孢炭疽菌HOG MAPK途徑的CgPbs2基因,證實了該途徑參與調節(jié)膠孢炭疽菌抵御滲透脅迫,影響菌株對吡咯類殺菌劑咯菌腈(fludioxioil)的抗性[14],但該信號途徑參與調控應答的機制尚不清楚。本研究克隆該信號途徑下游一個bZIP轉錄因子,即AtfA同源基因CsAtf1,并利用酵母雙雜交的方法在暹羅炭疽菌cDNA文庫中對暹羅炭疽菌轉錄因子CsAtf1互作蛋白進行篩選,并對其中一個互作蛋白進行免疫共沉淀驗證體內互作。該研究結果為進一步了解HOG MAPK下游轉錄因子的互作蛋白及功能奠定基礎,有助于深入了解炭疽菌對各種脅迫應答的調控機制,為進一步挖掘病原菌防治新靶標提供依據(jù)。
1 ?材料與方法
1.1 ?供試菌株與質粒
暹羅炭疽菌(C. siamense)菌株HN08由本實驗室前期分離、鑒定和保存[14];酵母感受態(tài)細胞Y2H Gold和大腸桿菌DH5α感受態(tài)細胞購自上海唯地生物技術有限公司;載體PMD-18T購自大連TaKaRa公司;質粒pGBKT7、pGADT7、pXY203和pBC1532-G以及酵母菌株XK1-25,由本實驗室保存。暹羅炭疽菌酵母文庫,由本實驗室前期構建保存[15]。
1.2 ?暹羅炭疽菌CsAtf1基因的克隆和分析
根據(jù)禾谷炭疽(C. graminicola)轉錄因子bZIP基因(No. XM008094996.1),在暹羅炭疽菌HN08轉錄組數(shù)據(jù)庫(由本實驗室測序保存)中搜索獲得同源序列,設計引物pGBKT7-CsAtf1-F/pGBKT7- CsAtf1-R(引物序列見表1),從菌株HN08基因組DNA和cDNA中擴增獲得目的條帶,參照方思齊等[16]的方法對基因序列進行比對分析。
1.3 ?pGBKT7-CsAtf1誘餌載體的構建及重組質粒毒性、自激活檢測
用限制性內切酶BamHⅠ和PstⅠ將擴增獲得的CsAtf1基因的cDNA序列與質粒pGBKT7進行雙酶切,參照方思齊等[16]的方法將質粒pGBKT7與CsAtf1基因連接構建質粒pGBKT7-CsAtf1。
參照方思齊等[16]方法驗證誘餌載體pGBKT7- CsAtf1對酵母菌的毒性及在SD/-Trp-Leu-His-Ade缺陷培養(yǎng)基上是否有自激活情況。
1.4 ?酵母雙雜交文庫篩選與回交試驗驗證
參照方思齊等[16]方法,用含誘餌載體pGBKT7- CsAtf1的酵母菌液與菌株HN08 cDNA文庫(Y187)雜交共培養(yǎng),篩選和驗證陽性克隆。
1.5 ?CsAtf1與線粒體缺氧反應區(qū)蛋白CsHIG免疫共沉淀實驗
為構建含有氯嘧磺隆抗性基因ILV1和CsAtf1-GFP融合蛋白表達載體pCB1532-CsAtf1- G,設計引物對pCB1532-G-CsAtf1-F/pCB1532-G- CsAtf1-R,從誘餌載體pGBKT7-CsAtf1中擴增含有PstⅠ和HindⅢ酶切位點的CsAtf1序列,用PstⅠ和HindⅢ對目的片段和載體pCB1532-G進行雙酶切。酶切后連接、轉化步驟同1.3。
使用酵母體內同源重組的方式構建含有潮霉素轉移酶基因HPH和CsHIG-S融合蛋白表達載體pXY203-CsHIG-S,設計引物PXY203-CsHIG-F/ PXY203-CsHIG-R,以暹羅炭疽菌cDNA為模板進行PCR。對pXY203質粒(該載體含有潮霉素轉移酶基因HPH和S tag標簽)進行酶切后回收。將線性pXY203質粒和PCR擴增得到的CsHIG基因共同轉化至酵母XK1-25感受態(tài)中,涂布于SD/-Trp營養(yǎng)缺失培養(yǎng)基平板,30℃靜置培養(yǎng)3 d,選取正常生長的酵母單克隆進行PCR驗證,檢測正確的酵母單克隆質粒轉化大腸桿菌DH5α,待用。
參照LIN等[14]的方法制備暹羅炭疽菌原生質體。使用PEG介導原生質體轉化的方法進行原生質體轉化,利用氯嘧磺?。?00 μg/mL)抗性篩選含有pCB1532-CsAtf1-G的轉化子,將篩選到的轉化子接種于含有潮霉素(600 μg/mL)的PDS平板中篩選含有pXY203-CsHIG-S質粒的轉化子,3~5 d后正常生長的為含有2種抗性的轉化子。
將含有2種表達載體的轉化子菌株接種于CM液體培養(yǎng)基中28℃ 180 r/min培養(yǎng)2~3 d后收集菌體,用絲狀真菌蛋白提取試劑盒(BestBio)進行總蛋白提取。將提取的真菌總蛋白與15 μL anti-GFP瓊脂糖珠(ChromoTek)在4℃ 50 r/min條件下孵育4 h后,4℃ 1000 r/min離心1 min棄上清收集珠子,用1×PBS溶液洗滌3~4次,加入15 μL 1×SDS Loading Buffer重懸介質,煮沸,進行western blot驗證。
2 ?結果與分析
2.1 ?暹羅炭疽菌CsAtf1基因的克隆及序列分析
擴增獲得的含完整開放閱讀框的CsAtf1基因DNA序列大小為1758 bp,cDNA序列大小為1611 bp(圖1),該基因編碼536個氨基酸,含有2個內含子,包含3個Aft1結構域和1個BRLZ(堿性亮氨酸拉鏈)結構域(圖2),說明CsAtf1為bZIP轉錄因子家族中的ATF類轉錄因子。將序列上傳至GenBank數(shù)據(jù)庫,登陸號為:MT084770。
2.2 ?誘餌載體pGBKT7-CsAtf1構建及重組質粒毒性、自激活檢測
將上述擴增獲得的CsATF1 cDNA序列和載體pGBKT7連接,構建誘餌載體pGBKT7-CsAtf1。經引物對pGBKT7-F/pGBKT7-R進行菌落PCR和測序驗證獲得重組誘餌載體pGBKT7-CsAtf1。載體pGBKT7-CsAtf1與pGADT7共轉化酵母Y2HGlod感受態(tài),獲得的轉化子擴增培養(yǎng)后于SD/-Trp-Leu平板上可正常生長,說明pGBKT7-CsAtf1能夠在酵母中成功表達且對宿主不產生毒性。將菌液涂布于SD/-Trp-Leu-His-Ade缺陷培養(yǎng)基平板上顯示沒有自激活現(xiàn)象。
2.3 ?酵母文庫的篩選和陽性克隆測序分析
用誘餌載體pGBKT7-CsAtf1和炭疽菌HN08 cDNA酵母文庫雜交篩選,獲得陽性克隆。提取陽性克隆的質粒,轉入大腸桿菌DH5α中進行擴增后測序。結果顯示,從文庫中共篩選出49個陽性克隆,排除重復和測序失敗的克隆子,實際得到的陽性克隆有12個(表2)。它們分別是細胞壁蛋白PhiA、Rodlet蛋白、乙醇脫氫酶、線粒體缺氧反應區(qū)蛋白、發(fā)育調控的MAPK相互作用蛋白、自噬相關蛋白、β-葡萄糖苷酶、c-4甲基固醇氧化酶、甲基轉移酶和假定蛋白等。
篩選出的12個陽性克隆質粒與誘餌載體pGBKT7-CsAtf1共轉入處于同一酵母菌Y2HGlod時均能正常生長(圖3),該結果進一步驗證了陽性克隆的可靠性。
2.4 ?CsATF1與線粒體缺氧反應區(qū)蛋白CsHIG體內互作鑒定
為了鑒定線粒體缺氧反應區(qū)蛋白CsHIG與CsAtf1是否互作,分別構建了pCB1532-CsAtf1-G和pXY203-CsHIG-S融合蛋白表達載體,重組質粒經PCR驗證、酶切鑒定和測序鑒定。將質粒pCB1532-CsAtf1-G和pXY203-CsHIG-S共同轉化于野生型菌株HN08中,經過含氯嘧磺隆和潮霉素的培養(yǎng)基篩選,獲得轉化子5個,進行驗證后挑取其中1個進行后續(xù)實驗。
提取轉化子總蛋白,用anti-GFP親和凝膠珠免疫沉淀GFP-CsAtf1蛋白復合體,以GFP- pCB1532空載體蛋白作為陽性對照。利用anti- GFP及anti-Stag抗體檢測免疫沉淀復合物中的蛋白(圖4),從圖中可以看出,用anti-GFP珠子抓取的蛋白中,用GFP抗體孵育可顯示出含有一條大小約為90 kDa的目的條帶CsAtf1-GFP,用Stag抗體孵育可顯示出一條大小約為30 kDa的條帶CsHIG-S,而在對照GFP中用Stag抗體孵育不出條帶。結果說明線粒體缺氧反應區(qū)蛋白CsHIG可以與CsAtf1在炭疽菌菌體內發(fā)生互作。
3 ?討論
轉錄因子通常能夠在其他互作蛋白的參與下與靶基因的順式作用原件特異性結合,從而調節(jié)靶基因在特定的時間和空間表達,調控生物體的生理代謝和生長發(fā)育[17]。因此,分析轉錄因子的互作蛋白,對深入研究轉錄因子的調控機制具有重要意義。已知ATF/CREB家族蛋白是一類bZIP轉錄因子,參與調控真菌脅迫應答、毒素的產生以及致病性等[2-3, 9]。但除了已經證實曲霉A. nidulans中的SakA蛋白能與轉錄因子AftA互作外[9],對轉錄因子ATF的互作蛋白還知之甚少。實驗室前期已對轉錄因子CsAtf1的功能進行研究,結果顯示CsAtf1基因影響菌體致病力,并能對吡咯類藥劑的敏感性進行調控[18]。本研究克隆了炭疽菌C. siemense中的Atf1同源基因CsAtf1,通過生物信息學分析顯示,CsAtf1基因含有3個Aft1結構域和1個堿性亮氨酸拉鏈結構域,說明該基因是bZIP轉錄因子家族中的Atf1基因。進一步通過酵母雙雜法從炭疽菌cDNA酵母文庫中篩選獲得CsAtf1的12個候選互作蛋白,并使用Co-IP技術證實了其中一個線粒體缺氧反應區(qū)蛋白CsHIG1和轉錄因子CsAtf1的體內互作,研究結果將為深入研究炭疽菌轉錄因子CsAtf1的調控機制奠定基礎。
已知ATF類轉錄因子與MAPK信號途徑相關,為多個MAPK信號途徑下游轉錄因子,比如有Sty1 MAPK、Pmk1 MAPK等[19]。在本研究篩選獲得的候選互作蛋白中,Yeast-63為發(fā)育調控的MAPK相互作用蛋白。該結果進一步驗證了轉錄因子CsAtf1與MAPK途徑存在聯(lián)系,Yeast-63與轉錄因子CsAtf1的互作生物功能值得進一步深入研究。
此外,篩選獲得的Yeast-68為線粒體缺氧反應區(qū)蛋白(CsHIG1),該蛋白含有一個HIG_1_N蛋白結構域,而HIG1蛋白家族成員的特征就在于N端的HIG1結構域,它是由2個疏水螺旋組成的完整膜蛋白,可能會在脂質雙分子層形成發(fā)夾狀環(huán)[20-21]。HIG1家族在整個進化過程中都是保守的,成員包括真菌、線蟲和哺乳動物等多種真核生物[21-23]。釀酒酵母中的HIG1家族蛋白Rcf1被發(fā)現(xiàn)在線粒體氧化磷酸化過程中與細胞色素c氧化酶互作[24],其后的研究表明Rcf1的功能是通過與線粒體呼吸鏈復合體IV的動態(tài)瞬時關聯(lián)來改變其穩(wěn)定性和催化特性[25]。本研究通過酵母雙雜和Co-IP證實了CsAtf1和CsHIG1間存在互作關系,這為進一步分析它們互作的生物學功能奠定基礎。
候選互作蛋白Yeast-41為細胞壁蛋白PhiA,研究顯示構巢曲霉中的PhiA主要與菌絲及分生孢子的生長有關,該基因的缺失突變體表現(xiàn)為菌絲和分生孢子生長下降[26]。而煙曲霉中的PhiA同源蛋白是細胞壁上的主要抗原,推測其可能作為激發(fā)子,引起植物對病原物的抗性反應[27]。對大麗輪枝菌Vd991的毒素進行分離純化后發(fā)現(xiàn)細胞壁蛋白PhiA可能與致病相關[28],而ATF類轉錄因子也通常與病原菌的致病性相關[2-3]。在暹羅炭疽菌中細胞壁蛋白phiA和CsAtf1產生互作,它們是否共同參與調節(jié)病原菌致病性值得深入研究。
除此之外,本研究還篩選到Rodlet蛋白、乙醇脫氫酶、甲基轉移酶、β-葡萄糖苷酶、c-4甲基固醇氧化酶、自噬相關蛋白等,今后進一步深入研究它們互作的生物學功能,為深入了解炭疽菌應答脅迫反應以及致病機制具有重要意義。
參考文獻
[1] TANG C, LI T, KLOSTERMAN S J, TIAN C, WANG Y. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahlia[J]. New Phytologist, 2020, 226(5):1461-1479.
[2] GUO M, GUO W, CHEN Y, DONG S M, ZHANG X, ZHANG H F, SONG W W, WANG W, WANG Q, LV R., ZHANG Z G, WANG Y C, ZHENG X B. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae[J]. Molecular Plant-Microbe Interactions, 2010, 23(8): 1053-1068.
[3] QI X Z, GUO L J, YANG L Y, HUANG J S. Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.)[J]. Physiological and Molecular Plant Pathology, 2013, 84: 76-85.
[4] WEE J, HONG S Y, ROZE L V, DAY D M, CHANDA A, LINZ J E. The fungal bZIP transcription factor AtfB controls virulence-associated processes in Aspergillus parasiticus[J]. Toxins (Basel), 2017, 9(9): 287.
[5] SHIOZAKI K, RUSSELL P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast[J]. Genes & Development, 1996, 10(18): 2276-2288.
[6] HAGIWALA D, MIZUNO T, ABE K. Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(7): 1566-1571.
[7] WONG SAK HOI J, LAMARRE C, BEAU R, MENEAU I, BEREPIKI A, BARRE A, MELLADO E, READ N D, LATGé J P. A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus[J]. Molecular Biology of the Cell, 2011, 22(11): 1896-1906.
[8] HAGIWARA D, SUZUKI S, KAMEI K, GONOI T, KAWAMOTO S. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus[J]. Fungal Genetics and Biology, 2014, 73: 138-149.
[9] LARA-ROJAS F, SáNCHEZ O, KAWASAKI L, AGUIRRE J. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions[J]. Molecular Microbiology, 2011, 80(2): 436-54.
[10] SAKAMOTO K, IWASHITA K, YAMADA O, KOBAYASHI K, MIZUNO A, AKITA O, MIKAMI S, SHIMOI H, GOMI K. Aspergillus oryzae AtfA controls conidial germination and stress tolerance[J]. Fungal Genetics and Biology, 2009, 46: 887-897.
[11] 蔡志英, 黃貴修. 巴西橡膠樹炭疽病研究進展[J]. 西南林業(yè)大學學報, 2011, 31(1): 89-93.
CAI Z Y, HUANG G X. Research advances in anthracnose of Hevea brasiliensis[J]. Journal of Southwest Forestry University, 2011, 31(1): 89-93. (in Chinese)
[12] 李加智, 張春霞, 何明霞. 云南橡膠樹葉炭疽病病狀及發(fā)生近況[J]. 熱帶農業(yè)科技, 2008, 31(3): 13-16.
LI J Z, ZHANG C X, HE M X. Symptoms of anthracnose on rubber leave and its incidence in Yunnan[J]. Tropical Agricultural Science & Technology, 2008, 31(3): 13-16. (in Chinese)
[13] LIU X B, LI B X, CAI J M, ZHENG X L, FENG Y L, HUANG G X. Colletotrichum species causing anthracnose of rubber trees in China[J]. Scientific Reports, 2018, 8(1): 10435.
[14] LIN C H, HUANG G X, ZHENG F C, MIAO W G. Functional characterization of CgPBS2, a MAP kinase in Colletotrichum gloeosporioides, using osmotic stress sensitivity as a selection marker[J]. European Journal of Plant Pathology, 2018, 152(3): 801-813.
[15] WANG J Y, ZHAO X Y, LIAO X M, HE Q G, LI X, LIU W B, YANG Z P, ZHANG Y, LIN C H, MIAO W G. Screening for proteins interacting with the perilipin-like protein CAP20 by a yeast two-hybrid system and identification of a protein kinase a catalytic subunit as an interacting protein in Colletotrichum siamense[J]. European Journal of Plant Pathology, 2020, 156: 971-977.
[16] 方思齊, 李澤棟, 王記圓, 何其光, 李 ?瀟, 劉文波, 張 ?宇, 林春花, 繆衛(wèi)國. 利用酵母雙雜交技術篩選炭疽菌中與CsSSK1相互作用的蛋白質[J]. 熱帶作物學報, 2021, 42(1): 198-204.
FANG S Q, LI Z D, WANG J Y, HE Q G, LI X, LIU W B, ZHANG Y, LIN C H, MIAO W G. Screening of proteins interacting with CsSSK1 in Colletotrichum siamense by yeast two-hybrid technique[J]. Chinese Journal of Tropical Crops, 2021, 42(1): 198-204. (in Chinese)
[17] LATCHMAN D S. Transcription factors: an overview[J]. International Journal of Biochemistry & Cell Biology, 1997, 29(12): 1305-1312.
[18] SONG M, FANG S Q, LI Z G, WANG N, LI X, LIU W B, ZHANG Y, LIN C H, MIAO W G. CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense[J]. Fungal Genetics and Biology, 2022, 158, 103649.
[19] ZHOU X, MA Y, KATO T, KUNO T. A measurable activation of the bZIP transcription factor Atf1 in a fission yeast strain devoid of stress-activated and cell integrity mitogen-activated protein kinase (MAPK) activities[J]. Journal of Biological Chemistry, 2012, 287(28): 23434-23439.
[20] WANG J, CAO Y, CHEN Y, CHEN Y M, GARDNER P, STEINER D F. Pancreatic beta cells lack a low glucose and O2-inducible mitochondrial protein that augments cell survival[J]. Proceedings of the National Academy of Sciences, 2006, 103: 10636-10641.
[21] BEDO G, VARGAS M, FERREIRO M J, CHALAR C, AGRATI D. Characterization of hypoxia induced gene 1: expression during rat central nervous system maturation and evidence of antisense RNA expression[J]. International Journal of Developmental Biology, 2005, 49(4): 431-436.
[22] STROGOLOVA V, FURNESS A, ROBB-MCGRATH M, GARLICH J, STUART R A. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex[J]. Molecular and Cellular Biology, 2012, 32(8): 1363-1373.
[23] SHEN C, NETTLETON D, JIANG M, KIM S T, POWELL- COFFMAN J A. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans[J]. Journal of Biological Chemistry, 2005, 280(21): 20580-20588.
[24] GARLICH J, STRECKER V, WITTIG I, STUART R A. Analysis of the QRRQ Motif in the yeast Hig1 type 2 protein Rcf1 reveals a regulatory role for the cytochrome c oxidase complex[J]. Journal of Biological Chemistry, 2017, 292(13): 5216-5226.
[25] DAWITZ H, SCH?FER J, SCHAART J M, MAGITS W, BRZEZINSKI P, OTT M. Rcf1 modulates cytochrome c oxidase activity especially under energy-demanding conditions[J]. Frontiers in Physiology, 2020, 10: 1555.
[26] MELIN P, SCHNüRER J, WAGNER E G. Characterization of phiA, a gene essential for phialide development in Aspergillus nidulans[J]. Fungal Genetics and Biology, 2003, 40(3): 234-241.
[27] GLASER A G, KIRSCH A I, ZELLER S, MENZ G, RHYNER C, CRAMERI R. Molecular and immunological characterization of Asp f 34, a novel major cell wall allergen of Aspergillus fumigatus[J]. Allergy, 2009, 64(8): 1144-1151.
[28] HE X J, LI X L, LI Y Z. Disruption of Cerevisin via Agrobacterium tumefaciens-mediated transformation affects microsclerotia formation and virulence of Verticillium dahlia[J]. Plant Pathology, 2015, 64(5): 1157-1167.