張瑜 郇恒福 王文強(qiáng) 楊虎彪 李欣勇 劉國(guó)道
摘 ?要:蔓草蟲豆葉量豐富,粗蛋白質(zhì)和粗脂肪含量均較高,各類家畜均喜食,是亞熱帶地區(qū)較好的豆科牧草。幼苗生長(zhǎng)迅速,可在較短時(shí)間內(nèi)覆蓋地面,為林下間作、水土保持等生態(tài)利用。蔓草蟲豆為本屬地域分布最廣的一種,具有熱帶鄉(xiāng)土草的所有獨(dú)特特點(diǎn):頑拗性、壽命較短。種子脫水能降低胞內(nèi)分子擴(kuò)散、減少活性氧危害,生理生化反應(yīng)被限制到極點(diǎn),且不易受溫度影響,是種子有利的保護(hù)狀態(tài),也是種子存儲(chǔ)的最有利條件。通過(guò)超干保存技術(shù)將熱帶鄉(xiāng)土草種子含水量降低到傳統(tǒng)下限以下,提高種子貯藏活力,增加在常溫和低溫條件下的保存時(shí)間,還可降低常規(guī)保存方法成本。本文采用硅膠干燥法對(duì)蔓草蟲豆種子進(jìn)行超干處理,不同的含水量梯度2.22%、3.35%、4.90%、6.09%的種子發(fā)芽率、發(fā)芽勢(shì)、活力指數(shù)、相對(duì)電導(dǎo)率、丙二醛含量、脯氨酸含量和脫氫酶活性等生理生化指標(biāo)測(cè)定,干燥到2.22%的含水量對(duì)種子萌發(fā)有抑制作用,蔓草蟲豆的超干保存適宜含水量范圍為3.35%~4.90%,蔓草蟲豆的耐脫水性較好。并對(duì)種子的生理生化特性變化規(guī)律分析,得出蔓草蟲豆不同含水量種子的相對(duì)電導(dǎo)率和丙二醛含量與種子發(fā)芽率變化大致上呈相反的趨勢(shì),脯氨酸含量與發(fā)芽率變化呈正相關(guān)趨勢(shì),種子脫氫酶活性與種子發(fā)芽率和發(fā)芽指數(shù)的變化趨勢(shì)一致。本試驗(yàn)采用種子活力和生理特性的相互驗(yàn)證的方法,使結(jié)論更加可靠,蔓草蟲豆的超干種子在室溫下貯藏,不僅種子種質(zhì)得以很好保存,而且耐貯性大大提高。研究結(jié)論為蔓草蟲豆種子超干貯藏的深入研究奠定基礎(chǔ),為熱帶鄉(xiāng)土草種質(zhì)資源的保護(hù)提供科學(xué)的參考依據(jù)。
關(guān)鍵詞:蔓草蟲豆;超干處理;種子活力;生理生化特性
中圖分類號(hào):S54 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Ultra-drying Tolerance of the Seeds of Cajanus scarabaeoides, a Hainan Native Grass
ZHANG Yu, HUAN Hengfu, WANG Wenqiang, YANG Hubiao, LI Xinyong, LIU Guodao*
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory for Utilization of Tropical Crops Germplasm Resources, Ministry of Agriculture & Rural Affairs, Haikou, Hainan 571101, China
Abstract: C. Scarabaeoides is a better legume grass in tropical and subtropical areas with high contents of crude protein and crude fat. Livestocks like to eat. The seedlings grow rapidly and can cover the ground in a short time for ecological utilization such as understory intercropping and water and soil conservation. C. Scarabaeoides is the most widely distributed species of this genus, which has all the unique characteristics of tropical native grass: stubbornness and short life span. Seed dehydration can reduce the intracellular molecular diffusion and the harm of active oxygen. The physiological and biochemical reactions are limited to the extreme and are not easy to be affected by temperature. It is not only a favorable protective state of seeds, but also the most favorable condition for seed storage. The ultra dry preservation technology can reduce the water content of tropical native grass seeds below the traditional lower limit, can improve the seed storage vitality and increase the preservation time under normal and low temperature conditions, and reduce the cost of conventional preservation methods. In the study, the seeds of C. scarabaeoides were ultra-dried by the silica gel drying method with different water content gradients of 2.22%, 3.35%, 4.90% and 6.09%. The germination rate, germination potential, vigor index, relative electrical conductivity, MDA content, Pro content and dehydrogenase activity of the seeds were determined. The results showed that drying to 2.22% water content inhibited seed germination, the suitable moisture content for ultra-dried storage was 3.35%?4.90%, and the dehydration resistance of C. scarabaeoides was better. Through the analysis of the changes of physiological and biochemical characteristics of seeds, the results showed that the relative electrical conductivity and MDA content of seeds with different water content were opposite to germination rate, the Pro content was positively correlated with the change of germination rate, and the activity of seed dehydrogenase activity was consistent with the change trend of seed germination rate and germination index. This experiment adopted the method of mutual verification of seed vigor and physiological characteristics to make the conclusion more reliable. Ultra dry seeds of C. scarabaeoides were stored at normal temperature, the germplasm was well preserved and the storage tolerance was greatly improved. Test conclusion lay a foundation for the in-depth study of ultra-dry storage of C. scarabaeoides seeds, and to provide some scientific references for the protection of tropical local grass germplasm resources.
Keywords: Cajanus scarabaeoides; ultra-dry treatment; seed vigor; physiological and biochemical indexes
DOI: 10.3969/j.issn.1000-2561.2022.01.012
蔓草蟲豆[Cajanus scarab aeoides (Linn.) Thouars]為豆科(Leguminosae)木豆屬(Cajanus DC.)蔓生或纏繞狀的草質(zhì)藤本,產(chǎn)于熱帶、亞熱帶地區(qū),為本屬地域分布最廣的一種[1]。目前,國(guó)內(nèi)外對(duì)蔓草蟲豆的研究很少,多數(shù)將其作為木豆的野生近緣種,為改良木豆品質(zhì)尋找有用基因[2-7];或是對(duì)蔓草蟲豆的病蟲害的研究[8-9];或是作為綠肥對(duì)磚紅壤酸度的影響[10]等。蔓草蟲豆葉量豐富,粗蛋白質(zhì)和粗脂肪含量均較高,各類家畜均喜食,是熱帶亞熱帶地區(qū)較好的豆科牧草。種子發(fā)芽率高,幼苗生長(zhǎng)迅速,可在較短時(shí)間內(nèi)覆蓋地面,為林下間作、水土保持等利用。
熱帶鄉(xiāng)土草有許多獨(dú)特的特點(diǎn):種子較大,屬頑拗性種子;落粒性強(qiáng),種子難收;大多數(shù)壽命較短[11-12]。通過(guò)超干保存技術(shù)降低種子含水量的方法,能讓種子較長(zhǎng)時(shí)間在室溫下密閉貯藏或長(zhǎng)期在低溫庫(kù)中保存[13]。目前國(guó)內(nèi)外關(guān)于應(yīng)用超干技術(shù)保存豆科種子,已有許多的成功案例[14-17],但未有對(duì)蔓草蟲豆超干種子的研究報(bào)道,僅有少量同屬植物的種子超干保存和人工老化試驗(yàn)的研究[18-20]。因此本試驗(yàn)以蔓草蟲豆的超干種子的生理生化指標(biāo)作為研究點(diǎn),分析干燥處理對(duì)蔓草蟲豆種子的影響,確定種子的耐干性和超干保存的最適含水量。本研究可為熱帶其他鄉(xiāng)土草種子超干保存提供數(shù)據(jù)依據(jù)和技術(shù)支持,對(duì)降低種子保存成本、保持種子活力以及蔓草蟲豆的推廣利用具有重要意義。
1 ?材料與方法
1.1 ?材料
參試材料來(lái)自中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所國(guó)家熱帶牧草中期備份庫(kù),原始種子采自海南省白沙縣元門鄉(xiāng),于2020年4月繁種于國(guó)家熱帶牧草種質(zhì)圃(海南儋州),2020年12月采收,經(jīng)晾曬處理后于–20℃冰箱中保存待用。
采用硅膠干燥法獲得超干種子,裝入鋁箔袋密封備用[21]。干燥前把種子恒重稱量,放入干燥器中干燥一定時(shí)間后再次稱量,二者差額即為種子含水量。持續(xù)一段時(shí)間測(cè)定,獲得不同的含水量梯度,2.22%、3.35%、4.90%、6.09%,其中以6.09%初始含水量作為對(duì)照(CK)[22]。
1.2 ?方法
1.2.1 ?種子活力測(cè)定 ?將超干種子緩濕處理后進(jìn)行常規(guī)發(fā)芽試驗(yàn),測(cè)定種子的發(fā)芽率、發(fā)芽指數(shù)、活力指數(shù)[23]。每天記錄種子萌發(fā)粒數(shù),7 d后統(tǒng)計(jì)結(jié)束。
1.2.2 ?生理指標(biāo)測(cè)定 ?稱取各超干處理種子10~ 20粒,將其浸于水或溶液中浸泡數(shù)分鐘或者加入特定試劑研磨成漿后離心。相對(duì)電導(dǎo)率采用浸泡電導(dǎo)法,丙二醛(MDA)含量的測(cè)定采用硫代巴比妥酸(TBA)法,脯氨酸(Pro)的質(zhì)量分?jǐn)?shù)的測(cè)定采用茚三酮比色法,脫氫酶活性測(cè)定采用TTC染色法[24-25]。
1.3 ?數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用SAS 9.0軟件進(jìn)行統(tǒng)計(jì)分析,采用Duncan’s法對(duì)各指標(biāo)平均值做Person相關(guān)分析,用Microsoft Excel 2003軟件制圖。
2 ?結(jié)果與分析
2.1 ?超干處理對(duì)蔓草蟲豆種子萌發(fā)和活力水平的影響
2.1.1 ?種子發(fā)芽率變化 ?方差分析結(jié)果表明,蔓草蟲豆種子發(fā)芽率差異極顯著。在種子含水量為4.90%和3.35%時(shí),種子發(fā)芽率和對(duì)照差異不顯著;在種子含水量為2.22%時(shí),種子發(fā)芽率極顯著低于對(duì)照。由表1可看出,干燥處理對(duì)蔓草蟲豆種子發(fā)芽率有較大影響。隨著種子含水量的降低,種子發(fā)芽率呈先升高后降低的趨勢(shì)。當(dāng)種子干燥到含水量4.90%時(shí),種子發(fā)芽率略微升高;當(dāng)種子含水量下降到3.35%時(shí),蔓草蟲豆種子發(fā)芽率基本沒(méi)有變化;種子進(jìn)一步脫水干燥到含水量為2.22%后,與對(duì)照相比,發(fā)芽率降低了50%。結(jié)果表明適度超干處理能保持蔓草蟲豆種子活力。
2.1.2 ?種子發(fā)芽指數(shù)變化 ?方差分析結(jié)果表明,蔓草蟲豆種子發(fā)芽指數(shù)差異極顯著。在種子含水量為4.90%和3.35%時(shí),種子發(fā)芽指數(shù)極顯著高于對(duì)照和2.22%含水量;在種子含水量為2.22%時(shí),種子發(fā)芽指數(shù)極顯著低于對(duì)照。由表1可看出,隨著蔓草蟲豆種子含水量的降低,種子發(fā)芽指數(shù)的變化趨勢(shì)呈先升高后降低。種子含水量在4.90%和3.35%時(shí),發(fā)芽指數(shù)明顯升高;含水量為2.22%時(shí),種子發(fā)芽指數(shù)下降。結(jié)果表明,適度超干處理能保持蔓草蟲豆種子活力。
2.1.3 ?種子活力指數(shù)變化 ?方差分析結(jié)果表明,蔓草蟲豆種子活力指數(shù)差異極顯著。在種子含水量為4.90%時(shí),種子活力指數(shù)極顯著高于對(duì)照,含水量3.35%時(shí)的種子活力指數(shù)與對(duì)照差異不顯著;在種子含水量為2.22%時(shí),種子活力指數(shù)極顯著低于對(duì)照和其他含水量。由表1可看出,隨著蔓草蟲豆種子含水量的降低,種子活力指數(shù)的變化為先升高后降低,變化走向和發(fā)芽率、發(fā)芽指數(shù)的變化走向一致。在種子含水量4.90%時(shí),活力指數(shù)明顯升高;種子含水量3.35%時(shí),蔓草蟲豆種子活力指數(shù)沒(méi)有太大變化;種子含水量為2.22%后,種子活力指數(shù)降低60%。結(jié)果表明,種子含水量3.35%是蔓草蟲豆種子干燥后活力保持的最低含水量。
2.2 ?超干處理對(duì)蔓草蟲豆種子生理特性的影響
2.2.1 ?種子脫氫酶活性變化 ?不同水分梯度蔓草蟲豆種子脫氫酶活性如表2所示。方差分析結(jié)果表明,蔓草蟲豆種子脫氫酶活性差異極顯著;在種子含水量為2.22%時(shí),種子脫氫酶活性極顯著低于對(duì)照和其他含水量。隨著水分的降低,種子脫氫酶活性先上升后下降,與種子發(fā)芽率變化呈正相關(guān)關(guān)系。3.35%含水量種子的發(fā)芽率為78.0%,其脫氫酶活性為11.48 mg/L;4.90%含水量種子的發(fā)芽率在各處理中最高,為85.0%,其脫氫酶活性也最高,為12.35 mg/L;2.22%含水量種子的發(fā)芽率為45.0%,其脫氫酶活性極顯著低于其他處理,與種子發(fā)芽率和發(fā)芽指數(shù)的變化趨勢(shì)一致。脫氫酶活性受種子含水量影響較大,種子含水量為3.35%~4.90%有利于蔓草蟲豆種子干燥后活力保持。
2.2.2 ?種子相對(duì)電導(dǎo)率變化 ?方差分析結(jié)果表明,蔓草蟲豆種子相對(duì)電導(dǎo)率差異極顯著;在種子含水量為2.22%時(shí),種子相對(duì)電導(dǎo)率極顯著高于對(duì)照和其他含水量。由表2可知,隨著含水量的降低,超干種子相對(duì)電導(dǎo)率呈先降低后升高的變化,與種子發(fā)芽率變化呈負(fù)相關(guān)關(guān)系。種子含水量在4.90%、3.35%時(shí)和對(duì)照的種子發(fā)芽率都大于75%,而相對(duì)電導(dǎo)率都小于25%。種子含水量在2.22%時(shí),相對(duì)電導(dǎo)率最高,說(shuō)明細(xì)胞質(zhì)膜受到損傷,使細(xì)胞內(nèi)大量電解質(zhì)外滲,活力下降。種子含水量3.35%是蔓草蟲豆種子干燥后活性保持的最低限,蔓草蟲豆屬于耐干類型。
2.2.3 ?種子丙二醛(MDA)含量變化 ?方差分析結(jié)果表明,蔓草蟲豆種子MDA含量差異極顯著;在種子含水量為2.22%時(shí),種子相對(duì)電導(dǎo)率極顯著高于對(duì)照和其他含水量,含水量3.35%、4.90%和對(duì)照的種子丙二醛含量差異不大。由表2可知,隨著蔓草蟲豆種子含水量的降低,種子丙二醛含量的變化為先降低后升高。種子丙二醛含量越高,種子發(fā)芽率越低,種子丙二醛含量與種子發(fā)芽率呈負(fù)相關(guān)關(guān)系。含水量2.22%種子的丙二醛含量最高,為25 nmol/g,其種子發(fā)芽率最低。3.35%~ 4.90%含水量后可使種子丙二醛含量保持在一個(gè)較低的水平,可降低種子在逆境中受到的傷害。種子含水量3.35%是蔓草蟲豆種子干燥后MDA含量升高的轉(zhuǎn)折點(diǎn)。
2.2.4 ?種子脯氨酸(Pro)含量變化 ?方差分析結(jié)果表明,蔓草蟲豆種子Pro含量差異極顯著;在種子含水量為4.90%和時(shí),種子Pro含量極顯著高于對(duì)照和3.35%含水量;在種子含水量為2.22%時(shí),種子Pro含量極顯著低于對(duì)照和其他含水量。表2表明,干燥處理后,蔓草蟲豆種子Pro含量隨著種子含水量的降低發(fā)生先上升后下降的變化,變化走向與種子發(fā)芽率的走向較為一致。適度超干處理可以促進(jìn)蔓草蟲豆種子Pro含量增高來(lái)調(diào)節(jié)滲透平衡,有利于提高蔓草蟲豆種子對(duì)干燥脅迫的耐受性。種子含水量3.35%是蔓草蟲豆種子干燥后Pro含量下降的轉(zhuǎn)折點(diǎn)。
2.3 ?蔓草蟲豆超干種子各指標(biāo)之間的相關(guān)性分析
由表3可知,干燥處理后蔓草蟲豆種子的含水量與種子發(fā)芽率、脫氫酶活性呈顯著正相關(guān),且與脫氫酶活性的相關(guān)性大于發(fā)芽率,因此,種子含水量與脫氫酶活性的相關(guān)性較大。但種子含水量和相對(duì)電導(dǎo)率有極顯著的負(fù)相關(guān)性,這表明
種子含水量與細(xì)胞膜透性密切相關(guān)。種子含水量與MDA含量、Pro含量無(wú)顯著相關(guān)性,二者不作為判定干燥處理后蔓草蟲豆種子活力的主要指標(biāo)。
種子發(fā)芽率與脫氫酶活性相關(guān)性顯著,與相對(duì)電導(dǎo)率負(fù)相關(guān)性極顯著,與MDA含量、Pro含量均無(wú)相關(guān)性。
3 ?討論
淀粉類種子很難干燥到含水量為5%以下,這是國(guó)內(nèi)外相關(guān)研究學(xué)者普遍認(rèn)同的結(jié)論[26-30]。崔凱等[18]采自云南省元謀市干熱河谷的木豆種子,研究發(fā)現(xiàn)種子超干保存最適含水量為4.94%,
得出可能是因?yàn)榇四径顾幧掣痈珊?,?duì)生境產(chǎn)生了適應(yīng)性而使種子的耐干性提高。但此類屬于生境或地域性耐干,由環(huán)境選擇形成的,不能確定是植物本身的特性或具備遺傳穩(wěn)定性,但可以確定的是采用超干方法保存木豆種子是可行
的。本研究中的試驗(yàn)材料蔓草蟲豆和木豆為同屬不同種,種子千粒重(11.8 g)遠(yuǎn)遠(yuǎn)小于木豆(77.5 g),從形態(tài)上比木豆更容易干燥。而蔓草蟲豆種子可將含水量降低到3.35%,可能是和種子本身特征有關(guān)系,蔓草蟲豆的種臍具有厚而且凸起的肉質(zhì)種阜。種阜有吸水作用,在種子萌發(fā)時(shí)可向發(fā)芽孔輸送水分,因此干燥時(shí)也能讓種子中的水分更多的逸出,更多降低含水量。將在后續(xù)試驗(yàn)中探討種阜對(duì)種子干燥有無(wú)影響。
扁蓿豆[31]、小葉錦雞兒[32]、籽粒莧[33]、沙打旺[34]、銀合歡[35]、柳枝稷[36]、新麥草[37]等草資源超干研究結(jié)果與本研究結(jié)論一致,發(fā)芽率、電導(dǎo)率、MDA含量、相對(duì)電導(dǎo)率、脫氫酶活性等指標(biāo)可以用于測(cè)定蔓草蟲豆超干種子的活力。本研究采用種子活力和生理特性相互驗(yàn)證的方法,使結(jié)論“蔓草蟲豆的超干保存適宜含水量范圍為3.35%~4.90%”更加可靠,為鄉(xiāng)土草種子超干保存提供科學(xué)依據(jù)。
檢驗(yàn)種子超干保存效果最直觀的方法就是發(fā)芽率高低,但發(fā)芽試驗(yàn)需要花費(fèi)一定時(shí)間,特別是有些種皮較厚或頑拗性或具休眠性或粒大的種子,發(fā)芽過(guò)程更是緩慢。本研究將蔓草蟲豆超干種子的發(fā)芽率和相對(duì)電導(dǎo)率、MDA含量、Pro含量等指標(biāo)作相關(guān)性分析發(fā)現(xiàn),脫氫酶活性和相對(duì)電導(dǎo)率得到的相關(guān)性系數(shù)相對(duì)較高,而且相對(duì)電導(dǎo)率易于測(cè)定、用時(shí)短、成本低,可用于快速測(cè)定種子活力高低,達(dá)到及時(shí)檢測(cè)干燥效果。
4 ?結(jié)論
蔓草蟲豆不同含水量種子的相對(duì)電導(dǎo)率、丙二醛含量、脯氨酸含量、脫氫酶活性存在較大差異,相對(duì)電導(dǎo)率和丙二醛含量與種子發(fā)芽率變化大致上呈相反的趨勢(shì),脯氨酸含量與發(fā)芽率變化呈正相關(guān)趨勢(shì)。適宜超干處理能使蔓草蟲豆種子脫氫酶活性保持在較高水平,減緩脯氨酸含量降低幅度,膜系統(tǒng)傷害較輕,相對(duì)電導(dǎo)率降低、丙二醛含量減少,從而有效維持干燥后的種子活力。因此超干保存蔓草蟲豆種子具有一定的可行性。
總的來(lái)說(shuō),超干處理的蔓草蟲豆種子的發(fā)芽率會(huì)跟隨水分的降低出現(xiàn)單峰曲線變化,高峰值就是超干保存最適含水量,即種子發(fā)芽率在水分梯度中達(dá)到最高85%,種子超干保存最適含水量為4.90%。當(dāng)蔓草蟲豆種子中的含水量降低到一定程度,其發(fā)芽率表現(xiàn)為降低到50%以下,將此時(shí)的種子含水量作為蔓草蟲豆種子超干保存的最低限,也就是2.22%的含水量對(duì)種子萌發(fā)已有了抑制作用。發(fā)芽率在50%以上的種子含水量可作為蔓草蟲豆超干保存的適宜含水范圍,因此超干處理后3.35%~4.90%種子含水量有利于蔓草蟲豆種子的安全保存。
參考文獻(xiàn)
[1] 中國(guó)科學(xué)院《中國(guó)植物志》編委會(huì). 中國(guó)植物志[M]. 北京: 科學(xué)出版社, 1995: 306. (in Chinese)
Chinese Academy of Sciences《Flora of China》Editorial board. Flora of China[M]. Beijing: Science Press, 1995: 306.
[2] SAXENA K B, SINGH L, REDDY M V, SINGH U. Intra species variation in Atylosia scarabaeoides (L.) Benth., a wild relative of pigeonpea [Cajanus cajan (L.) Millsp.][J]. Euphytica, 1990, 49(3): 185-191.
[3] UPADHYAYA H D, REDDY K N, PUNDIR R P S, SINGH S, GOWDA C L L, AHMED M I. Diversity and geographical gaps in Cajanus scarabaeoides (L.) Thou. germplasm conserved at the ICRISAT genebank[J]. Plant Genetic Resources, 2011, 11(3): 3-14.
[4] RAMYA R M, ALOK R S, SOBHA C R, SATYENDRA P M, JOGESWAR P. Cyto-morphological and molecular characterization of Cajanus cajan × C. scarabaeoides F1 hybrid[J]. The Nucleus, 2012, 55(1): 27-35.
[5] KALAIMAGAL T, MUTHAIAH A, RAJARATHINAM S, MALINI S, NADARAJAN N, PECHIAMMAL I. Development of new cytoplasmic-genetic male-sterile lines in pigeonpea from crosses between Cajanus cajan (L.) Millsp.and C. scarabaeoides (L.) Thouars[J]. Journal of Applied Genetics, 2008, 49(3): 221-227.
[6] DATTA S, SINGH P, MAHFOOZ S, PRAKASH G P, ARVIND K C, IKECHUKWU O A, NADARAJAN N. Novel genic microsatellite markers from Cajanus scarabaeoides and their comparative efficiency in revealing genetic diversity in pigeonpea[J]. Journal of Genetics, 2016, 93(2): 24-30.
[7] SOBHA C R, ANKITA M, RAMYA R M, ALOK R S, JOGESWAR P. Inheritance and mapping of protein markers detecting polymorphism among Cajanus cajan and C. scarabaeoides genotypes with contrasting host response to pod borer (Helicoverpa armigera)[J]. Caryologia, 2015, 68(3): 217-224.
[8] ARUNA R, RAO D M, REDDY L J, HARI D U, HARI C S. Inheritance of trichomes and resistance to pod borer (Helicoverpa armigera) and their association in interspecific crosses between cultivated pigeonpea (Cajanus cajan) and its wild relative C. scarabaeoides[J]. Euphytica, 2005, 145(3): 247-257.
[9] 王柱華, 劉俊男, 楊子祥, 趙 ?宇, 蔡 ?紅, 陳海如. 云南蔓草蟲豆叢枝植原體16SrDNA和sect基因序列分析[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)), 2018, 33(5): 826-835. (in Chinese)
WANG Z H, LIU J N, YANG Z X, ZHAO Y, CAI H, CHEN H R. Analysis of the sequences of 16S rDNA and secY of Cajanus scarabaeoides Witche’-broom phytoplasma in Yuanmou, Yunnan Province[J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(5): 826-835.
[10] 李 ?艷, 張如蓮, 劉國(guó)道, 郇恒福. 施用豆科綠肥后磚紅壤酸度隨時(shí)間的動(dòng)態(tài)變化[J]. 熱帶作物學(xué)報(bào), 2011, 32(3): 427-431. (in Chinese)
LI Y, ZHANG R L, LIU G D, HUAN H F. Studies on dynamic changes of latosol acidity after leguminous green manure application[J]. Chinese Journal of Tropical Crops, 2011, 32(3): 427-431.
[11] 白昌軍, 劉國(guó)道, 張 ?瑜, 虞道耿. 華南地區(qū)熱帶亞熱帶草種質(zhì)資源考察收集與保存利用現(xiàn)狀及前景[J]. 熱帶作物學(xué)報(bào), 2012, 33(2): 390-396. (in Chinese)
BAI C J, LIU G D, ZHANG Y, YU D G. The present situation and prospect of tropical and subtropical forage germplasm resources investigation, collection, conservation and utilization in South China[J]. Chinese Journal of Tropical Crops, 2012, 33(2): 390-396.
[12] 劉國(guó)道. 我國(guó)熱帶牧草種質(zhì)資源保護(hù)和利用的戰(zhàn)略思路[J]. 熱帶農(nóng)業(yè)科學(xué), 1998, 6: 86-88. (in Chinese)
LIU G D. Strategic thoughts on conservation and utilization of tropical forage germplasm resources in China [J]. Chinese Journal of Tropical Agriculture, 1998, 6: 86-88.
[13] 陳叔平. 種質(zhì)資源低溫保存原理和技術(shù)[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 1995. (in Chinese)
CHEN S P. Principles and techniques of cryopreservation of germplasm resources[M]. Beijing: China Agricultural Science and Technology Press, 1995.
[14] HONG T D, ELLIS R H , ASTLEY D, PINNEGAR A E, GROOT S P C, KRAAK H L. Survival and vigour of ultra-dry seeds after ten years of hermetic storage[J]. Seed science and technology, 2005, 33(2): 449-460.
[15] 何 ?云, 李 ?瓊. 柱花草種子的超干保存[J]. 熱帶農(nóng)業(yè)科學(xué), 2016, 36(3): 71-74. (in Chinese)
HE Y, LI Q. Ultra-dry storage of Stylosanthes seeds[J]. Chinese Journal of Tropical Agriculture, 2016, 36(3): 71-74.
[16] 黃永菊, 伍曉明, 沈金雄, 鄭普英, 盛曉燕. 大豆種子超干燥保存研究Ⅰ.50℃高溫模擬老化對(duì)種子活力及生理特性的影響[J]. 中國(guó)油料作物學(xué)報(bào), 2000, 22(3): 39-42. (in Chinese)
HUANG Y J, WU X M, SHEN J X, ZHENG J Y, SHENG X Y. Research on ultradry storage of soybean seeds[J]. Chinese journal of oil crop sciences, 2000, 22(3): 39-42.
[17] 霍平慧. 超干處理對(duì)紫花苜蓿種子及幼苗生長(zhǎng)影響的研究[D]. 蘭州: 甘肅農(nóng)業(yè)大學(xué), 2011. (in Chinese)
HU P H. The effects of ultra-drying on seeds and seedlings growth of Medicago sativa[D]. Lanzhou: Gansu Agricultural University, 2011.
[18] 崔 ?凱, 李 昆, 李 ?立, 孫永玉. 木豆種子超干保存最適含水量的選擇及其機(jī)制分析[J]. 東北林業(yè)大學(xué)學(xué)報(bào), 2008, 36(5): 19-21. (in Chinese)
CUI K, LI K, LI L, SUN Y Y. Selection of optimum moisture content of Cajanu scajan seeds for ultra-dry storage and its mechanism analysis[J]. Journal of Northeast Forestry University, 2008, 36(5): 19-21.
[19] SANCHES M F G, dos SANTOS, J F, MARTINS C C, de SOUZA F H D, VIEIRA R D. Accelerated ageing test for vigour assessment of pigeon pea Cajanus cajan (L.) Millsp. seeds[J]. Australian Journal of Crop Science, 2014, 8(9): 1298-1303.
[20] 馬金星, 屠德鵬, 寇建村, 劉 ?芳. 干燥溫度對(duì)豆科牧草種子脫水速率和發(fā)芽率的影響[J]. 草業(yè)學(xué)報(bào), 2016, 25(8): 56-64. (in Chinese)
MA J X, TU D P, KOU J C, LIU F. Effects of drying temperature on water loss and germination rates of leguminous forage seeds[J]. Acta Prataculturae Sinica, 2016, 25(8): 56-64.
[21] 張時(shí)軼, 李 ?睿, 徐 ?建. 溫度對(duì)玉米種子貯藏最適含水量的影響[J]. 現(xiàn)代農(nóng)業(yè)研究, 2019, 4: 29-30.
ZHANG S T, LI R, XU J. Effect of temperature on optimum water content of maize seed storage[J]. Modern Agriculture Research, 2019, 4: 29-30. (in Chinese)
[22] 宋松泉, 程紅炎, 龍春林. 種子生物學(xué)研究指南[M]. 北京: 科學(xué)出版社, 2005. (in Chinese)
SONG S Q, CHENG H Y, LONG C L. Guide to seed biology research[M]. Beijing: Science Press, 2005.
[23] 國(guó)際種子檢驗(yàn)協(xié)會(huì)(ISTA). 1996國(guó)際種子檢驗(yàn)規(guī)程[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 1996. (in Chinese)
International Seed Inspection Association (ISTA). 1996 International seed inspection regulations[M]. Beijing: China Agricultural Press, 1996.
[24] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京: 高等教育出版社, 2003. (in Chinese)
LI H S. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2003.
[25] 張憲政, 陳鳳玉, 王榮福. 植物生理學(xué)實(shí)驗(yàn)技術(shù)[M]. 沈陽(yáng): 遼寧科學(xué)技術(shù)出版社, 1994. (in Chinese)
ZHANG X Z, CHEN F Y, WANG R F. Experimental techniques of plant physiology[M]. Shenyang: Liaoning science and Technology Press, 1994.
[26] 汪曉峰, 景新明, 鄭光華. 含水量對(duì)種子儲(chǔ)藏壽命的影響[J]. 植物學(xué)報(bào), 2001, 43(6): 551-557. (in Chinese)
WANG X F, JING X M, ZHENG G H. Effect of seed moisture content on seed storage longevity[J]. Acta Botanica Sinica, 2001, 43(6): 551-557.
[27] ELLIS R H, HONG TD, ROBERTS E H. A comparison of the low-moisture-content limit to the logarithmic relationship between seed moisture and longevity in twelve species[J]. Annals of Botany, 1989, 63(6): 601-611.
[28] ELLIS R H, HONG T D, ROBERTS E H. A low-moisture- content Limit to relationships between seed moisture and longevity[J]. Annals of Botany, 1988, 65(4): 405-408.
[29] KONG X H, ZHANG H Y. The effect of ultra-dry methods and storage on vegetable seeds[J]. Seed Science Research, 1998, 8(1): 41-45.
[30] 鄭普英, 伍曉明, 黃永菊, 陳碧云, 許 ?鯤, 沈金雄. 大豆種子超干燥保存研究Ⅲ. 25℃、5℃條件下保存一年后種子生活力和活力的變化[J]. 中國(guó)油料作物學(xué)報(bào), 2001, 23(1): 22-26. (in Chinese)
ZHENG P Y, WU X M, HUANG Y J, CHEN B Y, XU K, SHEN J X. Research on ultra-dry storage of soybean seeds[J]. Chinese Journal of Oil Crop Sciences, 2001, 23(1): 22-26.
[31] 王 ?偉. 幾種牧草種子超干貯藏生理生化特性的研究[D]. 呼和浩特: 內(nèi)蒙古農(nóng)業(yè)大學(xué), 2012. (in Chinese)
WANG W. Studies on physiological-biochemical characteristics of several forage seeds during ultra-dry storage[D]. Huhehaote: Inner Mongolia Agricultural University, 2012.
[32] 侯龍魚. 西北干旱半干旱地區(qū)四種林木種子超干保存研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2008. (in Chinese)
HOU L Y. Study on Ultra-dry storage seed of four forest seeds from arid and semiarid areas of northwest China[D]. Tai’an: Shandong Agricultural University, 2008.
[33] 姜義寶, 王成章, 李德鋒, 王志靈. 籽粒莧種子超干貯藏研究[J]. 草業(yè)科學(xué), 2010, 27(12): 120-123. (in Chinese)
JIANG Y B, WANG C Z, LI D F, WANG Z L. Effects of ultradrying storage on vigor of Amaranthus hypochondriacus seeds[J]. Pratacultural Science, 2010, 27(12): 120-123.
[34] 陳志宏, 李曉芳, 贠旭疆, 高洪文. 種子超干貯存研究進(jìn)展[J]. 草業(yè)科學(xué), 2011, 28(2): 296-303. (in Chinese)
CHEN Z H, LI X F, YUN X J, GAO H W. Research progress on ultra-dry seed storage[J]. Pratacultural Science, 2011, 28(2): 296-303.
[35] 鄒冬梅. 柱花草、銀合歡種子超干保存研究[D]. 儋州: 華南熱帶農(nóng)業(yè)大學(xué), 2007. (in Chinese)
ZOU D M. Study on ultra-dry preservation of Stylosanthes and Leucaena leucocephala seeds[D]. Danzhou: South China Tropical Agricultural University, 2007.
[36] 何學(xué)青, 沙亞·海拉提, 龍明秀, 梁玉生, 陶奇波, 呼天明. 超干處理對(duì)柳枝稷種子活力及幼苗生長(zhǎng)特性的影響[J]. 草地學(xué)報(bào), 2017, 25(5): 1055-1060. (in Chinese)
HE X Q, SHAYA·H L T, LONG M X, LIANG Y S, TAO Q B, HU T M. Effect of ultra-dry treatment on seed vigor and seedling growth of switchgrass[J]. Acta Agrestia Sinica, 2017, 25(5): 1055-1060.
[37] 劉大林, 劉 ?芳, 高洪文, 陳志宏, 王 ?贊, 黃 ?頂, 韓建國(guó). 超干貯藏新麥草種子若干生理生化特性的研究[J]. 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2011, 32(1): 35-40. (in Chinese)
LIU D L, LIU F, GAO H W, CHEN Z H, WANG Z, HUANG D, HAN J G. The physiological and biochemical properties of psathrostachys perinnis seeds during ultra- drying storage[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2011, 32(1): 35-40.