田瀟瀟 姜秉政 曹振木 劉子記 凌鵬 謝尚潛 朱婕
摘 ?要:根結(jié)線蟲(chóng)(Meloidogyne spp.)是一類(lèi)高度專(zhuān)化性的雜食性植物病原線蟲(chóng)。目前,世界上已報(bào)道的根結(jié)線蟲(chóng)種類(lèi)有98種,我國(guó)危害農(nóng)作物最為嚴(yán)重的根結(jié)線蟲(chóng)有6種,包括南方根結(jié)線蟲(chóng)(M. incognita)、北方根結(jié)線蟲(chóng)(M. hapla)、爪哇根結(jié)線蟲(chóng)(M. javanica)、花生根結(jié)線蟲(chóng)(M. arenaria)、擬禾谷根結(jié)線蟲(chóng)(M. graminicola)和象耳豆根結(jié)線蟲(chóng)(M. enteroloblii)。象耳豆根結(jié)線蟲(chóng)寄主范圍廣、致病力強(qiáng),選育抗病品種是防治該線蟲(chóng)最為經(jīng)濟(jì)有效的手段。由于象耳豆根結(jié)線蟲(chóng)在辣椒生產(chǎn)中造成的危害越來(lái)越大,急需篩選高抗象耳豆根結(jié)線蟲(chóng)的辣椒種質(zhì),為抗病育種工作提供物質(zhì)前提。本研究采用苗期接種鑒定法,對(duì)27份中國(guó)辣椒(Capsicum chinense)接種象耳豆根結(jié)線蟲(chóng),60 d后開(kāi)展抗病性鑒定工作。從根結(jié)指數(shù)和卵粒指數(shù)可以看出,不同種質(zhì)材料在抗病性上存在顯著差異。L529-10-1-2-1的根結(jié)指數(shù)和卵粒指數(shù)均最大,L550-1-3的根結(jié)指數(shù)最小,L518×L535的卵粒指數(shù)最小,可推測(cè)L529-10-1-2-1對(duì)象耳豆根結(jié)線蟲(chóng)的抗病性最弱,L550-1-3和L518×L535抗病性最強(qiáng)。結(jié)合隸屬函數(shù)值和聚類(lèi)分析,將27份供試?yán)苯贩N質(zhì)分為抗病、低抗、感病和高感4類(lèi)。其中抗病種質(zhì)16份,隸屬函數(shù)值在1.60以上;低抗種質(zhì)4份,隸屬函數(shù)值在1.26~1.51之間;感病種質(zhì)5份,隸屬函數(shù)值在0.64~0.93之間;高感種質(zhì)2份,隸屬函數(shù)值在0.42以下。選取高抗的L501M-1M和高感的L529-10-1-2-1接種象耳豆根結(jié)線蟲(chóng),并在接種后0、3、6、9、12、15、20、25、30 d觀察線蟲(chóng)侵染量和根系木質(zhì)素含量。發(fā)現(xiàn)L501M-1M根系中的根結(jié)線蟲(chóng)數(shù)量遠(yuǎn)遠(yuǎn)少于L529-10-1-2-1,且L501M-1M中根結(jié)線蟲(chóng)的發(fā)育受到了阻滯。L501M-1M和L529-10-1-2-1在接種前木質(zhì)素含量均較低,而接種后抗感種質(zhì)木質(zhì)素含量均有所上升,且L501M-1M的木質(zhì)素含量明顯高于L529-10-1-2-1,從而推測(cè)木質(zhì)素與中國(guó)辣椒的象耳豆根結(jié)線蟲(chóng)抗性存在一定關(guān)聯(lián)。該結(jié)果將為深入開(kāi)展辣椒的根結(jié)線蟲(chóng)抗性機(jī)理研究奠定基礎(chǔ)。
關(guān)鍵詞:象耳豆根結(jié)線蟲(chóng);中國(guó)辣椒;抗病性鑒定;線蟲(chóng)侵染量;木質(zhì)素
中圖分類(lèi)號(hào):S436.418 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Identification of Capsicum chinense Germplasms Resistant to Meloidogyne enterolobii and Preliminary Analysis on Resistance Mechanism
TIAN Xiaoxiao1, JIANG Bingzheng1, CAO Zhenmu2, LIU Ziji2, LING Peng3, XIE Shangqian3, ZHU Jie1,3*
1. College of Horticulture, Hainan University, Haikou, Hainan 570228, China; 2. Tropical Crops Genetic Recourses Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; 3. Hainan University / Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan 570228, China
Abstract: Meloidogyne spp. is highly specialized omnivorous plant pathogenic nematodes. At present, 98 species of root-knot nematodes have been reported in the world, and there are 6 species of root-knot nematodes that harm crops most seriously in China, including M. incognita, M. hapla, M. javanica, M. arenaria, M. graminicola and M. enterolobii. M. enterolobii has wide host range and strong pathogenicity. Selecting and breeding resistant varieties could be the most economic and efficient way to control this disease. Since M. enterolobii is causing larger and larger damage to chili pepper production, It is emergent for breeders to screen pepper germplasms with high M. enterolobii resistance to provide material premise for disease resistance breeding. The seedling inoculation identification method was used in this study, twenty-seven C. chinense germplasms were inoculated with M. enterolobii for 60 days to carry out resistance identification work. The gall index and egg mass index showed that there were significant differences among different C. chinense germplasms on nematode resistance. L529-10-1-2-1 had the largest gall index and egg mass index, l550-1-3 had the smallest gall index, and l518 × L535 had the smallest egg mass index. It can be inferred that l529-10-1-2-1 has the weakest disease resistance to M. enteroloblii, and l550-1-3 and l518 × L535 have the strongest disease resistance. According to the total value of the subordinate function values and clustering results, the 27 pepper germplasms could be divided into four categories: resistant, lowly resistant, susceptible and highly susceptible. The 16 resistant germplasms had subordinate function values higher than 1.60. The four lowly resistant germplasms had subordinate function values of 1.26-1.51. The five susceptible germplasms had subordinate function values of 0.64-0.93, and the two highly susceptible germplasms had subordinate function values lower than 0.42. Resistant L501M-1M and susceptible L529-10-1-2-1 were inoculated with M. enterolobii to measure the nematode number and lignin content in roots after 0, 3, 6, 9, 12, 15, 20, 25 and 30 days. The nematode number in resistant variety was much lower than that of L529-10-1-2-1, the susceptible variety. Furthermore, the development of nematode juveniles in resistant variety was relatively obstructed. Before inoculation, the lignin content of L501M-1M and L529-10-1-2-1 was very low. Whereas after inoculated with M. enterolobii, the lignin content of resistant variety L501M-1M was significantly higher than that of susceptible variety L529-10-1-2-1. As a result, lignin content was speculated to be related with M. enterolobii resistance in C. chinense. The results above could lay strong foundation for further research on the mechanism of root-knot nematode resistance in chili pepper.
Keywords: Meloidogyne enterolobii; Capsicum chinense; resistance identification; invasion number of nematode; lignin
DOI: 10.3969/j.issn.1000-2561.2022.01.021
辣椒(Capsicum spp.)起源于中南美洲熱帶、亞熱帶地區(qū),16世紀(jì)80年代傳入中國(guó)[1]。吃辣能夠抑制腸道炎癥,改善心血管健康,抗癌,殺菌止痛等[2],辣椒在中國(guó)人日常飲食中占據(jù)了舉足輕重的地位。我國(guó)已經(jīng)成為世界辣椒生產(chǎn)量和消費(fèi)量最大的國(guó)家。
根結(jié)線蟲(chóng)(Meloidogyne spp.)是辣椒生產(chǎn)中的重要土傳病害。在我國(guó),根結(jié)線蟲(chóng)主要在南方危害辣椒生產(chǎn),包括海南、廣東、廣西、云南等地,特別是不能與水稻倒茬的旱作地區(qū)[3]。根結(jié)線蟲(chóng)種類(lèi)繁多,近年來(lái),象耳豆根結(jié)線蟲(chóng)(M. enterolobii)已逐漸演變?yōu)楹D蟍4]、廣東[5],福建[6]等華南地區(qū)蔬菜栽培中最重要的一種根結(jié)線蟲(chóng)。象耳豆根結(jié)線蟲(chóng)致病力強(qiáng)、寄主范圍廣、能克服Mi、N、Rk等已知的根結(jié)線蟲(chóng)抗病基因,在辣椒生產(chǎn)中造成的危害越來(lái)越大[7]。
生產(chǎn)中往往使用化學(xué)藥劑進(jìn)行根結(jié)線蟲(chóng)的防治。然而,出于對(duì)環(huán)境保護(hù)的重視,許多國(guó)家已經(jīng)禁止在土壤中使用溴甲烷等殺線蟲(chóng)劑,對(duì)根結(jié)線蟲(chóng)的防治提出了更高的要求[8]。在育種過(guò)程中將抗病基因?qū)肷虡I(yè)品種或砧木品種,利用植物本身的抗性來(lái)防治根結(jié)線蟲(chóng),對(duì)種植者有著極大的價(jià)值,可節(jié)省成本,保護(hù)環(huán)境,無(wú)疑是一條經(jīng)濟(jì)有效而又安全的根結(jié)線蟲(chóng)防治途徑[9]。
辣椒屬中大約有30個(gè)種,中國(guó)辣椒(C. chinense Jacq.)是其中廣為人知的6個(gè)種之一[10]。中國(guó)辣椒植株矮,節(jié)間距離短,分枝能力強(qiáng),根系發(fā)達(dá)粗壯,在實(shí)際生產(chǎn)中發(fā)現(xiàn)其抗根結(jié)線蟲(chóng)的能力相對(duì)較強(qiáng),是很好的抗病種質(zhì)潛在來(lái)源。本研究對(duì)27份中國(guó)辣椒種質(zhì)資源進(jìn)行象耳豆根結(jié)線蟲(chóng)抗性鑒定,結(jié)合隸屬函數(shù)和聚類(lèi)分析等方法,明確不同材料抗根結(jié)線蟲(chóng)的能力,篩選出抗根結(jié)線蟲(chóng)的辣椒種質(zhì)資源,并通過(guò)對(duì)比抗、感種質(zhì)在接種象耳豆根結(jié)線蟲(chóng)后的侵染率和木質(zhì)素含量的變化,對(duì)辣椒種質(zhì)的抗病機(jī)理進(jìn)行了初步探索。
1 ?材料與方法
1.1 ?材料
供試的27份中國(guó)辣椒種質(zhì)資源由中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所提供(表1)。
1.2 ?方法
1.2.1 ?根結(jié)線蟲(chóng)的采集和擴(kuò)繁 ?從海南省主要辣椒產(chǎn)區(qū)東方市蔬菜生產(chǎn)基地采集了感染根結(jié)線蟲(chóng)病的辣椒根系,挑取根結(jié)線蟲(chóng)卵粒,常溫下孵化出二齡幼蟲(chóng),液氮研磨,提取幼蟲(chóng)DNA,通過(guò)PCR分子鑒定,鑒定為象耳豆根結(jié)線蟲(chóng)的作為供試線蟲(chóng)。將象耳豆根結(jié)線蟲(chóng)二齡幼蟲(chóng)接種到空心菜根部進(jìn)行擴(kuò)繁。
1.2.2 ?穴盤(pán)育苗 ?挑選完整飽滿的辣椒種子,用25~30℃的溫水浸泡7~8 h,然后將種子用濕潤(rùn)的毛巾包裹后置于30℃的培養(yǎng)箱催芽2 d。待種子露白發(fā)芽后,將其播種到裝配制好基質(zhì)的21孔穴盤(pán)中,覆蓋遮陰網(wǎng),澆透水。出苗后撤去遮陰網(wǎng)。
1.2.3 ?人工接種根結(jié)線蟲(chóng) ?選擇長(zhǎng)著大量根結(jié)的空心菜病根,洗凈表面的基質(zhì),用鑷子挑取根結(jié)線蟲(chóng)卵粒,置于鋪有濕紙巾的培養(yǎng)皿中在黑暗條件下進(jìn)行孵化。孵化出二齡幼蟲(chóng)后,制成1000條/ mL根結(jié)線蟲(chóng)懸液,對(duì)4片真葉的辣椒苗進(jìn)行接種。用注射器分5次將1 mL的根結(jié)線蟲(chóng)懸液接種到每株辣椒苗周?chē)耐寥乐?,深?~5 cm。試驗(yàn)采用完全隨機(jī)區(qū)組設(shè)計(jì),共種植并接種10個(gè)隨機(jī)區(qū)組。
1.2.4 ?抗病性鑒定 ?接種60 d后,進(jìn)行根結(jié)線蟲(chóng)抗病指標(biāo)的測(cè)定。將接種根結(jié)線蟲(chóng)的辣椒植株整株帶土拔出,去除地上部分,清水洗凈根部,用濾紙吸干水分,剪去主根,稱量須根的鮮重,計(jì)數(shù)每株辣椒的根結(jié)數(shù)和卵粒數(shù)。參照BOITEUX等[11]的方法計(jì)算測(cè)定根結(jié)指數(shù)和卵粒指數(shù)。根結(jié)指數(shù)(GI)=單株根結(jié)數(shù)/單株根鮮重;卵粒指數(shù)(EI)=單株卵粒數(shù)/單株根鮮重。
參照許立志等[12]和李翔等[13]的方法計(jì)算隸屬函數(shù)值,因所測(cè)指標(biāo)與辣椒抗病性呈正相關(guān),所使用的計(jì)算公式為Xμ=1-(X-Xmin)/(Xmax-Xmin)。其中X為品種某一指標(biāo)的測(cè)定值,Xmax為所有供試品種中該指標(biāo)的最大值,Xmin為所有供試品種中該指標(biāo)的最小值。隸屬函數(shù)值越大,表示該品種對(duì)象耳豆根結(jié)線蟲(chóng)的抗性越強(qiáng)。
1.2.5 ?根結(jié)線蟲(chóng)侵染量的觀察 ?分別在接種后0、3、6、9、12、15、20、25、30 d取辣椒根系,采用次氯酸鈉-酸性品紅染色法進(jìn)行染色和壓片,重復(fù)3次,統(tǒng)計(jì)根系中的平均根結(jié)線蟲(chóng)數(shù)量[14]。
1.2.6 ?木質(zhì)素含量的測(cè)定 ?分別在接種后0、3、6、9、12、15、20、25、30 d取辣椒根系,采用Solarbio木質(zhì)素含量檢測(cè)試劑盒(#BC4200)進(jìn)行木質(zhì)素含量的測(cè)定,重復(fù)3次,取平均值。
1.3 ?數(shù)據(jù)處理
利用SPSS 22.0軟件計(jì)算試驗(yàn)數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差,并對(duì)根結(jié)指數(shù)、卵粒指數(shù)和抗、感種質(zhì)不同時(shí)間點(diǎn)的木質(zhì)素含量分別進(jìn)行單因素方差分析,通過(guò)LSD或Duncan’s法進(jìn)行數(shù)據(jù)點(diǎn)的多重比較分析,從而明確不同種質(zhì)的根結(jié)指數(shù)或卵粒指數(shù)是否存在顯著性差異。利用SPSS 22.0軟件采用離差平方和法進(jìn)行病情指標(biāo)的聚類(lèi)分析。
2 ?結(jié)果與分析
2.1 ?象耳豆根結(jié)線蟲(chóng)侵染對(duì)辣椒種質(zhì)抗病指標(biāo)的影響
相同條件下,根結(jié)指數(shù)和卵粒指數(shù)的數(shù)值越大,表明辣椒種質(zhì)抗根結(jié)線蟲(chóng)的能力越弱。由表1可知,在接種象耳豆根結(jié)線蟲(chóng)后,不同辣椒種質(zhì)的抗病指標(biāo)有所差異。從根結(jié)指數(shù)來(lái)看,L529-10-1-2-1的根結(jié)指數(shù)最大,為68.09±18.79,L530綠-7-1-1M的根結(jié)指數(shù)為62.81±28.21,位居第二。L529-10-1-2-1、L530綠-7-1-1M、L517M-1× L529-1-1、L506M×L529-7-1、L512×L526-2-4-1間無(wú)顯著差異,L529-10-1-2-1和L530綠-7-1-1M的根結(jié)指數(shù)顯著高于其余22份種質(zhì)。L538M、L529-2-1×L535-1、L515-2-1-1M-1×L529-1-1、L512×L529-1-1間無(wú)顯著差異,但顯著高于L547- 2M、L530綠-7-1×L535-1、L518×L538、L502-6-1× L538、L502×L543、L501M-1M、L518×L535、L550-1-3。L550-1-3的根結(jié)指數(shù)最小,為5.33± 1.36,推測(cè)其抗病能力最強(qiáng)。
從卵粒指數(shù)看,L529-10-1-2-1的卵粒指數(shù)最
大,為45.04±19.77,顯著高于其余26份種質(zhì),L530綠-7-1-1M的卵粒指數(shù)為29.99±22.20,位居第二。L506M×L529-7-1、L538M、L529-2-1×L535- 1、L512×L526-2-4-1、L554M間無(wú)顯著差異,但顯著高于L530綠-4-1-2M、L530綠-7-1×L535-1、L502-6-1×L538、L518×L538、L547-2M、L502× L543、L501M-1M、L550-1-3、L518×L535。L518× L535的卵粒指數(shù)最小,為1.17±0.49,推測(cè)其抗根象耳豆根結(jié)線蟲(chóng)的能力最強(qiáng)。
2.2 ?象耳豆根結(jié)線蟲(chóng)侵染后辣椒相關(guān)抗病指標(biāo)的隸屬函數(shù)值
根據(jù)根結(jié)指數(shù)和卵粒指數(shù)對(duì)27份中國(guó)辣椒種質(zhì)的隸屬函數(shù)總值進(jìn)行抗病性排名(表2)。隸屬函數(shù)值越大,表示該種質(zhì)對(duì)象耳豆根結(jié)線蟲(chóng)的抗性越強(qiáng)。由表2可知,L550-1-3隸屬函數(shù)總值
最大,為2.00,表明其根結(jié)線蟲(chóng)抗性最強(qiáng)。L518×L535、L501M-1M、L502×L543、L502-6-1×L538、L518×L538、L547-2M、L530綠-7-1×L535-1、L530綠-1-2×L501、L530綠-4-1-2M、L539-1M、L543- 1M、L550-28M、L535-1-1M、L555-1M、L528M-1× L529-1-1隸屬函數(shù)總值高于1.60,對(duì)根結(jié)線蟲(chóng)表現(xiàn)較強(qiáng)的抗性。L517M-1×L529-1-1、L529-2-1× L535-1、L538M、L512×L526-2-4-1、L506M× L529-7-1、L530綠-7-1-1M、L529-10-1-2-1隸屬函數(shù)總值低于1.00,對(duì)根結(jié)線蟲(chóng)表現(xiàn)感病。L529-10-1-2-1的隸屬函數(shù)總值最小,表明其對(duì)象耳豆根結(jié)線蟲(chóng)抗性最弱。
2.3 ?辣椒種質(zhì)對(duì)根結(jié)線蟲(chóng)抗性的聚類(lèi)分析
采用SPSS 22.0軟件,以根結(jié)指數(shù)和卵粒指數(shù)2個(gè)指標(biāo)為系統(tǒng)變量,對(duì)27份辣椒種質(zhì)進(jìn)行聚類(lèi)分析。結(jié)果表明,當(dāng)歐氏距離為2時(shí),可將27
份供試?yán)苯贩N質(zhì)分為抗病、低抗、感病和高感4大類(lèi)。由圖1可知,抗病種質(zhì)有16份,分別為L(zhǎng)550-1-3、L518×L535、L501M-1M、L502×L543、L502-6-1×L538、L518×L538、L547-2M、L530綠-7-1×L535-1、L530綠-1-2×L501、L530綠-4-1-2M、L539-1M、L543-1M、L550-28M、L535-1-1M、L555-1M、L528M-1×L529-1-1。低抗種質(zhì)有4份,分別為L(zhǎng)517M-1×L529-7-1、L512×L529-1-1、L515-2-1-1M-1×L529-1-1、L554M。感病種質(zhì)有5份,分別為L(zhǎng)517M-1×L529-1-1、L529-2-1×L535-1、L538M、L512×L526-2-4-1、L506M×L529-7-1。高感種質(zhì)材料為L(zhǎng)530綠-7-1-1M、L529-10-1-2-1。該結(jié)果與根結(jié)指數(shù)、卵粒指數(shù)和隸屬函數(shù)值分析所得結(jié)果高度一致,可見(jiàn)該聚類(lèi)分析具有較高科學(xué)性和可信度。
2.4 ?抗、感辣椒接種象耳豆根結(jié)線蟲(chóng)后侵染量的變化
16份抗病種質(zhì)中,L501M-1M不但抗病性較強(qiáng),且農(nóng)藝性狀比較優(yōu)良,將優(yōu)先用于后續(xù)抗病育種工作,故對(duì)其抗病機(jī)理的關(guān)注度較高。為此,選取高抗種質(zhì)L501M-1M和高感種質(zhì)L529-10- 1-2-1接種象耳豆根結(jié)線蟲(chóng),并在接種后觀察線蟲(chóng)侵染量。由表3可以看出,抗病種質(zhì)L501M-1M根系中的根結(jié)線蟲(chóng)數(shù)量遠(yuǎn)遠(yuǎn)少于感病種質(zhì)L529-10-1-2-1。不僅如此,L501M-1M根系中的線蟲(chóng)發(fā)育比較緩慢,出現(xiàn)三-四齡線蟲(chóng)(J3-J4)的時(shí)間比L529-10-1-2-1晚,且第30天仍未出現(xiàn)雌蟲(chóng),而L529-10-1-2-1在第25天已出現(xiàn)雌蟲(chóng)。第一輪侵染中,L529-10-1-2-1根系內(nèi)的二齡幼蟲(chóng)(J2)在第25天已全部發(fā)育到其他階段,卻在第30天又出現(xiàn)J2,推測(cè)在30 d內(nèi)開(kāi)始了第二輪侵染。
2.5 ?抗、感辣椒接種象耳豆根結(jié)線蟲(chóng)后木質(zhì)素含量的變化
接種象耳豆根結(jié)線蟲(chóng)后,抗病種質(zhì)L501M- 1M和感病種質(zhì)L529-10-1-2-1根系木質(zhì)素含量的變化見(jiàn)圖2。發(fā)現(xiàn)抗、感種質(zhì)在未接種的情況下木質(zhì)素含量相似??共》N質(zhì)接種后在各時(shí)間點(diǎn)的木質(zhì)素含量均顯著高于抗病對(duì)照(P<0.05),而感病種質(zhì)木質(zhì)素含量?jī)H在第15天與感病對(duì)照相似,其余時(shí)間點(diǎn)的木質(zhì)素含量均顯著高于感病對(duì)照(P<0.05),說(shuō)明接種象耳豆根結(jié)線蟲(chóng)能刺激辣椒產(chǎn)生更多的木質(zhì)素??共》N質(zhì)L501M-1M的木質(zhì)素含量在接種后第3天(P=0.000)和第6天(P=0.000)連續(xù)顯著升高,直至331.97 mg/g, 并在接下來(lái)的時(shí)間一直保持在較高水平。而感病種質(zhì)L529-10-1-2-1的木質(zhì)素含量在接種后第3天(P=0.003)和第6天(P=0.000)連續(xù)顯著升高至232.96 mg/g,隨后顯著下降(P=0.011),并維持在較低水平,第15天降至最低,第20天再次顯著升高(P=0.000)??傮w而言,接種后6~25天,抗病種質(zhì)L501M-1M的木質(zhì)素含量均顯著高于感病種質(zhì)L529-10-1-2-1(P<0.05)??埂⒏蟹N質(zhì)在接種后第30天木質(zhì)素含量趨于接近(P=0.237)。
3 ?討論
國(guó)內(nèi)廣泛種植的辣椒栽培種大部分屬于一年生辣椒(Capsicum annuum)。然而,中國(guó)辣椒(C. chinense)栽培種中包含了一些世界最辣的辣椒品種。隨著人們對(duì)高辣品種的日漸青睞,中國(guó)辣椒得到了越來(lái)越多的關(guān)注。FERY等[15]曾對(duì)59份中國(guó)辣椒種質(zhì)材料進(jìn)行南方根結(jié)線蟲(chóng)的抗病性評(píng)價(jià),發(fā)現(xiàn)其中的商業(yè)品種皆不具明顯抗性。然而,卻在3個(gè)中國(guó)辣椒地方品種中檢測(cè)到較高的抗性。為此,F(xiàn)ERY等[16-18]對(duì)中國(guó)辣椒地方品種中的根結(jié)線蟲(chóng)抗性進(jìn)行轉(zhuǎn)育,培育了高抗南方根結(jié)線蟲(chóng)的中國(guó)辣椒品種‘TigerPaw-NR’‘PA-559’和‘PA-560’。近年來(lái),象耳豆根結(jié)線蟲(chóng)快速蔓延,并克服了辣椒中廣泛應(yīng)用的根結(jié)線蟲(chóng)抗性基因N基因,研究者正加快篩選對(duì)其具較大抗性的辣椒種質(zhì)。GON?ALVES等[19]對(duì)39個(gè)辣椒品系進(jìn)行象耳豆根結(jié)線蟲(chóng)的抗病性評(píng)價(jià),發(fā)現(xiàn)中國(guó)辣椒(C. chinense)的抗病性總體高于辣椒(C. annuum)。隨后在MARQUES等[20]和PINHEIRO等[21]的研究中得出了相似的結(jié)論,并篩選出一些抗象耳豆根結(jié)線蟲(chóng)的中國(guó)辣椒種質(zhì)。然而,目前國(guó)內(nèi)尚無(wú)大量此類(lèi)研究。本研究從27份中國(guó)辣椒材料中篩選出16份抗病種質(zhì),反映出中國(guó)辣椒確實(shí)是較好的象耳豆根結(jié)線蟲(chóng)抗性種質(zhì)來(lái)源,這些抗病材料將成為改良商業(yè)品種抗象耳豆根結(jié)線蟲(chóng)的重要資源。
通過(guò)對(duì)接種象耳豆根結(jié)線蟲(chóng)后抗、感種質(zhì)侵染量的觀察,發(fā)現(xiàn)抗病種質(zhì)L501M-1M的抗病機(jī)理較為復(fù)雜:一方面阻止大量根結(jié)線蟲(chóng)的侵染,將根系內(nèi)的線蟲(chóng)數(shù)量控制在較低的范圍;另一方面還能阻滯根結(jié)線蟲(chóng)的發(fā)育,拉長(zhǎng)其生命周期,減少雌蟲(chóng)的產(chǎn)生。木質(zhì)素是植物體內(nèi)重要的次生代謝產(chǎn)物。植物受到病原物侵染時(shí),木質(zhì)素合成途徑相關(guān)基因往往上調(diào)表達(dá),導(dǎo)致木質(zhì)素含量增加,從而限制病原物的入侵。LI等[22]克隆了一個(gè)玉米紋枯病抗病基因ZmFBL41,發(fā)現(xiàn)該基因通過(guò)自然變異避免病原菌對(duì)木質(zhì)素合成的抑制從而提高玉米紋枯病抗性。FUJIMOTO等[23]發(fā)現(xiàn)香紫蘇醇能誘導(dǎo)番茄和擬南芥根系中的乙烯生物合成,從而誘發(fā)乙烯介導(dǎo)的木質(zhì)素生物合成,達(dá)到部分抑制根結(jié)線蟲(chóng)侵染力的作用。DE WAELE等[24]發(fā)現(xiàn)香蕉在被相似穿孔線蟲(chóng)(Radopholus similis)侵染后,根部維管束次生細(xì)胞壁的木質(zhì)化顯著增加,推測(cè)木質(zhì)素可能參與了香蕉對(duì)相似穿孔線蟲(chóng)的防御機(jī)制??梢?jiàn)木質(zhì)素對(duì)提高植物抗病性具有重要的作用。本研究發(fā)現(xiàn)辣椒抗病種質(zhì)接種象耳豆根結(jié)線蟲(chóng)后的木質(zhì)素含量明顯高于感病種質(zhì),且在接種后6 d內(nèi)木質(zhì)素含量急劇升高。對(duì)比根結(jié)線蟲(chóng)侵染量數(shù)據(jù),抗病種質(zhì)根系中的象耳豆根結(jié)線蟲(chóng)數(shù)量在木質(zhì)素升高3 d后達(dá)到高峰,隨后便有所降低。從而初步推測(cè)木質(zhì)素與中國(guó)辣椒的象耳豆根結(jié)線蟲(chóng)抗性有較大關(guān)聯(lián)。對(duì)該相關(guān)性還需進(jìn)一步開(kāi)展深入研究。
THIES等[25]測(cè)定了中國(guó)辣椒在24、28、32℃條件下抗南方根結(jié)線蟲(chóng)的穩(wěn)定性,研究表明隨著溫度的升高,各基因型辣椒的根結(jié)數(shù)、卵粒產(chǎn)量、每克鮮根產(chǎn)卵粒數(shù)和繁殖系數(shù)均有所增加,抗病性減弱。但部分抗病品種在高溫條件下仍能有效地抑制根結(jié)線蟲(chóng)的侵染。本研究是在26℃溫室中進(jìn)行,缺乏對(duì)中國(guó)辣椒抗象耳豆根結(jié)線蟲(chóng)熱穩(wěn)定性的研究。后續(xù)研究可進(jìn)一步設(shè)置不同溫度,研究辣椒種質(zhì)抗象耳豆根結(jié)線蟲(chóng)的最適溫度范圍,繼而加深了解這些抗性種質(zhì)的抗病機(jī)理。
參考文獻(xiàn)
[1] 鄒學(xué)校, 朱 ?凡. 辣椒傳入中國(guó)的途徑與傳播路徑[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 46(6): 629-640.
ZOU X X, ZHU F. The path of pepper introduction into China and its spreading route in China[J]. Journal of Hunan Agricultural University(Natural Sciences), 2020, 46(6): 629-640. (in Chinese)
[2] 周 ?軍. 辣椒也有好處[J]. 養(yǎng)生月刊, 2020, 41(7): 646-647.
ZHOU J. Hot peppers are also good for you[J]. Health Monthly, 2020, 41(7): 646-647. (in Chinese)
[3] 朱更瑞, 王力榮, 左覃元, 張學(xué)煒. 桃根結(jié)線蟲(chóng)種的鑒定及最佳接種方法研究[J]. 果樹(shù)科學(xué), 2000(S1): 30-35.
ZHU G R, WANG L R, ZUO Q Y, ZHANG X W. Study on the peach root knot nematode species identi-fication and the optimum inoculation method[J]. Journal of Fruit Science, 2000(S1): 30-35. (in Chinese)
[4] 龍海波, 孫艷芳, 白 ?成, 郭建榮, 曾凡云. 海南省象耳豆根結(jié)線蟲(chóng)的鑒定研究[J]. 熱帶作物學(xué)報(bào), 2015, 36(2): 371-376.
LONG H B, SUN Y F, BAI C, GUO J R, ZENG F Y. Identification of the root knot nematode Meloidogyne enterolobii in Hainan Province[J]. Chinese Journal of Tropical Crops, 2015, 36(2): 371-376. (in Chinese)
[5] 馮 ?巖, 阮賢聰, 陳 ?軍, 羅 ?梅, 劉淑嫻, 鞠海巖, 謝中輝, 徐仕金. 廣州地區(qū)番石榴根結(jié)線蟲(chóng)鑒定與14-3-3基因的克隆[J]. 果樹(shù)學(xué)報(bào), 2017, 34(7): 875-883.
FENG Y, RUAN X C, CHEN J, LUO M, LIU S X, JU H Y, XIE Z H, XUE S J. Identification of guava root-knot nematodes in Guangzhou and the cloning of 14-3-3 gene[J]. Journal of Fruit Science, 2017, 34(7): 875-883. (in Chinese)
[6] 陳淑君. 福建省蔬菜象耳豆根結(jié)線蟲(chóng)的發(fā)生、鑒定與分子檢測(cè)[D]. 福州: 福建農(nóng)林大學(xué), 2017.
CHEN S J. Occurrence, identification and molecular detection of Meloidogyne enterolobii on vegetable in Fujian Province[D]. Fuzhou: Fujian agriculture and Forestry University, 2017. (in Chinese)
[7] 劉 ?昊. 象耳豆根結(jié)線蟲(chóng)生物學(xué)和分子生物學(xué)特征的研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2005.
LIU H. Biological and molecular characterization of Meloidogyne enterolobii[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
[8] FERY R L, DUKKE P D. The inheritance of resistance to southern root-knot nematode in ‘Carolina Hot’ cayenne pepper[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 1996, 121(6): 597-600.
[9] DIAN-CAPORALIN C, PIJAROWSKI L, JANUEL A, LEFEBVRE V, DAUBèZE A, PALLOIX A, DALMASSO A, ABAD P. Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.)[J]. Theoretical and Applied Genetics, 1999, 99(3): 496-502.
[10] ZAMLJEN T, ZUPANC V, SLATNAR A, 魏小英, 孔秋生. 灌溉對(duì)兩種辣椒產(chǎn)量及初生和次生代謝產(chǎn)物的影響[J]. 辣椒雜志, 2020, 18(2): 41-50.
ZAMLJEN T, ZUPANC V, SLATNAR A, WEI X Y, KONG Q S. Effects of irrigation on yield and primary and secondary metabolites of two kinds of pepper[J]. Journal of China Capsicum, 2020, 18(2): 41-50. (in Chinese)
[11] BOITEUX L S, CHARCHAR J M. Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena)[J]. Plant Breeding, 1996, 115(3): 198-200.
[12] 許立志, 龐勝群, 刁 ?明, 張國(guó)儒, 李 ?琦, 牛 ?寧. 隸屬函數(shù)法評(píng)價(jià)不同加工番茄品種耐鹽性[J]. 新疆農(nóng)業(yè)科學(xué), 2017, 54(5): 833-842.
XUE L Z, PANG S Q, DIAO M, ZHANG G R, LI Q, NIU N. Comprehensive evaluation of salt tolerance of different processing tomato cultivars by membership function method [J]. Xinjiang Agricultural Sciences, 2017, 54(5): 833-842. (in Chinese)
[13] 李 ?翔, 楊 ?敏, 李 ?慧, 許紅葉, 李 ?敏. 抗南方根結(jié)線蟲(chóng)辣椒品種的篩選[J]. 北方園藝, 2017(21): 71-74.
LI X, YANG M, LI H, XU H Y, LI M. Screening of hot pepper cultivars for resistance to Meloidogyne incognita[J]. Northern Horticulture, 2017(21): 71-74. (in Chinese)
[14] BYBD D W, KIRKPATRICK J T, BARKER K R. An improved technique for clearing and staining plant tissues for detection of nematodes[J]. Journal of Nematology, 1983, 15(1): 142-143.
[15] FERY R L, THIES J A. Evaluation of Capsicum chinense Jacq cultigens for resistance to the southern root-knot nematode[J]. HortScience, 1997, 32(5): 923-926
[16] FERY R L, THIES J A. ‘TigerPaw-NR’, a root-knot nematode-resistant, habanero-type pepper[J]. HortScience, 2007, 42(7): 1721-1722.
[17] FERY R L, THIES J A. PA-559, a root-knot nematode-resis?tant, red-fruited, habanero-type pepper[J]. HortScience, 2010, 45(5): 822-823.
[18] FERY R L, THIES J A. PA-560, a southern root-knot nematode-resistant, yellow-fruited, habanero-type pepper[J]. HortScience, 2011, 46(6): 946-947.
[19] GON?ALVES L S A, GOMES V M, ROBAINA R R, VALIM R H, RODRIGUES R, ARANHA F M. Resistance to root-knot nematode (Meloidogyne enterolobii) in Capsicum spp. accessions[J]. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences, 2014, 9(1): 49-52.
[20] MARQUES M L S, CHADUD J V G, OLIVEIRA M F, NASCIMENTO A R, ROCHA M R. Identification of chili pepper genotypes (Capsicum spp.) resistant to Meloidogyne enterolobii[J]. Agricultural Science, 2019, 11(8): 165-175.
[21] PINHEIRO J B, SILVA G O, MACêDO A G, BISCAIA D, RAGASSI C F, RIBEIRO C S C, CARVALHO S I C de, REIFSCHNEIDER F J B. New resistance sources to root-knot nematode in Capsicum pepper[J]. Horticultura Brasileira, 2020, 38: 33-40.
[22] LI N, LIN B, WANG H, LI X M, YANG F F, DING X H, YAN J B, CHU Z H. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize[J]. Nature Genetics, 2019, 51: 1540-1548.
[23] FUJIMOTO T, MIZUKUBO T, ABE H, SEO S. Sclareol induces plant resistance to root-knot nematode partially through ethylene-dependent enhancement of lignin accumulation[J]. Molecular Plant-Microbe Interactions, 2015, 28(4): 398-407.
[24] DE WAELE D, ELSEN A, MARIAMA K, DHAKSHINA?MO?ORTHY S. Phenols and lignin are involved in the defense response of banana (Musa) plants to Radopholus similis infection[J]. Nematology, 2014, 16: 565-576.
[25] THIES J A, FERY R L. Heat stability of resistance to Meloidogyne incognita in Scotch Bonnet peppers (Capsicum chinense Jacq.)[J]. Journal of Nematology, 2000, 32(4): 356-361.