李夢霞,鄭楊玲
感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童早期數(shù)學(xué)能力的影響
李夢霞,鄭楊玲
(湖州師范學(xué)院 教師教育學(xué)院,浙江 湖州 313000)
數(shù)學(xué)認(rèn)知能力作為人類最重要的高級(jí)認(rèn)知功能之一,在兒童的成長過程中起著重要作用.大量研究發(fā)現(xiàn),幼兒早期數(shù)字能力的發(fā)展可以預(yù)測他們今后的數(shù)學(xué)成績.感知—運(yùn)動(dòng)空間訓(xùn)練作為一種基于數(shù)學(xué)認(rèn)知能力提升兒童數(shù)學(xué)能力的方式之一,可以有效地促進(jìn)兒童早期數(shù)學(xué)能力的發(fā)展.研究結(jié)果闡明了感知—運(yùn)動(dòng)空間訓(xùn)練的可能性前提、感知—運(yùn)動(dòng)空間訓(xùn)練的基礎(chǔ)以及感知—運(yùn)動(dòng)空間訓(xùn)練的有效性.今后的研究應(yīng)進(jìn)一步區(qū)分不同感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)不同年齡階段兒童數(shù)學(xué)能力的影響,探討感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)不同年齡階段兒童數(shù)學(xué)能力提升的長期效果、作用機(jī)制及可塑性特點(diǎn).
感知—運(yùn)動(dòng)空間訓(xùn)練;數(shù)字空間表征;數(shù)學(xué)能力;兒童早期
數(shù)學(xué)認(rèn)知能力是人類最重要的高級(jí)認(rèn)知功能之一,是個(gè)體正確認(rèn)識(shí)客觀世界的基本能力.兒童數(shù)學(xué)認(rèn)知能力包括:數(shù)字以及計(jì)算、數(shù)學(xué)推理、概率與統(tǒng)計(jì)、測量、幾何與模式認(rèn)知能力[1].兒童早期數(shù)學(xué)能力包括數(shù)數(shù)、認(rèn)數(shù)字、對(duì)量的理解、簡單計(jì)算等[2].兒童數(shù)學(xué)認(rèn)知能力在數(shù)學(xué)學(xué)習(xí)過程中發(fā)揮著重要的作用.大量研究發(fā)現(xiàn),兒童早期數(shù)學(xué)能力的發(fā)展可以預(yù)測他們今后的數(shù)學(xué)成績[3–17].例如,幼兒園階段的數(shù)學(xué)能力能夠預(yù)測其小學(xué)階段的數(shù)學(xué)成績[10,16,18–19].在控制了一般認(rèn)知能力(如工作記憶)、年齡、性別以及父母的社會(huì)經(jīng)濟(jì)地位后,兒童早期的數(shù)學(xué)能力能夠預(yù)測其小學(xué)階段的數(shù)學(xué)成績[8,20].由此可見兒童早期數(shù)學(xué)發(fā)展的重要性.
目前兒童早期數(shù)學(xué)能力發(fā)展的促進(jìn)方式可以概括為兩類:一類是基于課程設(shè)計(jì)的促進(jìn),另一類是基于數(shù)學(xué)認(rèn)知能力的促進(jìn)[2].基于課程設(shè)計(jì)的促進(jìn)是研究者根據(jù)教育學(xué)、心理學(xué)以及幼兒園課程設(shè)計(jì)的原則,針對(duì)幼兒數(shù)學(xué)能力的發(fā)展規(guī)律和特點(diǎn),設(shè)計(jì)一系列幼兒園課程教學(xué)內(nèi)容,通過教學(xué)活動(dòng)來促進(jìn)兒童早期數(shù)學(xué)能力的提高.如“數(shù)字世界”(number world)、小孩子大數(shù)學(xué)(big math for litter kids)等,這些基于課程設(shè)計(jì)的促進(jìn)方式能夠有效地促進(jìn)兒童早期數(shù)學(xué)能力的提升[4,14,21–23].基于課程設(shè)計(jì)的促進(jìn)方式的實(shí)施需要很多資源,實(shí)施過程對(duì)教師要求較高[17,24].基于數(shù)學(xué)認(rèn)知能力的促進(jìn)是通過訓(xùn)練基本的數(shù)學(xué)認(rèn)知能力來促進(jìn)兒童早期數(shù)學(xué)能力的發(fā)展.
這些被認(rèn)為對(duì)兒童的數(shù)學(xué)發(fā)展具有重要影響的基本數(shù)字認(rèn)知能力之一即是空間—數(shù)字表征能力.不同大小的數(shù)字是在一條從左向右遞增的數(shù)字線上進(jìn)行空間表征的觀點(diǎn)得到了諸多研究的證實(shí)[25–26].?dāng)?shù)字的空間表征問題之所以得到諸多研究的關(guān)注,是因?yàn)閿?shù)字與空間的系統(tǒng)性聯(lián)合在兒童早期就得以發(fā)展[27–29],這種聯(lián)合具有現(xiàn)實(shí)意義.例如,空間數(shù)字任務(wù)(數(shù)字線估計(jì)任務(wù))與兒童當(dāng)前的以及未來的數(shù)學(xué)成績有關(guān)[3],通過對(duì)這一空間數(shù)字任務(wù)的訓(xùn)練,兒童的數(shù)學(xué)成績也得到了提升[30-34].可見,探索有效的數(shù)字認(rèn)知干預(yù)訓(xùn)練來促進(jìn)數(shù)學(xué)能力對(duì)計(jì)算障礙兒童和數(shù)學(xué)學(xué)習(xí)落后兒童均有重要的意義.
這些數(shù)字認(rèn)知干預(yù)訓(xùn)練基于兩個(gè)非常重要的觀點(diǎn)之上.一個(gè)是,復(fù)雜的數(shù)學(xué)能力建立在基本數(shù)學(xué)表征基礎(chǔ)之上的觀點(diǎn);另一個(gè)是,抽象的概念表征建立在個(gè)體的感知和身體表征基礎(chǔ)之上的觀點(diǎn),即具身認(rèn)知(embodied cognition)的觀點(diǎn).因此,可將這些干預(yù)訓(xùn)練歸納為感知—運(yùn)動(dòng)空間訓(xùn)練(sensori-motor spatial trainings of number)或具身數(shù)字訓(xùn)練(embodied numerical trainings).這里將從感知—運(yùn)動(dòng)空間訓(xùn)練的可能性前提、感知—運(yùn)動(dòng)空間訓(xùn)練的基礎(chǔ)和感知—運(yùn)動(dòng)空間訓(xùn)練的有效性3個(gè)方面加以介紹,為兒童早期數(shù)學(xué)能力的促進(jìn)提供依據(jù).
諸多研究揭示了空間任務(wù)完成得好的人,同樣在數(shù)學(xué)方面也表現(xiàn)優(yōu)異[35–37].以兒童為研究對(duì)象的研究同樣表明了空間能力與數(shù)學(xué)能力之間的關(guān)聯(lián)[38–44].例如,強(qiáng)的視空間工作記憶與高水平的計(jì)算任務(wù)[45–46]、數(shù)字線估計(jì)任務(wù)[47–48]、非語言的問題解決任務(wù)[49]以及整體數(shù)學(xué)成績相關(guān)[50–54].研究還發(fā)現(xiàn),空間任務(wù)中的心理旋轉(zhuǎn)任務(wù)成績(第三版韋氏兒童智力量表中的積木分測驗(yàn))與兒童學(xué)齡前到學(xué)齡期(從幼兒園到十二年級(jí))的數(shù)學(xué)學(xué)業(yè)成績呈顯著的正相關(guān)[55–57].除此之外,研究也證明了空間能力的早期干預(yù)對(duì)縮小兒童數(shù)學(xué)學(xué)習(xí)差距的重要作用[10,58–60].
自Galton在從科學(xué)的角度首次明確提出了數(shù)字加工與空間編碼之間存在著某種特殊的聯(lián)系以來,越來越多的研究已經(jīng)在空間能力和數(shù)學(xué)能力之間建立了聯(lián)系,空間任務(wù)中表現(xiàn)得好的兒童和成年人也會(huì)在數(shù)學(xué)能力上表現(xiàn)出色[38,46,49,61–66],這種聯(lián)系可能是由于空間能力與數(shù)學(xué)能力具有共同的潛在加工過程.在最近十幾年的時(shí)間里,隨著認(rèn)知神經(jīng)科學(xué)的發(fā)展和研究技術(shù)的進(jìn)步,數(shù)字認(rèn)知領(lǐng)域的研究得到了深入發(fā)展,空間—數(shù)字表征的研究也得到了越來越多的認(rèn)知神經(jīng)科學(xué)的研究證據(jù).來自不同研究的證據(jù)均顯示人類先天擁有聯(lián)合數(shù)字與空間的能力[27,67].腦成像研究證實(shí)了,人們在加工空間任務(wù)和數(shù)字任務(wù)時(shí),激活了相同的腦區(qū)[68–69].涉及數(shù)字表征的大腦區(qū)域與涉及區(qū)分空間維度,如大小、長度的大腦區(qū)域的部分重疊,意味著數(shù)字表征和空間表征共用了相同區(qū)域的大腦皮層[67],或者說數(shù)字認(rèn)知和空間表征之間可能具有共同的腦機(jī)制[70–71].
同樣,行為研究也證實(shí)了空間能力和數(shù)學(xué)能力之間的聯(lián)系.已有大量行為研究證明數(shù)字的心理表征方式是以空間方式進(jìn)行的.其中最著名的例證即是空間—數(shù)字的反應(yīng)編碼聯(lián)合(the Spatial-Numerical Association of Response Codes)效應(yīng),即SNARC效應(yīng)[68,72].de Hevia和Spelke(2010)研究發(fā)現(xiàn)嬰兒可以將黑點(diǎn)數(shù)量的增加與線段長度的增加聯(lián)合起來,而不是將其與線段長度的縮短聯(lián)合起來.此外,眾多行為研究證據(jù)也證實(shí)了對(duì)抽象數(shù)字的加工可以自動(dòng)地激活它的空間編碼[68,72–73].?dāng)?shù)字認(rèn)知與空間的聯(lián)合方式會(huì)受到人類文化的影響.例如,以西方主流文化為主的閱讀和書寫習(xí)慣是自左向右的方向.Moyer和Landauer(1967)使用了簡單的大小分類任務(wù)對(duì)西方主流閱讀和書寫文化背景下的被試進(jìn)行研究,即,要求被試對(duì)同時(shí)呈現(xiàn)的兩個(gè)數(shù)字進(jìn)行大小判斷,并指出相對(duì)較大的那個(gè)數(shù)字[74].結(jié)果發(fā)現(xiàn)了數(shù)字與空間表征關(guān)聯(lián)的兩個(gè)基本的效應(yīng):距離效應(yīng)和大小效應(yīng).距離效應(yīng)是指兩個(gè)同時(shí)呈現(xiàn)的數(shù)字之間相差越大,判斷并選擇較大數(shù)字所用的反應(yīng)時(shí)(RT)越短;大小效應(yīng)是指,當(dāng)兩組分別同時(shí)呈現(xiàn)的兩個(gè)數(shù)字之間距離相同時(shí)(如1–2,或8–9),需要判斷和比較的數(shù)字組越大,反應(yīng)時(shí)(RT)相對(duì)越長.?dāng)?shù)字認(rèn)知中的距離效應(yīng)和大小效應(yīng)研究激發(fā)了人類對(duì)數(shù)字認(rèn)知的表征方式是基于心理數(shù)字線(metal number line,MNL)的觀點(diǎn)[75].根據(jù)心理數(shù)字線隱喻,大腦表征數(shù)字的距離方式就像是物理空間上表示距離的方式一樣,對(duì)在大小上接近的數(shù)字的表征,也像是物理空間上的重疊方式一樣.
對(duì)于數(shù)字空間表征的存在可以用具身認(rèn)知的系列理論加以解釋[76].雖然這些理論對(duì)具身認(rèn)知(embodied cognition)的界定存在爭議,但這些理論達(dá)成共識(shí)的、也是最基本的解釋是:人類的認(rèn)知建立在感知—運(yùn)動(dòng)基礎(chǔ)之上,而這個(gè)感知—運(yùn)動(dòng)又由身體的經(jīng)驗(yàn)決定[76].這些具身認(rèn)知理論的代表性之一是Hommel等人(2001)提出的事件相關(guān)編碼理論(theory of event coding, 簡稱TEC理論).TEC理論對(duì)于認(rèn)知與身體世界的交互作用進(jìn)行了詳細(xì)解釋[77].與認(rèn)知加工的傳統(tǒng)理論的觀點(diǎn)不同,TEC假設(shè)感知和運(yùn)動(dòng)相關(guān)的事件被一個(gè)通用的特征編碼(feature codes)網(wǎng)絡(luò)進(jìn)行編碼、存儲(chǔ)和整合.這些特征編碼記錄了來自感知系統(tǒng)的輸入,并且根據(jù)這些輸入以及內(nèi)化的經(jīng)驗(yàn)調(diào)節(jié)運(yùn)動(dòng)系統(tǒng)的活動(dòng).當(dāng)對(duì)一個(gè)給定的刺激進(jìn)行加工時(shí),它首先激活所有刺激相關(guān)的特征編碼,這些特征編碼既包含感知的編碼也包含運(yùn)動(dòng)相關(guān)的編碼.Hommel等人(2001)舉了一個(gè)知覺櫻桃的例子.這個(gè)櫻桃激活了表征它屬性的特征編碼,如紅色、圓的、小的.這些特征編碼接著被整合為代表一個(gè)共享介質(zhì)中所有特點(diǎn)的事件編碼(event code)櫻桃.此時(shí),如果這些特征編碼是同一個(gè)事件(櫻桃)的一部分的話,其中一個(gè)特征編碼(如,紅色)的激活可以易化其它特征編碼(圓的和小的)的進(jìn)一步激活.隨后,當(dāng)事件編碼(櫻桃)被激活后,會(huì)易化對(duì)其他紅色、圓的、小的物體的感知以及同樣具有這些特征的事件的動(dòng)作.相反,選擇一個(gè)將要進(jìn)行的動(dòng)作的特征將會(huì)易化感知以及和這個(gè)動(dòng)作有共同特征的其他事件.在這種情況下,當(dāng)(感知)刺激和(身體的)反應(yīng)共享的特征越多,任務(wù)就越容易解決.
雖然Hommel和他的同事沒有檢驗(yàn)數(shù)量大小和運(yùn)動(dòng)活動(dòng)之間的聯(lián)結(jié),但具身數(shù)量的觀點(diǎn)被其他研究者證實(shí)[78].例如,M. H. Fischer(2008)研究發(fā)現(xiàn),手指數(shù)數(shù)習(xí)慣被證實(shí)與空間數(shù)字加工有緊密的聯(lián)系.再如,Gracia-Bafalluy和Boel(2008)研究發(fā)現(xiàn),手指直覺的改善對(duì)算數(shù)成績有顯著的積極影響[79].因此,當(dāng)刺激和反應(yīng)模式共享相同的空間屬性時(shí),數(shù)字任務(wù)的性能似乎可以得到提升[34].
神經(jīng)科學(xué)的證據(jù)表明,運(yùn)動(dòng)系統(tǒng)不僅僅監(jiān)控運(yùn)動(dòng)本身,也會(huì)對(duì)認(rèn)知表征有影響[80].跨文化、跨年齡的證據(jù)顯示,數(shù)量也曾經(jīng)是由身體部位(包括手和手指)來表示的[81].只有在種系演化的最近時(shí)期,抽象的數(shù)量符號(hào),如阿拉伯?dāng)?shù)字才變得越來越普遍.然而,即使大量使用這些抽象的外部數(shù)量表征,并不能發(fā)展出完全抽象的心理數(shù)量表征.相反,越來越多的研究認(rèn)為數(shù)量大小的心理表征某種程度上仍保留了具身性.也就是說數(shù)量大小的心理表征仍與身體表征,如手指數(shù)數(shù)有關(guān).而且,以手指數(shù)數(shù)為基礎(chǔ)的數(shù)量發(fā)展表征的重要性已被廣泛接受.例如,Goldin等人發(fā)現(xiàn),在解決數(shù)學(xué)問題時(shí),如果允許兒童做手勢可以減少兒童的認(rèn)知負(fù)擔(dān)[82].
探究身體經(jīng)驗(yàn)對(duì)數(shù)字認(rèn)知影響的最著名的也是最常被重復(fù)的研究領(lǐng)域是關(guān)于兒童手指數(shù)數(shù)的研究[81,83].研究發(fā)現(xiàn),大部分兒童在學(xué)習(xí)數(shù)數(shù)時(shí),會(huì)自發(fā)地使用他們的手指來進(jìn)行數(shù)數(shù).這種借助手指進(jìn)行數(shù)數(shù)的策略在數(shù)學(xué)和空間之間產(chǎn)生了持久的聯(lián)系.越來越多的證據(jù)顯示兒童將他們的手指數(shù)數(shù)經(jīng)驗(yàn)內(nèi)化為牢固的數(shù)字表征,這些牢固的數(shù)字表征會(huì)影響兒童期以至于到成年期的數(shù)學(xué)任務(wù)成績[84–87].基于這些研究證據(jù),Domahs等人以具身認(rèn)知理論為基礎(chǔ),提出了具身數(shù)量(embodied numerosity)表征的觀點(diǎn),認(rèn)為個(gè)體的數(shù)字表征不僅僅局限于抽象的大小表征,或者精確的數(shù)字詞系統(tǒng),也受身體經(jīng)驗(yàn),如手指數(shù)數(shù)習(xí)慣和結(jié)構(gòu)的影響.
除了這些手指數(shù)數(shù)與數(shù)字認(rèn)知的顯而易見的、外顯的聯(lián)結(jié)之外,其它身體經(jīng)驗(yàn)對(duì)數(shù)字認(rèn)知的影響也得到了證實(shí).例如,Schwarz和Müller(2006)采用數(shù)字奇偶判斷任務(wù)研究了空間—數(shù)字聯(lián)合,實(shí)驗(yàn)要求被試使用雙腳進(jìn)行腳踏板反應(yīng)和雙手進(jìn)行按鍵反應(yīng),結(jié)果發(fā)現(xiàn),雙腳進(jìn)行腳踏板反應(yīng)與雙手進(jìn)行按鍵反應(yīng)的結(jié)果一致,均表現(xiàn)出左側(cè)反應(yīng)與小數(shù)字聯(lián)結(jié),右側(cè)反應(yīng)與大數(shù)字聯(lián)結(jié),且雙腳反應(yīng)和雙手反應(yīng)中小數(shù)字對(duì)應(yīng)左側(cè)和大數(shù)字對(duì)應(yīng)右側(cè)的空間—數(shù)字聯(lián)合的強(qiáng)度相同[88].
已有研究假設(shè)當(dāng)數(shù)字大小被加工時(shí),空間—數(shù)字信息即被提取,而且被提取的空間—數(shù)字信息會(huì)隨著當(dāng)前任務(wù)中數(shù)字信息的相對(duì)大小而改變[89-90].除了與大小信息有關(guān)外,空間—數(shù)字聯(lián)合的強(qiáng)度也受外部因素,例如身體經(jīng)驗(yàn)的影響[91-92].這些證據(jù)都驗(yàn)證了具身數(shù)量表征的觀點(diǎn)[85].
數(shù)字不僅僅是能激活身體運(yùn)動(dòng),對(duì)自己身體運(yùn)動(dòng)的知覺也能影響數(shù)字加工[91,93].這些研究發(fā)現(xiàn),在被動(dòng)的全身運(yùn)動(dòng)中,對(duì)身體運(yùn)動(dòng)的自動(dòng)感知影響數(shù)字認(rèn)知.例如,當(dāng)被試的身體被動(dòng)地向左或右運(yùn)動(dòng)時(shí),要求被試判斷數(shù)字是大于5還是小于5.結(jié)果發(fā)現(xiàn),當(dāng)被試被動(dòng)地向左運(yùn)動(dòng)時(shí),報(bào)告小數(shù)字快;當(dāng)被試被動(dòng)地向右運(yùn)動(dòng)時(shí),報(bào)告大數(shù)字快.研究者認(rèn)為這是因?yàn)楫?dāng)全身運(yùn)動(dòng)時(shí),被試的注意力在隨著心理數(shù)字線移動(dòng).他們認(rèn)為,耳石器官對(duì)前庭信息的處理可以影響抽象思維,甚至影響對(duì)數(shù)字內(nèi)在蘊(yùn)涵的空間刺激的處理.
Shaki和Fischer(2014)的研究也發(fā)現(xiàn)了數(shù)字大小和身體運(yùn)動(dòng)的雙向影響.在實(shí)驗(yàn)二中他們發(fā)現(xiàn)了身體運(yùn)動(dòng)對(duì)數(shù)字大小的影響.實(shí)驗(yàn)二使用數(shù)字機(jī)生成任務(wù),要求被試在走路并向左或者向右轉(zhuǎn)的時(shí)候報(bào)告數(shù)字.結(jié)果發(fā)現(xiàn),當(dāng)被試被要求向左轉(zhuǎn)時(shí)比要求被試向右轉(zhuǎn)時(shí),隨機(jī)生成的數(shù)字更小,反之亦然.在實(shí)驗(yàn)三中,他們發(fā)現(xiàn),數(shù)字大小也會(huì)影響身體運(yùn)動(dòng).實(shí)驗(yàn)三要求被試在聽到系列數(shù)字后走路并向左或者向右轉(zhuǎn),結(jié)果發(fā)現(xiàn)實(shí)驗(yàn)中聽到小數(shù)字系列的被試,更多的是向左轉(zhuǎn),而實(shí)驗(yàn)中聽到大數(shù)字系列的被試,更多的是向右轉(zhuǎn)[94].
數(shù)字加工能激活身體運(yùn)動(dòng),身體運(yùn)動(dòng)也可以系統(tǒng)地影響數(shù)字加工,這些影響不僅僅存在于雙手反應(yīng)任務(wù),也存在于整個(gè)身體.大量的身體經(jīng)驗(yàn)可以用來提升數(shù)字訓(xùn)練的效率,數(shù)字大小的全身運(yùn)動(dòng)經(jīng)驗(yàn)可以作為促進(jìn)數(shù)字的發(fā)展而訓(xùn)練[95].如果說身體經(jīng)驗(yàn)對(duì)數(shù)字認(rèn)知影響之間的相互影響為感知—運(yùn)動(dòng)空間訓(xùn)練提供了可能性.那么,通過身體運(yùn)動(dòng)來增強(qiáng)數(shù)學(xué)能力的訓(xùn)練研究則證實(shí)了感知—運(yùn)動(dòng)空間訓(xùn)練的可行性和有效性[34,96-97].已有研究報(bào)告了感知—運(yùn)動(dòng)空間訓(xùn)練不但可以促進(jìn)空間—數(shù)字的聯(lián)合,也可以提高數(shù)學(xué)轉(zhuǎn)換任務(wù)的成績[34,96-97].這種訓(xùn)練的基本邏輯是,按照心理數(shù)字線的順序向左(對(duì)小數(shù)字)或者向右(對(duì)大數(shù)字)移動(dòng)來對(duì)數(shù)字任務(wù)進(jìn)行反應(yīng),可以增強(qiáng)空間和數(shù)字之間的聯(lián)合[98],從而增強(qiáng)兒童的數(shù)學(xué)能力.這些感知—運(yùn)動(dòng)空間訓(xùn)練方法通過結(jié)合表征的空間類型(沿著數(shù)字線呈現(xiàn)數(shù)字)和反應(yīng)(全身反應(yīng)運(yùn)動(dòng))最大化地實(shí)現(xiàn)其對(duì)兒童數(shù)學(xué)能力的提升效果.
U. Fischer等人(2011)的研究第一次通過實(shí)驗(yàn)的方式展示了感知—運(yùn)動(dòng)空間訓(xùn)練方法的有效性.U. Fischer等人對(duì)幼兒園實(shí)驗(yàn)組兒童使用全身運(yùn)動(dòng)的感知—運(yùn)動(dòng)空間訓(xùn)練方法,對(duì)幼兒園對(duì)照組兒童使用其它訓(xùn)練方法,檢驗(yàn)實(shí)驗(yàn)組和對(duì)照組分別經(jīng)過兩種方法訓(xùn)練后,對(duì)呈現(xiàn)有空間方向的數(shù)字線估計(jì)任務(wù)與數(shù)數(shù)任務(wù)表現(xiàn)成績提升的效果.為了創(chuàng)設(shè)數(shù)字和空間的感知—運(yùn)動(dòng)經(jīng)驗(yàn),U. Fischer等人使用了一個(gè)數(shù)字舞蹈墊作為一個(gè)輸入裝置,兒童站在數(shù)字舞蹈墊上,看到要比較的數(shù)字時(shí)向右或向左移動(dòng)他們的整個(gè)身體.當(dāng)要比較的數(shù)字大于標(biāo)準(zhǔn)參照數(shù)字,也就是說在心理數(shù)字線上位于標(biāo)準(zhǔn)參照數(shù)字右側(cè)時(shí),訓(xùn)練要求兒童向右側(cè)移動(dòng);當(dāng)比較的數(shù)字小于標(biāo)準(zhǔn)參照數(shù)字,也就是說在心理數(shù)字線上位于標(biāo)準(zhǔn)參照數(shù)字左側(cè)時(shí),訓(xùn)練要求兒童向左側(cè)移動(dòng).他們研究發(fā)現(xiàn),與沒有全身反應(yīng)運(yùn)動(dòng)的控制組訓(xùn)練相比,全身訓(xùn)練條件在數(shù)字線估計(jì)任務(wù)和標(biāo)準(zhǔn)化數(shù)學(xué)成就測驗(yàn)(TEDI-MATH)的5個(gè)子測驗(yàn):計(jì)數(shù)規(guī)則子測驗(yàn)(counting principles subtest)、實(shí)物計(jì)數(shù)子測驗(yàn)(object counting subtest)、阿拉伯?dāng)?shù)字子測驗(yàn)(Arabic digits subtest)、數(shù)字詞子測驗(yàn)(number words subtest)和計(jì)算子測驗(yàn)(calculation subtest)中的準(zhǔn)確率有更大的提高,表現(xiàn)出更顯著的訓(xùn)練效果.
與其它研究中的訓(xùn)練方法不同的是,U. Fischer等人(2011)訓(xùn)練的這種全身反應(yīng)運(yùn)動(dòng)與心理數(shù)字線上的空間—數(shù)字聯(lián)合方向一致[34].與知覺反應(yīng)整合理論(the theories of perception-action integration)[77,87,99]觀點(diǎn)一致,U. Fischer等人認(rèn)為這樣的全身運(yùn)動(dòng)與刺激表征的結(jié)合可以增加兒童對(duì)數(shù)字大小的理解.實(shí)際上,進(jìn)行全身運(yùn)動(dòng)的感知—運(yùn)動(dòng)空間訓(xùn)練組與對(duì)照組相比,除了在數(shù)字線估計(jì)任務(wù)和標(biāo)準(zhǔn)化數(shù)學(xué)成就測驗(yàn)(TEDI-MATH)的5個(gè)子測驗(yàn)中訓(xùn)練效果更好外,他們還通過中介分析發(fā)現(xiàn),數(shù)數(shù)任務(wù)表現(xiàn)的提高受兒童數(shù)字線估計(jì)任務(wù)準(zhǔn)確性的影響.這就意味著感知—運(yùn)動(dòng)空間訓(xùn)練可以提升空間—數(shù)字任務(wù),且空間—數(shù)字任務(wù)的提升有助于提升兒童早期數(shù)學(xué)能力.因此,U. Fischer等人認(rèn)為是具備具身屬性的任務(wù)保證了訓(xùn)練的效果,也就是說包含了有方向的身體運(yùn)動(dòng)和數(shù)字線表征的具身屬性的任務(wù)使得訓(xùn)練效果得以保證.
在隨后的研究中,Link等人(2013)通過讓一年級(jí)學(xué)生走在貼在地板上的數(shù)字線上的位置來更直接地訓(xùn)練兒童的數(shù)字線估計(jì).實(shí)驗(yàn)者采用體感游戲(Kinect? Sensor)記錄了兒童的反應(yīng)位置,以考察兒童的數(shù)字估計(jì).這個(gè)訓(xùn)練混合了在地板上呈現(xiàn)數(shù)字線和對(duì)應(yīng)于心理數(shù)字線方向的全身反應(yīng).在控制組條件下,兒童用手指在平板電腦上完成相同的任務(wù),并沒有進(jìn)行全身運(yùn)動(dòng).結(jié)果發(fā)現(xiàn),與控制組條件相比,全身運(yùn)動(dòng)組兒童在數(shù)字線估計(jì)任務(wù)和加法任務(wù)中均表現(xiàn)出更多的提升[97].
U. Fischer等人(2011)和Link等人(2013)的研究強(qiáng)調(diào)了空間—數(shù)字聯(lián)合的全身訓(xùn)練的優(yōu)勢.然而,這兩個(gè)研究存在的共同問題是,訓(xùn)練的效果在一定程度上是由動(dòng)機(jī)效果,例如喜歡游戲[100]造成的.因?yàn)橄啾仍陔娔X上完成同樣的任務(wù)而言,不管是在數(shù)字線上走,還是在跳舞墊上跳都是好玩的、有趣的.這種潛在的干擾因素在上述兩個(gè)研究設(shè)計(jì)中無法檢測.
針對(duì)動(dòng)機(jī)等潛在因素的影響問題,U. Fischer等人(2015)使用交互式白板設(shè)計(jì)了一個(gè)實(shí)驗(yàn)訓(xùn)練,他們將全身運(yùn)動(dòng)與白板相結(jié)合進(jìn)行數(shù)字線估計(jì)任務(wù),從而構(gòu)成感知—運(yùn)動(dòng)空間訓(xùn)練條件.為了檢查可能的動(dòng)機(jī)效應(yīng),他們在先前訓(xùn)練研究[34,97](U. Fischer et al., 2011)的基礎(chǔ)上,采用小樣本實(shí)驗(yàn)(總樣本數(shù)=27),設(shè)計(jì)了兩個(gè)控制條件,分別是任務(wù)匹配控制條件和媒介匹配控制條件.在任務(wù)匹配控制訓(xùn)練中,他們混合了數(shù)字線估計(jì)任務(wù)和在電腦上的手動(dòng)反應(yīng),以此來控制訓(xùn)練效果是否是由空間—數(shù)字造成的.相反,媒介匹配控制訓(xùn)練中,他們將非空間的顏色辨別任務(wù)和全身運(yùn)動(dòng)反應(yīng)形式相結(jié)合,以此來控制訓(xùn)練效果是否是由數(shù)字媒介的動(dòng)機(jī)因素造成的.研究結(jié)果發(fā)現(xiàn),3種實(shí)驗(yàn)訓(xùn)練條件下,兒童的數(shù)字線估計(jì)任務(wù)都得到了顯著提升.其中,空間—數(shù)字訓(xùn)練任務(wù)的提升效果最好.此外,全身運(yùn)動(dòng)也有助于兒童在多位數(shù)加法中保持其表現(xiàn)水平.因此,他們認(rèn)為,全身運(yùn)動(dòng)可以提高數(shù)字訓(xùn)練的效率,也可以運(yùn)用到正式的教學(xué)游戲并融入到實(shí)際的課堂教學(xué)中.
U. Fischer等人(2011)的研究第一次通過實(shí)驗(yàn)的方式展示了感知—運(yùn)動(dòng)空間訓(xùn)練方法的有效性.這些感知—運(yùn)動(dòng)空間訓(xùn)練方法通過結(jié)合表征的空間類型(沿著數(shù)字線呈現(xiàn)數(shù)字)和反應(yīng)(全身反應(yīng)運(yùn)動(dòng))來最大化地實(shí)現(xiàn)訓(xùn)練過程中的空間—數(shù)字加工.這個(gè)空間—數(shù)字加工保證了訓(xùn)練的成果,但同時(shí)也提出了一個(gè)問題:究竟是心理數(shù)字線表征和全身反應(yīng)的結(jié)合引起了訓(xùn)練效果的提高,還是心理數(shù)字線表征和全身反應(yīng)分別可以引起訓(xùn)練效果的提高?針對(duì)這一問題,U. Fischer等人(2016)以四年級(jí)學(xué)生為被試,要求被試對(duì)兩個(gè)相對(duì)大小信息不同的大小比較任務(wù)進(jìn)行反應(yīng).在兩個(gè)任務(wù)中,他們通過不同的反應(yīng)條件改變了身體運(yùn)動(dòng)的程度(言語反應(yīng)、腳踏板反應(yīng)、跳躍反應(yīng))和數(shù)字視覺呈現(xiàn)的方式(在數(shù)字線上呈現(xiàn)、不在數(shù)字線上呈現(xiàn)).通過系統(tǒng)地改變表征和反應(yīng)的因素,分別使用空間—數(shù)字聯(lián)合的SNARC效應(yīng)以及相對(duì)數(shù)字大小效應(yīng),考查了究竟是心理數(shù)字線表征與全身反應(yīng)的結(jié)合影響了空間—數(shù)字聯(lián)合的強(qiáng)度,還是兩者分別影響空間—數(shù)字聯(lián)合的強(qiáng)度.結(jié)果發(fā)現(xiàn),心理數(shù)字線表征和全身反應(yīng)可以分別影響訓(xùn)練效果.研究結(jié)果還發(fā)現(xiàn),SNARC效應(yīng)沒有受實(shí)驗(yàn)條件的影響,但是相對(duì)數(shù)字大小效應(yīng)在全身運(yùn)動(dòng)條件下比口頭反應(yīng)條件下空間—數(shù)字聯(lián)合的強(qiáng)度大.他們認(rèn)為這是因?yàn)镾NARC效應(yīng)與相對(duì)數(shù)字大小效應(yīng)的潛在空間表征方式不同.相對(duì)數(shù)字大小效應(yīng)可能僅存在數(shù)字的空間編碼,而SNARC效應(yīng)可能既存在數(shù)字的空間編碼,也存在言語編碼[101-103].
近幾年越來越多的研究進(jìn)一步確認(rèn)了感知—運(yùn)動(dòng)訓(xùn)練對(duì)兒童數(shù)學(xué)能力提升的促進(jìn)作用.例如,Ninaus、Kiili、McMullen和Moeller(2017)的研究發(fā)現(xiàn),基于游戲的數(shù)字線訓(xùn)練可以有效地促進(jìn)11歲兒童的分?jǐn)?shù)學(xué)習(xí)[104].Kiili、Moeller和Ninaus(2018)對(duì)95名四年級(jí)兒童開展基于游戲的數(shù)字線訓(xùn)練,結(jié)果發(fā)現(xiàn),實(shí)驗(yàn)組兒童有理數(shù)概念的發(fā)展顯著高于對(duì)照組兒童[105],進(jìn)一步證實(shí)了心理數(shù)字線訓(xùn)練在兒童有理數(shù)概念發(fā)展中的促進(jìn)作用.Burte等人(2017)的研究發(fā)現(xiàn),對(duì)農(nóng)村小學(xué)生開展具身空間訓(xùn)練可以有效地提升他們的空間思維能力和問題解決能力[106].Gable、Fozi和Moore(2020)修訂了Ramani和Siegler(2008)的游戲方式,對(duì)64名46個(gè)月大的學(xué)齡前兒童進(jìn)行了為期3周的全身運(yùn)動(dòng)訓(xùn)練,結(jié)果發(fā)現(xiàn),實(shí)驗(yàn)組兒童較之對(duì)照組兒童在數(shù)字知識(shí)技能方面得到了更多提升[107].
綜上所述,已有研究主要集中在探討空間能力與數(shù)學(xué)能力的關(guān)系,為數(shù)字空間表征提供了認(rèn)知神經(jīng)和行為研究的證據(jù),探討了感知—運(yùn)動(dòng)空間訓(xùn)練的理論基礎(chǔ),以及感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童數(shù)學(xué)能力提升的有效性.感知—運(yùn)動(dòng)空間訓(xùn)練作為兒童數(shù)學(xué)認(rèn)知能力提升的訓(xùn)練手段,對(duì)兒童早期數(shù)學(xué)學(xué)習(xí)水平的提升具有重要的教育意義.具體而言,感知—運(yùn)動(dòng)空間訓(xùn)練針對(duì)的是基礎(chǔ)數(shù)學(xué)認(rèn)知能力的提升,而通過對(duì)基礎(chǔ)數(shù)學(xué)認(rèn)知能力的提升可以有效地提升那些因?yàn)榛A(chǔ)數(shù)學(xué)認(rèn)知能力薄弱,且即使通過課堂教學(xué)和大量的題海戰(zhàn)術(shù)練習(xí)仍無法提高其數(shù)學(xué)能力的那部分兒童的數(shù)學(xué)學(xué)習(xí)水平.但由于兒童早期所代表的年齡范圍相對(duì)較廣,一般是指從出生到約12歲的兒童.不同年齡階段兒童的數(shù)學(xué)能力發(fā)展特點(diǎn)各有不同,因此,未來研究應(yīng)在考慮不同年齡階段兒童數(shù)學(xué)能力發(fā)展特點(diǎn)的前提下,從以下方面開展.
首先,進(jìn)一步區(qū)分不同感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)不同年齡階段兒童數(shù)學(xué)能力的影響.例如,已有研究報(bào)告了感知—運(yùn)動(dòng)空間訓(xùn)練可以提高數(shù)學(xué)轉(zhuǎn)換任務(wù)的成績[34,96-97],全身訓(xùn)練可以提高兒童在標(biāo)準(zhǔn)化數(shù)學(xué)成就測驗(yàn)(TEDI-MATH)的5個(gè)子測驗(yàn)中的準(zhǔn)確率.全身運(yùn)動(dòng)訓(xùn)練可以提升兒童在加法任務(wù)中的表現(xiàn)[97].這些結(jié)果顯示,并非所有的感知—運(yùn)動(dòng)空間訓(xùn)練都可以對(duì)兒童數(shù)學(xué)能力的所有方面產(chǎn)生影響.因此,今后的研究應(yīng)進(jìn)一步澄清究竟哪些感知—運(yùn)動(dòng)空間訓(xùn)練可以促進(jìn)不同年齡階段兒童數(shù)學(xué)能力的哪些方面的發(fā)展.
其次,探討感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)不同年齡階段兒童數(shù)學(xué)能力提升的長期效果.已有研究中,干預(yù)效果多來自于后測,這不能有效地說明感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童數(shù)學(xué)能力產(chǎn)生長期有效的影響.雖然沒有研究從追蹤研究的角度報(bào)告系列感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童數(shù)學(xué)能力的影響,以及單次或系列感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童數(shù)學(xué)能力影響的長期效果,但已有的綜述研究報(bào)告了數(shù)字加工能激活身體運(yùn)動(dòng),身體運(yùn)動(dòng)也可以系統(tǒng)地影響數(shù)字加工[95].這似乎意味著感知—運(yùn)動(dòng)空間訓(xùn)練可以存在長期效果.因此,未來的研究可以嘗試開展縱向研究,探討感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)不同年齡階段兒童數(shù)學(xué)能力提升的長期效果.
第三,探討感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)不同年齡階段兒童數(shù)學(xué)能力提升的作用機(jī)制.已有研究認(rèn)為感知—運(yùn)動(dòng)空間訓(xùn)練的基本邏輯是,按照心理數(shù)字線的順序?qū)?shù)字任務(wù)進(jìn)行反應(yīng),可以增強(qiáng)空間和數(shù)字之間的聯(lián)合[98],從而增強(qiáng)兒童的數(shù)學(xué)能力.U. Fischer等人(2011)的全身反應(yīng)運(yùn)動(dòng)訓(xùn)練也與心理數(shù)字線上的空間—數(shù)字聯(lián)合方向一致.他們通過中介分析發(fā)現(xiàn),推測了全身訓(xùn)練促進(jìn)的兒童數(shù)字線估計(jì)任務(wù)的準(zhǔn)確性,數(shù)字線估計(jì)任務(wù)的準(zhǔn)確性進(jìn)一步影響了兒童數(shù)數(shù)任務(wù)的表現(xiàn).但沒有研究就感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童數(shù)學(xué)能力提升的作用機(jī)制問題進(jìn)行準(zhǔn)確揭示.因此,今后的研究可以嘗試分別從行為研究和認(rèn)知神經(jīng)科學(xué)研究的層面對(duì)感知—運(yùn)動(dòng)空間訓(xùn)練提升不同年齡階段兒童數(shù)學(xué)能力的作用機(jī)制問題開展研究.
最后,探討感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)不同年齡階段兒童數(shù)學(xué)能力影響的可塑性特點(diǎn).U. Fischer等人(2011)對(duì)幼兒園兒童使用全身運(yùn)動(dòng)的感知—運(yùn)動(dòng)空間訓(xùn)練后發(fā)現(xiàn)幼兒園兒童的數(shù)數(shù)任務(wù)表現(xiàn)成績提升的效果.Link等人(2013)對(duì)一年級(jí)學(xué)生使用全身運(yùn)動(dòng)訓(xùn)練后發(fā)現(xiàn)一年級(jí)學(xué)生的加法任務(wù)表現(xiàn)得到了提升[97].從發(fā)展的角度,感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童數(shù)學(xué)能力的影響在不同年齡階段有著怎樣的可塑性特點(diǎn),也就是說哪些具體的感知—運(yùn)動(dòng)空間訓(xùn)練方法可以促進(jìn)不同階段兒童的哪些數(shù)學(xué)能力的發(fā)展,以及感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童哪個(gè)階段的數(shù)學(xué)能力的提升作用更佳,將是有待于未來進(jìn)一步研究的問題.
[1] 黃大慶,陳英和.小學(xué)二至六年級(jí)數(shù)學(xué)困難兒童數(shù)學(xué)認(rèn)知能力的發(fā)展[J].?dāng)?shù)學(xué)教育學(xué)報(bào),2016,25(2):70–74.
[2] 周新林.教育神經(jīng)科學(xué)視野中的數(shù)學(xué)教育創(chuàng)新[M].北京:教育科學(xué)出版社,2016:103–130.
[3] BOOTH J L, SIEGLER R S. Numerical magnitude representations influence arithmetic learning [J]. Child Development, 2008, 79 (4): 1?016–1?031.
[4] DYSON N I, JORDAN N C, GLUTTING J. A number sense intervention for low-income kindergartners at risk for mathematics difficulties [J]. Journal of Learning Disabilities, 2013, 46 (2): 166–181.
[5] HOLLOWAY I D, ANSARI D. Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement [J]. Journal of Experimental Child Psychology, 2009, 103 (1): 17–29.
[6] HORNUNG C, SCHILTZ C, BRUNNER M, et al. Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence [J]. Frontiers in Psychology, 2014 (5): 272.
[7] JACOBI-VESSELS J L, TODD BROWN E, MOLFESE V J, et al. Teaching preschoolers to count: Effective strategies for achieving early mathematics milestones [J]. Early Childhood Education Journal, 2016, 44 (1): 1–9.
[8] LOCUNIAK M N, JORDAN N C. Using kindergarten number sense to predict calculation fluency in second grade [J]. Journal of Learning Disabilities, 2008, 41 (5): 451–459.
[9] JORDAN N C, KAPLAN D, RAMINENI C, et al. Development of number combination skill in the early school years: When do fingers help [J]. Developmental Science, 2008, 11 (5): 662–668.
[10] JORDAN N C, KAPLAN D, RAMINENI C, et al. Early math matters: Kindergarten number competence and later mathematics outcomes [J]. Development Psychology, 2009, 45 (3): 850–867.
[11] LLOYD J D. Effects of math interventions on elementary students’ math skills: A meta-analysis [D]. California: UC Riverside, 2013: 1–39.
[12] JORDAN N C, KAPLAN D, NABORS O L, et al. Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties [J]. Child Development, 2006, 77 (1): 153–175.
[13] JORDAN N C, KAPLAN D, LOCUNIAK M N, et al. Predicting first grade math achievement from developmental number sense trajectories [J]. Learning Disabilities Research & Practice, 2007, 22 (1): 36–46.
[14] JORDAN N C, GLUTTING J, DYSON N, et al. Building kindergartners’ number sense: A randomized controlled study [J]. Journal of Educational Psychology, 2012, 104 (3): 647–660.
[15] DYSON N, JORDAN N C, BELIAKOFF A, et al. A kindergarten number-sense intervention with contrasting practice conditions for low-achieving children [J]. Journal for Research in Mathematics Education, 2015, 46 (3): 331–370.
[16] OSTERGREN R, TRAFF U. Early number knowledge and cognitive ability affect early arithmetic ability [J]. Journal of Experimental Child Psychology, 2013, 115 (3): 405–421.
[17] PAPADAKIS S, KALOGIANNAKIS M, ZARANIS N. Improving mathematics teaching in kindergarten with realistic mathematical education [J]. Early Childhood Education Journal, 2017, 45 (3): 369–378.
[18] AUNIO P, NIEMIVIRTA M. Predicting children’s mathematical performance in grade one by early numeracy [J]. Learning and Individual Differences, 2010, 20 (5): 427–435.
[19] GEARY D C. Early foundations for mathematics learning and their relations to learning disabilities [J]. Current Directions in Psychological Science, 2013, 22 (1): 23–27.
[20] JORDAN N C, GLUTTING J, RAMINENI C. A number sense assessment tool for identifying children at risk for mathematical difficulties [M] // DOWKER A. Mathematical difficulties: Psychology, neuroscience and intervention. New York: Elsevier Academic Press, 2008: 45–58.
[21] CLEMENTS D H, SARAMA J. Experimental evaluation of the effects of a research-based preschool mathematics curriculum [J]. American Educational Research Journal, 2008, 45 (2): 443–494.
[22] KLEIN A, STARKEY P, CLEMENTS D, et al. Effects of a pre-kindergarten mathematics intervention: A randomized experiment [J]. Journal of Research on Educational Effectiveness, 2008, 1 (3): 155–178.
[23] SOOD S, JITENDRA A K. An exploratory study of a number sense program to develop kindergarten students’ number proficiency [J]. Journal of Learning Disabilities, 2013, 46 (4): 328–346.
[24] WILSON P H, SZTAJN P, EDGINGTON C, et al. Teachers’ use of their mathematical knowledge for teaching in learning a mathematics learning trajectory [J]. Journal of Mathematics Teacher Education, 2014, 17 (2): 149–175.
[25] GOBEL S M, SHAKI S, FISCHER M H. The cultural number line: A review of cultural and linguistic influences on the development of number processing [J]. Journal of Cross-Cultural Psychology, 2011, 42 (4): 543–565.
[26] FISCHER M H, SHAKI S. Spatial associations in numerical cognition from single digits to arithmetic [J]. Quarterly Journal of Experimental Psychology, 2014, 67 (8): 1?461–1?483.
[27] de HEVIA M D, SPELKE E S. Spontaneous mapping of number and space in adults and young children [J]. Cognition, 2009, 110 (2): 198–207.
[28] McCRINK K, WYNN K. Operational momentum in large-number addition and subtraction by 9-month-olds [J]. Journal of Experimental Child Psychology, 2009, 103 (4): 400–408.
[29] PATRO K, HAMAN M. The spatial-numerical congruity effect in preschoolers [J]. Journal of Experimental Child Psychology, 2012, 111 (3): 534–542.
[30] RAMANI G B, SIEGLER R S. Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games [J]. Child Development, 2008, 79 (2): 375–394.
[31] RAMANI G B, SIEGLER R S. Reducing the gap in numerical knowledge between low- and middle-income preschoolers [J]. Journal of Applied Developmental Psychology, 2011 (32): 146–159.
[32] SIEGLER R S, RAMANI G B. Playing linear numerical board games promotes low-income children’s numerical development [J]. Development Science, 2008, 11 (5): 655–661.
[33] SIEGLER R S, RAMANI G B. Playing linear number board games––but not circular ones––improves low-income preschoolers’ numerical understanding [J]. Journal of Educational Psychology, 2009, 101 (3): 545–560.
[34] FISCHER U, MOELLER K, BIENTZLE M, et al. Sensori-motor spatial training of number magnitude representation [J]. Psychonomic Bulletin & Review, 2011, 18 (1): 177–183.
[35] CHENG Y L, MIX K S. Spatial training improves children’s mathematics ability [J]. Journal of Cognition and Development, 2014, 15 (1): 2–11.
[36] KYTT?L? M, LEHTO J E. Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence [J]. European Journal of Psychology of Education, 2008, 23 (1): 77–94.
[37] MIX K S, CHENG Y L. The relation between space and math: Developmental and educational implications [J]. Advances in Child Development and Behavior, 2012 (42): 197–243.
[38] CASEY M B, NUTTALL R L, PEZARIS E. Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items [J]. Journal for Research in Mathematics Education, 2001, 32 (1): 28–57.
[39] HAWES Z, MOSS J, CASWELL B, et al. Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study [J]. Trends in Neuroscience and Education, 2015, 4 (3): 60–68.
[40] LASKI E V, CASEY B M, YU Q, et al. Spatial skills as a predictor of first grade girls’ use of higher level arithmetic strategies [J]. Learning and Individual Differences, 2013 (23): 123–130.
[41] LEFEVRE J A, JIMENEZ L C, SOWINSKI C, et al. Charting the role of the number line in mathematical development [J]. Frontiers in Psychology, 2013 (4): 641.
[42] LEVINE S C, RATLIFF K R, HUTTENLOCHER J, et al. Early puzzle play: A predictor of preschoolers’ spatial transformation skill [J]. Developmental Psychology, 2012, 48 (2): 530–542.
[43] MIX K S, LEVINE S C, CHENG Y L, et al. Separate but correlated: The latent structure of space and mathematics across development [J]. Journal of Experimental Psychology: General, 2016, 145 (9): 1?206.
[44] VERDINE B N, GOLINKOFF R M, HIRSH-PASEK K, et al. Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills [J]. Child Development, 2014, 85 (3): 1?062–1?076.
[45] ASHKENAZI S, ROSENBERG-LEE M, METCALFE A W, et al. Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition [J]. Neuropsychologia, 2013, 51 (11): 2?305–2?317.
[46] McKENZIE B, BULL R, GRAY C. The effects of phonological and visual-spatial interference on children’s arithmetical performance [J]. Educational and Child Psychology, 2003, 20 (3): 93–108.
[47] GUNDERSON E A, RAMIREZ G, BEILOCK S L, et al. The relation between spatial skill and early number knowledge: The role of the linear number line [J]. Developmental Psychology, 2012, 48 (5): 1?229.
[48] HUBER S, SURY D, MOELLER K, et al. A general number-to-space mapping deficit in developmental dyscalculia [J]. Research in Developmental Disabilities, 2015 (43): 32–42.
[49] RASMUSSEN C, BISANZ J. Representation and working memory in early arithmetic [J]. Journal of Experimental Child Psychology, 2005, 91 (2): 137–157.
[50] ALLOWAY T P, PASSOLUNGHI M C. The relationship between working memory, IQ, and mathematical skills in children [J]. Learning and Individual Differences, 2011, 21 (1): 133–137.
[51] GATHERCOLE S E, PICKERING S J. Assessment of working memory in six-and seven-year-old children [J]. Journal of Educational Psychology, 2000, 92 (2): 377–390.
[52] GATHERCOLE S E, PICKERING S J. Working memory deficits in children with low achievements in the national curriculum at 7 years of age [J]. British Journal of Educational Psychology, 2000, 70 (2): 177–194.
[53] MEYER M L, SALIMPOOR V N, WU S S, et al. Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders [J]. Learning and Individual Differences, 2010, 20 (2): 101–109.
[54] RAGHUBAR K P, BARNES M A, HECHT S A. Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches [J]. Learning and Individual Differences, 2010, 20 (2): 110–122.
[55] LACHANCE J A, MAZZOCCO M M. A longitudinal analysis of sex differences in math and spatial skills in primary school age children [J]. Learning and Individual Differences, 2006, 16 (3): 195–216.
[56] MARKEY S M. The relationship between visual-spatial reasoning ability and math and geometry problem-solving [D]. Massachusetts: American International College, 2009: 70.
[57] MAZZOCCO M M, MYERS G F. Complexities in identifying and defining mathematics learning disability in the primary school-age years [J]. Annals of Dyslexia, 2003, 53 (1): 218–253.
[58] KLIBANOFF R S, LEVINE S C, HUTTENLOCHER J, et al. Preschool children’s mathematical knowledge: The effect of teacher “math talk” [J]. Developmental Psychology, 2006, 42 (1): 59–69.
[59] LOWRIE T, LOGAN T, RAMFUL A. Visuospatial training improves elementary students’ mathematics performance [J]. British Journal of Educational Psychology, 2017, 87 (2): 170–186.
[60] STARKEY P, KLEIN A, WAKELEY A. Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention [J]. Early Childhood Research Quarterly, 2004, 19 (1): 99–120.
[61] BURNETT S A, LANE D M, DRATT L M. Spatial visualization and sex differences in quantitative ability [J]. Intelligence, 1979, 3 (4): 345–354.
[62] DELGADO A R, PRIETO G. Cognitive mediators and sex-related differences in mathematics [J]. Intelligence, 2004, 32 (1): 25–32.
[63] GEARY D C, HOARD M K, BYRD-CRAVEN J, et al. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability [J]. Child Development, 2007, 78 (4): 1?343–1?359.
[64] HOLMES J, ADAMS J W, HAMILTON C J. The relationship between visuospatial sketchpad capacity and children’s mathematical skills [J]. European Journal of Cognitive Psychology, 2008, 20 (2): 272–289.
[65] LUBINSKI D, BENBOW C P. Gender differences in abilities and preferences among the gifted: Implications for the math-science pipeline [J]. Current Directions in Psychological Science, 1992, 1 (2): 61–66.
[66] McLEAN J F, HITCH G J. Working memory impairments in children with specific arithmetic learning difficulties [J]. Journal of Experimental Child Psychology, 1999, 74 (3): 240–260.
[67] PIAZZA M, IZARD V, PINEL P, et al. Tuning curves for approximate numerosity in the human intraparietal sulcus [J]. Neuron, 2004, 44 (3): 547–555.
[68] HUBBARD E M, PIAZZA M, PINEL P, et al. Interactions between number and space in parietal cortex [J]. Nature Reviews Neuroscience, 2005, 6 (6): 435–448.
[69] UMILTà C, PRIFTIS K, ZORZI M. The spatial representation of numbers: Evidence from neglect and pseudoneglect [J]. Experimental Brain Research, 2009, 192 (3): 561–569.
[70] DEHAENE S. The neural basis of the weber-fechner law: A logarithmic mental number line [J]. Trends in Cognitive Sciences, 2003, 7 (4): 145–147.
[71] FEIGENSON L, DEHAENE S, SPELKE E. Core systems of number [J]. Trends in Cognitive Sciences, 2004, 8 (7): 307–314.
[72] DEHAENE S, BOSSINI S, GIRAUX P. The mental representation of parity and number magnitude [J]. Journal of Experimental Psychology: General, 1993, 122 (3): 371–396.
[73] DEHAENE S, DUPOUX E, MEHLER J. Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison [J]. Journal of Experimental Psychology: Human Perception and performance, 1990, 16 (3): 626–641.
[74] MOYER R S, LANDAUER T K. Time required for judgements of numerical inequality [J]. Nature, 1967, 215 (5?109): 1?519–15?20.
[75] RESTLE F. Speed of adding and comparing numbers [J]. Journal of Experimental Psychology, 1970, 83 (2): 274–278.
[76] WILSON M. Six view of embodied cognition [J]. Psychonomic Bulletin & Review, 2002 (9): 625–636.
[77] HOMMEL B, MüSSELER J, ASCHERSLEBEN G, et al. The theory of event coding (tec): A framework for perception and action planning [J]. Behavioral and Brain Sciences, 2001, 24 (5): 849–878.
[78] DOMAHS F, MOELLER K, HUBER S, et al. Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures [J]. Cognition, 2010, 116 (2): 251–266.
[79] GRACIA-BAFALLUY M, NOEL M P. Does finger training increase young children’s numerical performance [J]. Cortex, 2008, 44 (4): 368–375.
[80] ANDRES, MICHAEL, OLIVIER, et al. Actions, words, and numbers [J]. Current Directions in Psychological Science, 2008, 17 (5): 313–317.
[81] BUTTERWORTH B. The mathematical brain [M]. London: Macmillan, 1999: 206–237.
[82] GOLDIN-MEADOW S, NUSBAUM H, KELLY S D, et al. Explaining math: Gesturing lightens the load [J]. Psychological Science, 2001, 12 (6): 516–522.
[83] FUSON K C. Children’s counting and concepts of number [M]. New York: Springer, 1988: 33–62.
[84] DOMAHS F, KRINZINGER H, WILLMES K. Mind the gap between both hands: Evidence for internal finger-based number representations in children’s mental calculation [J]. Cortex, 2008, 44 (4): 359–367.
[85] DOMAHS F, MOELLER K, HUBER S, et al. Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures [J]. Cognition, 2010, 116 (2): 251–266.
[86] FISCHER M H. Finger counting habits modulate spatial-numerical associations [J]. Cortex, 2008, 44 (4): 386–392.
[87] FISCHER M H, BRUGGER P. When digits help digits: Spatial-numerical associations point to finger counting as prime example of embodied cognition [J]. Frontiers in Psychology, 2011 (2): 260.
[88] SCHWARZ W, MüLLER D. Spatial associations in number-related tasks [J]. Experimental Psychology, 2006, 53 (1): 4–15.
[89] van DIJCK J P, GEVERS W, FIAS W. Numbers are associated with different types of spatial information depending on the task [J]. Cognition, 2009, 113 (2): 248–253.
[90] WOOD G, WILLMES K, NUERK H C, et al. On the cognitive link between space and number: A meta-analysis of the SNARC effect [J]. Psychology Science, 2008, 50 (4): 489–525.
[91] HARTMANN M, GARBHERR L, MAST F W. Moving along the mental number line: Interactions between whole-body motion and numerical cognition [J]. Journal of Experimental Psychology: Human Perception and Performance, 2012, 38 (6): 1?416–1?427.
[92] LINDEMANN O, ALIPOUR A, FISCHER M H. Finger counting habits in middle eastern and western individuals: An online survey [J]. Journal of Cross-Cultural Psychology, 2011, 42 (4): 566–578.
[93] HARTMANN M, FARKAS R, MAST F W. Self-motion perception influences number processing: Evidence from a parity task [J]. Cognitive Processing, 2012, 13 (1): 189–192.
[94] SHAKI S, FISCHER M H. Random walks on the mental number line [J]. Experimental Brain Research, 2014, 232 (1): 43–49.
[95] MOELLER K, FISCHER U, LINK T, et al. Learning and development of embodied numerosity [J]. Cognitive Processing, 2012, 13 (1): 271–274.
[96] FISCHER U, MOELLER K, CLASS F, et al. Dancing with the SNARC: Measuring spatial-numerical associations on a digital dance mat [J]. Canadian Journal of Experimental Psychology, 2016, 70 (4): 306–315.
[97] LINK T, MOELLER K, HUBER S, et al. Walk the number line: An embodied training of numerical concepts [J]. Trends in Neuroscience and Education, 2013, 2 (2): 74–84.
[98] FISCHER U, MOELLER K, HUBER S, et al. Full-body movement in numerical trainings: A pilot study with an interactive whiteboard [J]. International Journal of Serious Games, 2015, 2 (4): 23–35.
[99] HOMMEL B. Action control according to TEC (theory of event coding) [J]. Psychological Research, 2009, 73 (4): 512–526.
[100] GIANNAKOS M N. Enjoy and learn with educational games: Examining factors affecting learning performance [J]. Computers & Education, 2013 (68): 429–439.
[101] GEVERS W, SANTENS S, DHOOGE E, et al. Verbal-spatial and visuospatial coding of number-space interactions [J]. Journal of Experimental Psychology: General, 2010, 139 (1): 180–190.
[102] IMBO I, BRAUWER J D, FIAS W, et al. The development of the SNARC effect: Evidence for early verbal coding [J]. Journal of Experimental Child Psychology, 2012, 111 (4): 671–680.
[103] MENG X, LI E T, ZHANG Y J, et al. Flexible verbal: Spatial mapping in the horizontal and vertical SNARC effects of Mainland Chinese readers [J]. The American Journal of Psychology, 2017, 130 (3): 339–351.
[104] NINAUS M, KIILI K, McMULLEN J, et al. Assessing fraction knowledge by a digital game [J]. Computers in Human Behavior, 2017 (70): 197–206.
[105] KIILI K, MOELLER K, NINAUS M. Evaluating the effectiveness of a game-based rational number training-in-game metrics as learning indicators [J]. Computers & Education, 2018 (120): 13–28.
[106] BURTE H, GARDONY A L, HUTTON A, et al. Think3d!: Improving mathematics learning through embodied spatial training [J]. Cognitive Research: Principles and Implications, 2017, 2 (1): 13.
[107] GABLE S, FOZI A M, MOORE A M. A physically-active approach to early number learning [J]. Early Childhood Education Journal, 2020 (3): 1–12.
Effects of Sensori-Motor Spatial Trainings on Children’s Early Mathematical Ability
LI Meng-xia, ZHENG Yang-ling
(School of Teacher Education, Huzhou University, Zhejiang Huzhou 313000, China)
As one of the most important higher cognitive functions, mathematical cognitive ability plays an important role in the growth of children. Many studies have found that the development of children’s early numerical ability can predict their future math achievement. As one of the ways to promote children’s mathematical ability based on mathematical cognitive ability, sensori-motor spatial trainings of number can effectively promote the development of children’s mathematical ability in their early years. This paper reports the possibility premise, the basis, and the effectiveness of sensori-motor spatial trainings.Future research should further distinguish the effects of different sensori-motor spatial trainings on children’s mathematical ability at different ages, and explore the long-term effect, the mechanism and plasticity of sensori-motor spatial trainings on children’s mathematical ability at different stages.
sensori-motor spatial trainings; number-spatial representation; mathematical ability; early childhood
2022–01–16
全國教育科學(xué)規(guī)劃課題——感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童數(shù)學(xué)認(rèn)知能力提升的實(shí)驗(yàn)研究(BBA190026)
李夢霞(1978—),女,山西曲沃人,副教授,博士,碩士生導(dǎo)師,主要從事數(shù)字認(rèn)知和數(shù)學(xué)學(xué)習(xí)困難研究.
G447
A
1004–9894(2022)03–0056–08
李夢霞,鄭楊玲.感知—運(yùn)動(dòng)空間訓(xùn)練對(duì)兒童早期數(shù)學(xué)能力的影響[J].?dāng)?shù)學(xué)教育學(xué)報(bào),2022,31(3):56-63.
[責(zé)任編校:周學(xué)智、張楠]
數(shù)學(xué)教育學(xué)報(bào)2022年3期