鐘心怡 張文霞 鄧嘉欣 陳紫婷 劉鍇棟 周艷
摘要:【目的】探究還原型谷胱甘肽(GSH)與一氧化氮(NO)供體硝普鈉(SNP)協(xié)同處理對(duì)番茄貯藏品質(zhì)及抗氧化能力的影響,為番茄貯藏保鮮提供理論依據(jù)。【方法】以千禧番茄為試驗(yàn)材料,采用外源2 mmol/L GSH和0.25 mmol/L SNP分別單獨(dú)處理及協(xié)同處理浸泡采后成熟期番茄果實(shí)5 min,以蒸餾水浸泡5 min為對(duì)照,進(jìn)行貯藏期番茄果實(shí)品質(zhì)、抗氧化酶活性和抗氧化物質(zhì)含量分析。【結(jié)果】與對(duì)照相比,外源GSH與SNP協(xié)同處理下番茄果實(shí)在整個(gè)貯藏期失重率顯著降低52.86%~56.07%(P<0.05,下同),原果膠含量顯著增加29.67%~39.34%,從而延緩果實(shí)硬度的下降;貯藏前中期(5~10 d)果實(shí)的可溶性固形物含量顯著增加23.36%~46.25%,整個(gè)貯藏期間的可滴定酸和可溶性糖含量分別顯著增加93.95%~96.78%和8.32%~11.21%;番茄果實(shí)的總抗氧化能力顯著提高17.25%~53.82%,果實(shí)中的丙二醛(MDA)含量、過(guò)氧化氫(H2O2)含量和超氧陰離子(O[-2]·)產(chǎn)生速率分別顯著降低49.28%~52.27%、34.71%~42.75%和23.82%~53.60%;果實(shí)中的超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)和過(guò)氧化物酶(POD)活性分別顯著增加12.73%~143.80%、37.11%~95.24%和20.73%~91.45%,GSH、還原型抗壞血酸(AsA)和NO含量分別顯著增加16.01%~44.63%、38.49%~39.73%和48.56%~73.96%?!窘Y(jié)論】外源GSH與SNP協(xié)同處理能通過(guò)保持果實(shí)硬度、可溶性固形物、可滴定酸和可溶性糖含量,提高SOD、CAT和POD活性,以及GSH和AsA含量,維持果實(shí)體內(nèi)的活性氧平衡,減少貯藏期產(chǎn)生的氧化損傷,從而提高其耐貯性。
關(guān)鍵詞: 番茄;還原型谷胱甘肽;硝普鈉;抗氧化能力;貯藏品質(zhì)
中圖分類號(hào): S641.209.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)01-0157-09
Synergistic effect of glutathione and nitric oxide treatment on storage quality and antioxidant activity in tomato
ZHONG Xin-yi, ZHANG Wen-xia, DENG Jia-xin, CHEN Zi-ting,
LIU Kai-dong*, ZHOU Yan*
(Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong? 524048, China)
Abstract:【Objective】Synergistic effects of reduced glutathione (GSH) and donor sodium nitroprusside(SNP) of nitric oxide(NO) treatment on storage quality and antioxidant capacity of tomato,which can provide a theoretical basis for improving the storage quality and prolonging the shelf life of tomato fruit. 【Method】Qianxitomato was used as the experimental material,and the tomato fruits at post-harvest maturity stage were soaked for 5 min with exogenous 2 mmol/L GSH and 0.25 mmol/L SNP,respectively,and soaked in distilled water for 5 min as control. The fruit quality,antioxidant enzyme activity and antioxidant substance content of tomato during storage period were analyzed. 【Result】Compared to control,the weight loss rate of tomato fruits were significantly decreased by 52.86%-56.07%(P<0.05,the same below),and the content of propectin were significantly increased by 29.67%-39.34% under the synergistic treatment of exogenous GSH and SNP,which delayed the decrease of fruit hardness. Compared to control,the content of total soluble solid (TSS) in the early/middle stage of storage(5-10 d)were significantly increased by 23.36%-46.25%,titratable acid(TA) and soluble sugar contents during the whole storage period were significantly increased by 93.95%-96.78% and 8.32%-11.21%,respectively,under the synergistic treatment of exogenous GSH and SNP in tomato fruits. Compared to control,the total an-tioxidant capacity of tomato fruits was significantly increased by 17.25%-53.82%,and the content of malondialdehyde (MDA),hydrogen peroxide (H2O2) and the production rate of superoxide anion(O[-2]·) in tomato fruits were significantly decreased by 49.28%-52.27%,34.71%-42.75% and 23.82%-53.60%,respectively,under the synergistic treatment of exo-genous GSH and SNP. The synergistic treatment of exogenous GSH and SNP also increased the activities of superoxide dismutase(SOD),catalase(CAT) and peroxidase(POD) in tomato fruits by 12.73%-143.80%,37.11%-95.24% and 20.73%-91.45%,and the contents of GSH,ascorbic acid(AsA) and NO in tomato fruits were significantly increased by 16.01%-44.63%,38.49%-39.73% and 48.56%-73.96%,respectively,compared with control. 【Conclusion】The synergistic treatment of exogenous GSH and SNP synergistic treatment can maintain fruit firmness,increase TSS,TA and soluble sugar content,improve SOD,CAT and POD activities,and GSH and AsA contents,maintain the balance of reactive oxygen species in fruit,reduce oxidative damage during storage,and thus enhance the storage tolerance of the tomato fruit.
Key words: tomato; reduced glutathione; sodium nitroprusside; antioxidant capacity; storage quality
Foundation items: Basic and Applied Basic Research Fund of Guangdong(2019A1515110138);Guangdong Natural Science Foundation(2019A1515012180);School-level Talents Project of Lingnan Normal University(ZL2032,ZL2021003)
0 引言
【研究意義】番茄(Solanum lycopersicum L.)屬茄科番茄屬一年生或多年生草本植物,富含維生素和礦物質(zhì),具有預(yù)防癌癥、降血壓和膽固醇、補(bǔ)血消炎、美容護(hù)膚等功效,能產(chǎn)生較高的經(jīng)濟(jì)效益(王玉鳳等,2009)。但番茄屬于呼吸躍變型果實(shí),采摘后易發(fā)生后熟,不完善的采后貯藏條件和技術(shù)也會(huì)加劇番茄的軟化、腐爛和變質(zhì),使其受到多種病菌侵染,生理品質(zhì)下降,從而逐漸失去商品價(jià)值,對(duì)經(jīng)濟(jì)造成巨大的損失(頡博杰等,2021)。因此,如何提高番茄的貯藏品質(zhì)成為亟需解決的重要問題?!厩叭搜芯窟M(jìn)展】已有研究表明,低溫貯藏、氣調(diào)貯藏、果品輻射保鮮、化學(xué)藥劑處理保鮮、涂膜保鮮和采后臭氧處理等均可在不同程度上對(duì)番茄果實(shí)起到貯藏保鮮的效果,但同時(shí)存在成本高、化學(xué)殘留和營(yíng)養(yǎng)成分流失等問題(Tsaniklidis et al.,2014;宋耀和張靜,2016;王素朋等,2020;劉楓等,2021;王玉佳和韓愛云,2021)。谷胱甘肽(Glutathione,GSH)是一種富含巰基的低分子肽,以還原型谷胱甘肽(Reduced glutathione,GSH)和氧化型谷胱甘肽(Oxidized glutathione,GSSG)2種形式存在于植物的細(xì)胞質(zhì)、線粒體和葉綠體(賈貞等,2009)。研究發(fā)現(xiàn),GSH處理采后鴨梨(林琳等,2006)、荔枝(莫億偉等,2010)和草莓(Ge et al.,2018)能提高果實(shí)的還原型抗壞血酸(AsA)和GSH含量,降低總酚含量、多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)活性,以降低果實(shí)內(nèi)活性氧(ROS)含量,提高果實(shí)的抗氧化能力,抑制病菌侵染,從而降低果實(shí)的腐爛率,增強(qiáng)其貯藏品質(zhì)。一氧化氮(NO)是一種有效延緩果蔬衰老的天然植物生長(zhǎng)調(diào)節(jié)劑,在延緩果實(shí)軟化及衰老中起著重要的作用(李順民等,2009) 。研究發(fā)現(xiàn),NO處理?xiàng)蠲罚罨⑶宓龋?010)和大五星枇杷(任艷芳等,2016)能提高果實(shí)內(nèi)超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)和過(guò)氧化氫酶(CAT)活性及丙二醛(MDA)含量,通過(guò)抑制膜脂過(guò)氧化加劇和提高果實(shí)的抗氧化能力,清除過(guò)量的ROS,從而有效緩解果實(shí)衰老,提高其貯藏品質(zhì)。硝普鈉(SNP,NO供體)處理也能通過(guò)降低茄子的花青素、總酚和AsA含量,維持其貯藏品質(zhì)(范林林等,2017) ?!颈狙芯壳腥朦c(diǎn)】GSH和NO單獨(dú)處理均能提高果實(shí)的貯藏品質(zhì)及抗氧化能力,但2種物質(zhì)協(xié)同處理對(duì)果實(shí)貯藏期間的作用鮮見相關(guān)報(bào)道?!緮M解決的關(guān)鍵問題】以千禧番茄成熟期果實(shí)為試材,用外源GSH和SNP(NO供體)對(duì)采后番茄果實(shí)進(jìn)行處理,通過(guò)研究不同處理對(duì)貯藏期番茄果實(shí)品質(zhì)、抗氧化酶活性及抗氧化物質(zhì)含量的影響,探討GSH與NO協(xié)同影響采后番茄的保鮮生理機(jī)制,為提高采后番茄果實(shí)耐貯性提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
以千禧番茄成熟期果實(shí)為試材,果實(shí)采摘自嶺南師范學(xué)院苗圃,將挑選好的果實(shí)使用0.05%次氯酸鈉溶液(有效氯≥10%)表面滅菌3 min后,采用流水清洗干凈用于試驗(yàn)。還原型谷胱甘肽(GSH)購(gòu)自Sigma公司,SNP購(gòu)自上海源葉生物科技有限公司,試驗(yàn)測(cè)定指標(biāo)所用試劑盒均購(gòu)自蘇州科銘生物技術(shù)有限公司。主要儀器設(shè)備:GY-4硬度計(jì)(山東萊恩德智能科技有限公司)、紫外可見分光光度計(jì)(UV-8453型,美國(guó)Agilent公司)和離心機(jī)(Centrifuge 5427 R型,德國(guó)Eppendorf公司)。
1. 2 試驗(yàn)方法
1. 2. 1 試驗(yàn)設(shè)計(jì) 試驗(yàn)設(shè)4個(gè)處理:(1)蒸餾水(對(duì)照,CK);(2)2 mmol/L GSH(GSH處理);(3)0.25 mmol/L SNP(SNP處理);(4)2 mmol/L GSH+0.25 mmol/L SNP(GSH+SNP處理)。GSH濃度通過(guò)前期試驗(yàn)篩選所得,SNP濃度參考任艷芳等(2021)的研究結(jié)果。將番茄果實(shí)隨機(jī)分成4組,按試驗(yàn)設(shè)計(jì)分別浸果處理5 min,取出自然晾干后放入鋪有多層軟紙的塑料盒中,于20 ℃下貯藏。每處理30個(gè)果實(shí),重復(fù)3次,分別于貯藏后第5、10和15 d取樣,用于相關(guān)指標(biāo)的測(cè)定。
1. 2. 2 果實(shí)硬度和失重率測(cè)定 使用GY-4硬度計(jì)測(cè)定番茄果實(shí)硬度。利用稱重法(李潔,2015)測(cè)定番茄果實(shí)重量,并使用差量法計(jì)算果實(shí)失重率。
1. 2. 3 可溶性固形物、可滴定酸和可溶性糖含量測(cè)定 可溶性固形物含量采用手持式糖量計(jì)測(cè)定;可滴定酸含量采用NaOH滴定法測(cè)定(Ren et al.,2017);可溶性糖含量采用蒽酮比色法于630 nm下進(jìn)行測(cè)定(曹建康等,2007)。
1. 2. 4 總酚和原果膠含量測(cè)定 總酚和原果膠含量測(cè)定根據(jù)試劑盒說(shuō)明書進(jìn)行操作,分別于760和530 nm比色測(cè)定吸光值。
1. 2. 5 總抗氧化能力測(cè)定 根據(jù)試劑盒說(shuō)明書進(jìn)行操作,于593 nm測(cè)定吸光值(周培祿等,2018) 。
1. 2. 6 MDA、過(guò)氧化氫(H2O2)含量和超氧陰離子(O[-2]·)產(chǎn)生速率測(cè)定 根據(jù)試劑盒說(shuō)明書進(jìn)行操作,MDA含量于532和600 nm測(cè)定吸光值,H2O2含量和O[-2]·產(chǎn)生速率分別于530和415 nm測(cè)定吸光值(Wang et al.,2017;董守坤等,2018)。
1. 2. 7 SOD、POD和CAT活性測(cè)定 根據(jù)試劑盒說(shuō)明書進(jìn)行操作,SOD和CAT分別于560和405 nm下記錄吸光值,POD于470 nm下記錄1和2 min吸光值(董守坤等,2018)。
1. 2. 8 AsA和GSH含量測(cè)定 AsA和GSH含量根據(jù)試劑盒說(shuō)明書分別于420和412 nm比色測(cè)定吸光值。
1. 2. 9 NO含量測(cè)定 根據(jù)試劑盒說(shuō)明書于550 nm波長(zhǎng)測(cè)定吸光值(Zhang et al.,2017)。
1. 3 統(tǒng)計(jì)分析
采用SPSS 19.0和Duncan’s法對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行處理,并利用Origin 2019b制圖。
2 結(jié)果與分析
2. 1 GSH和NO對(duì)番茄果實(shí)失重率和硬度的影響
由表1可知,與CK相比,外源GSH使番茄果實(shí)的失重率在10 d-5 d和15 d-10 d分別顯著降低48.57%和34.10%(P<0.05,下同),外源SNP處理使番茄果實(shí)的失重率在貯藏10 d-5 d顯著降低41.90%,外源GSH+SNP使番茄果實(shí)的失重率在10 d-5 d和15 d-10 d分別顯著降低52.86%和56.07%。由圖1可知,與CK相比,外源GSH使番茄果實(shí)的硬度在貯藏第10 d顯著增加19.66%,外源SNP使番茄果實(shí)硬度在貯藏第10和15 d分別顯著增加10.11%和9.12%,外源GSH+SNP使番茄果實(shí)硬度在整個(gè)貯藏期間顯著增加15.50%~20.22%。
2. 2 GSH和NO對(duì)番茄果實(shí)可溶性固形物、可滴定酸和可溶性糖含量的影響
由圖2可知,與CK相比,外源GSH使番茄果實(shí)的可溶性固形物、可滴定酸和可溶性糖含量在整個(gè)貯藏期間分別顯著增加19.23%~31.25%、64.32%~85.71%和5.00%~19.63%;外源SNP使番茄果實(shí)中可溶性固形物含量在貯藏第5和10 d分別顯著增加25.83%和23.36%,可滴定酸和可溶性糖含量在整個(gè)貯藏期間分別顯著增加19.78%~22.50%和8.21%~9.80%;外源GSH+SNP使番茄果實(shí)中可溶性固形物含量在貯藏第5和10 d分別顯著增加46.25%和23.36%,可滴定酸和可溶性糖含量在整個(gè)貯藏期間分別顯著增加93.95%~96.78%和8.32%~11.21%。與外源GSH處理相比,外源GSH+SNP使番茄果實(shí)中可滴定酸在貯藏第5 d顯著增加18.83%,可溶性糖含量在貯藏第15 d顯著增加5.91%。
2. 3 GSH和NO對(duì)番茄果實(shí)總酚和原果膠含量的影響
由圖3可知,與CK相比,外源GSH使番茄果實(shí)中的總酚和原果膠含量在整個(gè)貯藏期間分別顯著增加30.83%~44.63%和12.90%~23.67%;外源SNP使番茄果實(shí)中總酚含量在整個(gè)貯藏期間顯著增加25.51%~41.27%,原果膠含量在貯藏第5 d顯著增加14.60%;外源GSH+SNP使番茄果實(shí)中總酚和原果膠含量在整個(gè)貯藏期間分別顯著增加37.01%~104.39%和29.67%~39.34%。與外源GSH處理相比,外源GSH+SNP使番茄果實(shí)中總酚含量在貯藏第10和15 d分別顯著增加13.81%和41.31%,原果膠含量在整個(gè)貯藏期間顯著增加12.67%~18.59%。
2. 4 GSH和NO對(duì)番茄果實(shí)總抗氧化能力的影響
由圖4可知,與CK相比,外源GSH使番茄果實(shí)的總抗氧化能力在整個(gè)貯藏期間顯著提高8.44%~39.15%;外源SNP使番茄果實(shí)的總抗氧化能力在貯藏第5和15 d分別顯著提高10.91%和15.10%;外源GSH+SNP使番茄果實(shí)的總抗氧化能力在整個(gè)貯藏期間顯著提高17.25%~53.82%;與外源GSH處理相比,外源GSH+SNP使番茄果實(shí)的總抗氧化能力在整個(gè)貯藏期間顯著提高8.12%~10.55%。
2. 5 GSH和NO對(duì)番茄果實(shí)MDA、H2O2含量和O[-2]·產(chǎn)生速率的影響
由圖5可知,與CK相比,外源GSH使番茄果實(shí)中MDA、H2O2含量和O[-2]·產(chǎn)生速率在整個(gè)貯藏期間分別顯著降低38.69%~39.09%、20.35%~36.18%和12.83%~34.48%,外源SNP使其分別顯著降低29.09%~44.08%、13.81%~29.72%和14.03%~32.53%,外源GSH+SNP使其分別顯著降低49.28%~52.27%、34.71%~42.75%和23.82%~53.60%。與外源GSH處理相比,外源GSH+SNP使番茄果實(shí)中MDA含量在貯藏第10和15 d分別顯著降低21.63%和17.70%,H2O2含量在貯藏第5和15 d分別顯著降低18.04%和25.24%,O[-2]·產(chǎn)生速率在整個(gè)貯藏期間顯著降低12.60%~29.17%。
2. 6 GSH和NO對(duì)番茄果實(shí)SOD、POD和CAT活性的影響
由圖6可知,與CK相比,外源GSH使番茄果實(shí)中SOD和POD活性在整個(gè)貯藏期間分別顯著增加11.66%~85.16%和7.72%~59.94%,CAT活性在貯藏第15 d顯著增加27.08%;外源SNP使番茄果實(shí)中SOD、CAT和POD活性在整個(gè)貯藏期間分別顯著增加10.35%~67.39%、10.74%~54.18%和5.06%~54.86%;外源GSH+SNP使番茄果實(shí)中SOD、CAT和POD活性在整個(gè)貯藏期間分別顯著增加12.73%~143.80%、37.11%~95.24%和20.73%~91.45%。與外源GSH處理相比,外源GSH+SNP使番茄果實(shí)中SOD活性在貯藏第10和15 d分別顯著增加32.51%和31.67%,CAT和POD活性在整個(gè)貯藏期間分別顯著增加50.37%~98.43%和12.08%~24.43%。
2. 7 GSH和NO對(duì)番茄果實(shí)AsA和GSH含量的影響
由圖7可知,與CK相比,外源GSH使番茄果實(shí)中AsA和GSH含量在整個(gè)貯藏期間分別顯著增加14.49%~35.04%和21.27%~31.55%,外源SNP使其分別顯著增加4.95%~33.15%和17.54%~21.16%,外源GSH+SNP使其分別顯著增加16.01%~44.63%和38.49%~39.73%。與外源GSH處理相比,外源GSH+SNP使番茄果實(shí)中AsA和GSH含量在整個(gè)貯藏期間分別顯著增加1.33%~7.11%和1.42%~7.19%。
2. 8 GSH和NO對(duì)番茄果實(shí)NO含量的影響
由圖8可知,與CK相比,外源GSH使番茄果實(shí)的NO含量在貯藏第5 d顯著增加18.49%;外源SNP使番茄果實(shí)的NO含量在整個(gè)貯藏期間顯著增加35.55%~37.21%;外源GSH+SNP使番茄果實(shí)的NO含量在整個(gè)貯藏期間顯著增加48.56%~73.96%。與外源GSH處理相比,外源GSH+SNP使番茄果實(shí)的NO含量在整個(gè)貯藏期間顯著增加25.38%~77.76%。
3 討論
果實(shí)硬度與細(xì)胞壁強(qiáng)度和組織的膨壓有關(guān),是評(píng)定果實(shí)貯藏品質(zhì)的物理標(biāo)準(zhǔn)之一(Duran et al.,2016;刁倩楠等,2019)。果實(shí)硬度由果肉細(xì)胞壁完整程度決定,果肉細(xì)胞壁的主要物質(zhì)是果膠和纖維素,果膠降解和酶活性直接影響果實(shí)硬度(羅靜等,2018)。本研究中,外源GSH單獨(dú)處理和GSH+SNP協(xié)同處理使番茄果實(shí)失重率降低、原果膠含量在整個(gè)貯藏期間顯著增加,外源GSH和SNP單獨(dú)處理或協(xié)同處理均能使番茄果實(shí)硬度在不同程度上增加,說(shuō)明GSH和SNP單獨(dú)處理能通過(guò)降低番茄果實(shí)水分損失和增加原果膠含量來(lái)增加果實(shí)硬度,與石玲等(2019)研究得出NO能使甜瓜采后果實(shí)維持較高的硬度和原果膠含量來(lái)延緩細(xì)胞壁代謝,從而提高貯藏品質(zhì)的結(jié)論一致。GSH與SNP協(xié)同處理對(duì)番茄果實(shí)軟化的抑制作用能達(dá)到最佳。但有關(guān)GSH與SNP協(xié)同抑制番茄果實(shí)軟化的機(jī)理還需進(jìn)一步研究。
可溶性固形物含量是衡量果實(shí)成熟度和內(nèi)在品質(zhì)的重要指標(biāo)(Wang and Zhu,2017)??傻味ㄋ岷颗c水果中有機(jī)酸濃度直接相關(guān)??扇苄蕴鞘怯绊憻釒麪I(yíng)養(yǎng)價(jià)值、風(fēng)味和甜度的主要成分。本研究中,單獨(dú)使用外源GSH和SNP處理能使番茄果實(shí)的可溶性固形物、可滴定酸和可溶性糖含量在一定程度上增加,而GSH+SNP協(xié)同處理較GSH單獨(dú)處理進(jìn)一步增加貯藏前期番茄果實(shí)中的可滴定酸含量和貯藏后期的可溶性糖含量。前人研究結(jié)果也表明,GSH和SNP處理可延緩獼猴桃和蘋果果實(shí)可溶性固形物、可滴定酸和可溶性糖含量下降,一定程度上抑制在貯藏過(guò)程中果實(shí)品質(zhì)的劣變(張曉平等,2007;Xu et al.,2019)。由此說(shuō)明,外源GSH與SNP協(xié)同處理番茄果實(shí)能通過(guò)增加可溶性固形物、可滴定酸和可溶性糖含量,來(lái)保持貯藏期的果實(shí)品質(zhì)。
果實(shí)在成熟和衰老過(guò)程中不斷產(chǎn)生ROS,破壞細(xì)胞膜結(jié)構(gòu)和功能的完整性,導(dǎo)致膜脂過(guò)氧化,引發(fā)一系列反應(yīng),使得細(xì)胞完整性喪失和MDA含量增加。因此,MDA通常被視為水果成熟的一個(gè)指標(biāo)(Gill and Tuteja,2010;Chen et al.,2015) 。ROS(O[-2]·、H2O2和·OH)會(huì)導(dǎo)致植物細(xì)胞氧化損傷,植物衰老(Xia et al.,2016) 。在本研究中,單獨(dú)使用外源GSH和SNP能使番茄果實(shí)的總抗氧化能力增強(qiáng),MDA、H2O2含量和O[-2]·產(chǎn)生速率降低,而GSH+SNP協(xié)同處理使番茄果實(shí)的總抗氧化能力在整個(gè)貯藏期間提升幅度最大,MDA、H2O2含量和O[-2]·產(chǎn)生速率在貯藏期間不同程度地顯著降低。前人研究發(fā)現(xiàn),NO處理或GSH處理均能延緩黃瓜幼苗的O[-2]·產(chǎn)生速率和H2O2含量,降低MDA含量(楊志峰等,2020)。GSH與SNP協(xié)同處理進(jìn)一步降低細(xì)胞膜的膜脂過(guò)氧化程度,提高番茄的抗氧化能力,防止果實(shí)發(fā)生氧化損傷。
植物有復(fù)雜的抗氧化系統(tǒng)來(lái)應(yīng)對(duì)ROS,包括酶促系統(tǒng)(如SOD、CAT和POD)和非酶促系統(tǒng)(如AsA和GSH)(Gill and Tuteja,2010)。當(dāng)植物中的ROS增加時(shí),連鎖反應(yīng)被激發(fā)以防止細(xì)胞損傷:SOD催化超氧自由基生成O2和H2O2,生成的H2O2被CAT分解成水和氧氣(Yi et al.,2010)。POD和CAT是果實(shí)中清除H2O2的主要保護(hù)酶。POD具有多種生理效應(yīng),在H2O2存在下,其可催化多種底物的氧化,如GSH、AsA和酚類,從而降低內(nèi)源ROS清除劑的含量。SOD、CAT和POD協(xié)同作用能維持果實(shí)中較低水平的ROS,降低自由基毒性,以延緩果實(shí)衰老,延長(zhǎng)果實(shí)貯藏期(Gill and Tuteja,2010)。在本研究中,單獨(dú)使用外源GSH和SNP能使番茄果實(shí)的SOD、CAT和POD活性在不同程度上升高,而GSH+SNP協(xié)同處理升高的趨勢(shì)更顯著。前人研究表明,外源GSH和SNP單獨(dú)處理分別不同程度提高荔枝和樹莓的抗氧化能力(莫億偉等,2010;王俊文,2020);楊志峰等(2020)研究發(fā)現(xiàn),SNP與GSH協(xié)同處理能顯著增強(qiáng)黃瓜幼苗SOD、POD和CAT活性以抵抗低溫脅迫。說(shuō)明GSH與SNP協(xié)同處理能進(jìn)一步提高番茄果實(shí)中的SOD、CAT和POD活性,從而增強(qiáng)果實(shí)的抗氧化能力,維持果實(shí)貯藏期間的品質(zhì)。
番茄果實(shí)采后的一些生理生化指標(biāo)[抗氧化物質(zhì)(GSH、AsA和總酚)和信號(hào)轉(zhuǎn)導(dǎo)物質(zhì)(NO水平)]會(huì)隨著采后貯藏時(shí)間的推移而不斷變化,逐漸使番茄失去其自身的商品價(jià)值及食用價(jià)值(徐福樂,2010)??偡邮枪麑?shí)中的重要色素物質(zhì),具有較強(qiáng)的抗氧化功能。AsA含量是衡量采后果實(shí)品質(zhì)的重要指標(biāo)之一。GSH和AsA是2種重要的非酶促抗氧化物質(zhì),能在AsA-GSH循環(huán)系統(tǒng)中協(xié)同清除ROS(任小林等,2004)。NO作為一種植物信號(hào)分子,可通過(guò)抑制植物組織中乙烯的生成及其效應(yīng)來(lái)延長(zhǎng)果實(shí)的貯藏期,并改善果實(shí)采后貯藏品質(zhì)(Ren et al.,2017)。在本研究中,外源SNP單獨(dú)處理能顯著提高番茄果實(shí)的總酚含量,與劉娜(2013)研究得出NO溶液處理通過(guò)提高采后肥城桃果實(shí)的總酚、類黃酮和木質(zhì)素含量來(lái)提高果實(shí)貯藏期間抗病性的結(jié)論一致。外源GSH單獨(dú)處理與GSH+SNP協(xié)同處理在不同程度上促進(jìn)番茄果實(shí)中AsA含量的積累,GSH和SNP分別單獨(dú)處理亦能在不同程度上加快番茄果實(shí)中GSH的合成,與林琳等(2006)研究得出GSH處理能增強(qiáng)鴨梨果實(shí)抗氧化能力的結(jié)論一致。在采后貯藏期間,外源GSH和SNP分別單獨(dú)處理能不同程度地加快番茄果實(shí)中NO的積累以延緩果實(shí)衰老,且GSH與SNP協(xié)同處理效果最佳,與Leshem等(1998)研究得出內(nèi)源NO含量的增多能延緩果實(shí)成熟和衰老的結(jié)論一致。由此可知,外源GSH與SNP協(xié)同處理番茄果實(shí)能顯著抑制果實(shí)GSH和AsA含量下降,提高果實(shí)的抗氧化能力,亦可通過(guò)促進(jìn)果實(shí)中NO合成,加快果實(shí)中氧化還原信號(hào)轉(zhuǎn)導(dǎo),從而提高果實(shí)的貯藏品質(zhì)。
4 結(jié)論
外源GSH與SNP協(xié)同處理通過(guò)降低果實(shí)失重率和提高細(xì)胞壁原果膠含量,抑制果實(shí)軟化,延緩果實(shí)可溶性固形物、可滴定酸和可溶性糖含量下降,一定程度上抑制在貯藏過(guò)程中果實(shí)品質(zhì)的劣變;亦可通過(guò)降低細(xì)胞膜的膜脂過(guò)氧化程度,提高番茄果實(shí)中SOD、CAT和POD活性,有效清除果實(shí)中的ROS,防止果實(shí)發(fā)生氧化損傷;還能通過(guò)抑制果實(shí)GSH和AsA含量下降,增強(qiáng)果實(shí)的抗氧化能力,同時(shí)促進(jìn)果實(shí)中NO的合成,加快果實(shí)中氧化還原信號(hào)轉(zhuǎn)導(dǎo),以提高果實(shí)耐貯性。
參考文獻(xiàn):
曹建康,姜微波,趙玉梅. 2007. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo)[M] . 北京:中國(guó)輕工業(yè)出版社. [Cao J K,Jiang W B,Zhao Y M. 2007. Guidance of physiological and biochemical experiments after fruit and vegetable harvesting[M]. Beijing:China Light Industry Press.]
刁倩楠,田守波,陳幼源,熊浩楠,張永平. 2019. 甜瓜幼苗葉片內(nèi)源一氧化氮和蔗糖代謝對(duì)低溫脅迫的響應(yīng)[J]. 西北植物學(xué)報(bào),39(3):498-505. [Diao Q N,Tian S B,Chen Y Y,Xiong H N,Zhang Y P. 2019. Response of endogenous nitric oxide and sucrose metabolizing to chi-lling stress in melon seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica,39(3):498-505.] doi:10.7606/j.issn. 1000-4025.2019.03.0498.
董守坤,馬玉玲,李爽,董娜,劉麗君. 2018. 干旱脅迫及復(fù)水對(duì)大豆抗壞血酸—谷胱甘肽循環(huán)的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),49(1):10-18. [Dong S K,Ma Y L,Li S,Dong N,Liu L J. 2018. Effect of drought stress and re-watering on ascorbate-glutathione cycle of soybean[J]. Journal of Northeast Agricultural University,49(1):10-18.] doi:10.19720/j.cnki.issn.1005-9369.2018.01.002.
范林林,王清,左進(jìn)華,高麗樸,史君彥,王倩. 2017. 外源NO處理對(duì)茄子貯藏品質(zhì)的影響[J]. 中國(guó)食品學(xué)報(bào),17(1):186-192. [Fan L L,Wang Q,Zuo J H,Gao L P,Shi J Y,Wang Q. 2017. The effect of exogenous NO treatment on eggplant quality during storage[J]. Journal of Chinese Institute of Food Science and Technology,17(1):186-192.] doi:10.16429/j.1009-7848.2017.01.024.
賈貞,王丹,游松. 2009. 谷胱甘肽的研究進(jìn)展[J]. 沈陽(yáng)藥科大學(xué)學(xué)報(bào),26(3):238-242. [Jia Z,Wang D,You S. 2009. Progress on glutathione and its preparation[J]. Journal of Shenyang Pharmaceutical University,26(3):238-242.] doi:10.14066/j.cnki.cn21-1349/r.2009.0301.
李潔. 2015. 外源NO和乙烯處理對(duì)番茄采后品質(zhì)及乙烯合成相關(guān)基因表達(dá)的影響[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué). [Li J. 2015. The effect of exogenous NO and ethylene on quality and ethylene related synthesis genes expression of postharvest potato[D]. Urumqi:Xinjiang Agricultural University.]
李順民,明建,曾凱芳. 2009. 一氧化氮對(duì)果蔬采后成熟衰老及抗病性的影響[J]. 食品工業(yè)科技,30(10):330-332. [Li S M,Ming J,Zeng K F. 2009. Effect of nitric oxide on postharvest maturation and disease resistance of fruit and vegetable[J]. Science and Technology of Food Industry,30(10):330-332.] doi:10.13386/j.issn1002-0306. 2009.10.032.
林琳,姜微波,曹健康,王寶剛,趙玉梅. 2006. 谷胱甘肽處理對(duì)采后鴨梨果實(shí)黑心病和抗氧化代謝的影響[J]. 農(nóng)產(chǎn)品加工(學(xué)刊),(8):4-7. [Lin L,Jiang W B,Cao J K,Wang B G,Zhao Y M. 2006. Effects of postharvest GSH treatment on core browning and antioxidant metabolism in Yali pear fruit[J]. Academic Periodical of Farm Pro-ducts,(8):4-7.] doi:10.3969/j.issn.1671-9646-B.2006. 08.001.
劉楓,張新憲,高振峰,陳園園,張曉宇. 2021. 番茄采后自發(fā)氣調(diào)貯藏技術(shù)[J]. 科學(xué)技術(shù)與工程,21(12):4870-4874. [Liu F,Zhang X X,Gao Z F,Chen Y Y,Zhang X Y. 2021. Modified atmosphere storage technology of tomato after harvest[J]. Science Technology and Engineering,21(12):4870-4874.] doi:10.3969/j.issn.1671-1815.2021. 12.017.
劉娜. 2013. 外源NO誘導(dǎo)采后肥城桃果實(shí)抗褐腐病的效果及機(jī)理研究[D]. 泰安:山東農(nóng)業(yè)大學(xué). [Liu N. 2013. Effect and mechanisms of exogenous nitric oxide on di-sease resistance against Monilinia fracticola in postharvest ‘Feicheng’ peach fruit[D]. Tai’an:Shandong Agricultural University.]
羅靜,郭琳琳,黃玉南,王超,喬成奎,謝漢忠,方金豹. 2018. 獼猴桃PG基因在果實(shí)貯藏過(guò)程中的表達(dá)及其與硬度的關(guān)系[J]. 園藝學(xué)報(bào),45(5):865-874. [Luo J,Guo L L,Huang Y N,Wang C,Qiao C K,Xie H Z,F(xiàn)ang J B. 2018. Relationship between PG gene expression and fruit firmness during kiwifruit storage[J]. Acta Horticulturae Sinica,45(5):865-874. doi:10.16420/j.issn.0513-353x. 2017-0580.
莫億偉,鄭吉祥,李偉才,牛鐵荃,謝江輝. 2010. 外源抗壞血酸和谷胱甘肽對(duì)荔枝保鮮效果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),26(3):363-368. [Mo Y W,Zheng J X,Li W C,Niu T Q,Xie J H. 2010. Effects of ascorbic acid and gluta-thione treatments on litchi fruits during post harvest sto-rage[J]. Transactions of the Chinese Society of Agricultural Engineering,26(3):363-368.] doi:10.3969/j.issn.1002-6819.2010.03.061.
任小林,張少穎,于建娜. 2004. 一氧化氮與植物成熟衰老的關(guān)系[J]. 西北植物學(xué)報(bào),24(1):167-171. [Ren X L,Zhang S Y,Yu J N. 2004. Nitric oxide and its role in maturation and senescence in plant[J]. Acta Botanica Boreali-Occidentalia Sinica,24(1):167-171.] doi:10.3321/j.issn:1000-4025.2004.01.030.
任艷芳,何俊瑜,劉冬,劉進(jìn)平. 2016. 一氧化氮對(duì)“大五星”枇杷貯藏期間果實(shí)抗氧化酶的影響[J]. 北方園藝,(3):121-124. [Ren Y F,He J Y,Liu D,Liu J P. 2016. Effect of nitric oxide on antioxidant enzymes of ‘Dawuxing’ loquat during storage[J]. Northern Horticulture,(3):121-124.] doi:10.11937/bfyy.201603034.
任艷芳,薛宇豪,田丹,何俊瑜,張黎明,吳情,劉樹. 2021. 水楊酸和硝普鈉協(xié)同處理對(duì)芒果貯藏品質(zhì)及抗氧化活性的影響[J]. 食品科學(xué),42(9):151-159. [Ren Y F,Xue Y H,Tian D,He J Y,Zhang L M,Wu Q,Liu S. 2021. Synergistic effect of salicylic acid and nitric oxide treatment on quality and antioxidant activity in postharvest mango fruit[J]. Food Science,42(9):151-159.] doi:10.7506/spkx1002-6630-20200507-065.
石玲,吳斌,敬媛媛,李亞玲,李玲,何歡,廖?;?,朱璇. 2019. 一氧化氮熏蒸處理對(duì)甜瓜采后細(xì)胞壁代謝及黑斑病控制的影響[J]. 食品科學(xué),40(23):239-245. [Shi L,Wu B,Jing Y Y,Li Y L,Li L,He H,Liao H H,Zhu X. 2019. Effects of nitric oxide fumigation on cell wall metabolism and black spot control of postharvest melon[J]. Food Science,40(23):239-245.] doi:10.7506/spkx1002-6630-20181201-006.
宋耀,張靜. 2016. 櫻桃番茄采后貯藏保鮮技術(shù)研究進(jìn)展[J]. 保鮮與加工,16(5):116-120. [Song Y,Zhang J. 2016. Research progress on storage technology of postharvest cherry tomato[J]. Storage and Process,16(5):116-120.] doi:10.3969/j.issn.1009-6221.2016.05.025.
王俊文. 2020. NO對(duì)采后樹莓貯藏品質(zhì)及苯丙烷和花青素代謝的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué). [Wang J W. 2020. Effects of NO on the quality and the metabolism of phenylpropane and anthocyanin in raspberries during storage[D]. Tai’an:Shandong Agricultural University.]
王素朋,馬利華,趙功偉. 2020. 超聲波輔助涂膜保鮮對(duì)番茄貯藏品質(zhì)的影響[J]. 食品科技,45(8):44-50. [Wang S P,Ma L H,Zhao G W. 2020. Effect of ultrasonic assisted film preservation on storage quality of tomato[J]. Food Science and Technology,45(8):44-50.] doi:10.13684/j.cnki.spkj.2020.08.009.
王玉鳳,徐暄,孫其文. 2009. 硒浸種對(duì)番茄種子萌發(fā)的影響[J]. 湖北農(nóng)業(yè)科學(xué),48(10):2461-2463. [Wang Y F,Xu X,Sun Q W. 2009. The effect of selenium on seed germination of Lycopersicon esculentum[J]. Hubei Agricultu-ral Sciences,48(10):2461-2463.] doi:10.14088/j.cnki.issn0439-8114.2009.10.059.
王玉佳,韓愛云. 2021. 番茄的保鮮技術(shù)與方法[J]. 農(nóng)產(chǎn)品加工,(2):40-42. [Wang Y J,Han A Y. 2021. Technology and method of tomato preservation[J]. Farm Products Processing,(2):40-42.] doi:10.16693/j.cnki.1671-9646(X).2021.01.045.
頡博杰,劉曉奇,張洋,張丹,呂劍,胡琳莉,郁繼華,肖雪梅. 2021. 番茄果實(shí)采后貯藏期風(fēng)味品質(zhì)的動(dòng)態(tài)變化[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),56(1):96-101. [Xie B J,Liu X Q,Zhang Y,Zhang D,Lü J,Hu L L,Yu J H,Xiao X M. 2021. Dynamic changes of flavor quality of tomato fruits in postharvest storage period[J]. Journal of Gansu Agricultural University,56(1):96-101.] doi:10.13432/j.cnki.jgsau.2021.01.013.
徐福樂. 2010. 外源一氧化氮熏蒸對(duì)番茄果實(shí)采后品質(zhì)的影響[J]. 福建農(nóng)業(yè)學(xué)報(bào),25(1):72-76. [Xu F L. 2010. Effect of NO fumigation on quality of post-harvest tomatoes[J]. Fujian Journal of Agricultural Sciences,25(1):72-76.] doi:10.19303/j.issn.1008-0384.2010.01.014.
楊虎清,吳峰華,周存山,王允祥. 2010. NO對(duì)楊梅采后活性氧代謝和腐爛的影響[J]. 林業(yè)科學(xué),46(12):70-74. [Yang H Q,Wu F H,Zhou C S,Wang Y X. 2010. Effects of nitric oxide on active oxygen metabolism and fruit decay in postharvest Chinese Bayberry[J]. Scientia Silvae Sinicae,46(12):70-74.]
楊志峰,王小宇,崔金霞,劉慧英,張文博,吳佩. 2020. 低溫脅迫下外源NO與GSH協(xié)同作用提高黃瓜幼苗耐冷性[J]. 植物生理學(xué)報(bào),56(7):1573-1582. [Yang Z F,Wang X Y,Cui J X,Liu H Y,Zhang W B,Wu P. 2020. Synergistic effect of exogenous NO and GSH under chilling stress to improve cold tolerance of cucumber seedlings[J]. Plant Physiology Journal,56(7):1573-1582.] doi:10.13592/j.cnki.ppj.2020.0036.
張曉平,任小林,任亞梅,王小會(huì),孫芳娟,白景祥. 2007. NO處理對(duì)采后獼猴桃貯藏性及葉綠素含量的影響[J]. 食品研究與開發(fā),28(1):145-148. [Zhang X P,Ren X L,Ren Y M,Wang X H,Sun F J,Bai J X. 2007. Effects of nitric oxide treatment on storage ability and chlorophyll content of postharvest kiwifruit[J]. Food Research and Development,28(1):145-148.] doi:10.3969/j.issn.1005-6521.2007.01.044.
周培祿,劉光亮,王樹聲,李琦瑤,許娜,王程棟,楊銀菊,曾文龍,陳愛國(guó). 2018. 低溫脅迫下煙苗多酚代謝及其抗氧化能力分析[J]. 中國(guó)煙草科學(xué),39(5):33-39. [Zhou P L,Liu G L,Wang S S,Li Q Y,Xu N,Wang C D,Yang Y J,Zeng W L,Chen A G. 2018. Analysis of polyphenol metabolism and antioxidant capacity of tobacco seedlings under cold stress[J]. Chinese Tobacco Science,39(5):33-39.] doi:10.13496/j.issn.1007-5119.2018.05.005.
Chen H J,Gao H Y,F(xiàn)ang X J,Ye L,Zhou Y J,Yang H L. 2015. Effects of allyl isothiocyanate treatment on postharvest quality and the activities of antioxidant enzymes of mulberry fruit[J]. Postharvest Biology and Technology,108:61-67. doi:10.1016/j.postharvbio.2015.05.011.
Duran M,Aday M S,Zorba N N D,Temizkan R,Büyükcan M B,Caner C. 2016. Potential of antimicrobial active packaging ‘containing natamycin,nisin,pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry[J]. Food and Bioproducts Processing,98:354-363. doi:10.1016/j.fbp.2016.01.007.
Ge C,Lou Y,Mo F,Xiao Y H,Li N Y,Tang H R. 2018. Effects of glutathione on the ripening quality of strawberry fruits[J]. AIP Conference Proceedings,2079(1):020013. doi:10.1063/1.5092391.
Gill S S,Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,48(12):909-930. doi:10.1016/j.plaphy.2010.08.016.
Leshem Y Y,Wills R B H,Veng-Va Ku V. 1998. Evidence for the function of the free radical gas—nitric oxide (NO·)—as an endogenous maturation and senescence regulating factor in higher plant[J]. Plant Physiology and Biochemistry,36(11):825-833. doi:10.1016/S0981-9428(99)80020-5.
Ren Y F,He J Y,Liu H Y,Liu G Q,Ren X L. 2017. Nitric oxide alleviates deterioration and preserves antioxidant properties in ‘Tainong’ mango fruit during ripening[J]. Horticulture,Environment and Biotechnology,58(1):27-37. doi:10.1007/s13580-017-0001-z.
Tsaniklidis G,Delis C,Nikoloudakis N,Katinakis P,Aivalakis G. 2014. Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits[J]. Plant Physiology and Biochemistry,84(5):149-157. doi:10.1016/j.plaphy. 2014.09.009.
Wang B,Guo X,Zhao P J,Ruan M B,Yu X L,Zuo L P,Yang Y L,Li X,Deng D L,Xiao J X,Xiao Y W,Hu C J,Wang X,Wang X L,Wang W Q,Peng M. 2017. Molecular diversity analysis,drought related marker-traits association mapping and discovery of excellent alleles for 100-day old plants by EST-SSRS in cassava germplasms(Manihot esculenta Cranz)[J]. PLoS One,12(5):e0177456. doi:10.1371/journal.pone.0177456.
Wang B,Zhu S J. 2017. Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers[J]. Postharvest Biology and Technology,129:1-8. doi:10.1016/j.postharvbio.2017.03.001.
Xia Y X,Chen T,Qin G Z,Li B Q,Tian S P. 2016. Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit[J]. Postharvest Biology and Technology,111:15-24. doi:10.1016/j.postharvbio.2015.07.026.
Xu J N,Qi Y M,Zhang J,Liu M M,Wei X Y,F(xiàn)an M T. 2019. Effect of reduced glutathione on the quality characteristics of apple wine during alcoholic fermentation[J]. Food Chemistry,300(1):125130. doi:10.1016/j.foodchem.2019.125130.
Yi C,Jiang Y M,Shi J,Xia H X,Xue S,Duan X W,Shi J Y,Prasad N K. 2010. ATP-regulation of antioxidant properties and phenolics in litchi fruit during browning and pathogen infection process[J]. Food Chemistry,118(1):42-47. doi:10.1016/j.foodchem.2009.04.074.
Zhang H,Liu X L,Zhang R X,Yuan H Y,Wang M M,Yang H Y,Ma H Y,Liu D,Jiang C J,Liang Z W. 2017. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice(Oryza sativa L.)[J]. Frontiers in Plant Science,8:1580. doi:10.3389/FPLS.2017.01580.
(責(zé)任編輯 羅 麗)
南方農(nóng)業(yè)學(xué)報(bào)2022年1期