李佳明, 韓雅琪, 吳桐, 張?zhí)熨n, 董賢慧
鐵死亡脂質(zhì)過氧化機(jī)制及其與阿爾茨海默病的聯(lián)系*
李佳明, 韓雅琪, 吳桐, 張?zhí)熨n, 董賢慧△
(河北中醫(yī)學(xué)院,河北省心腦血管病中醫(yī)藥防治研究重點(diǎn)實(shí)驗(yàn)室,河北 石家莊 050091)
鐵死亡;脂質(zhì)過氧化;阿爾茨海默??;多不飽和脂肪酸
阿爾茨海默?。ˋlzheimer disease, AD)是多發(fā)于65歲及以上老年人群的中樞神經(jīng)系統(tǒng)退行性疾病,臨床表現(xiàn)以記憶、語言及其他認(rèn)知能力衰退為主,主要病理特征為以β-淀粉樣蛋白(amyloid β-protein, Aβ)為核心成分的老年斑及tau蛋白過度磷酸化引起的神經(jīng)原纖維纏結(jié)。在日益增強(qiáng)的老齡化趨勢下,由于AD發(fā)病機(jī)制尚不明確,臨床缺乏經(jīng)濟(jì)有效的治療方法,AD正為患者及社會醫(yī)療保障領(lǐng)域帶來沉重負(fù)擔(dān)。以脂質(zhì)過氧化為特征的鐵依賴性細(xì)胞死亡方式鐵死亡(ferroptosis)在近期被認(rèn)為可能參與AD病變過程[1]。已有部分研究證實(shí)AD腦中出現(xiàn)鐵死亡關(guān)鍵蛋白表達(dá)上調(diào),脂質(zhì)過氧化物含量升高,且鐵死亡抑制劑對AD病變有抑制作用。在鐵死亡過程中,以多不飽和脂肪酸(polyunsaturated fatty acid, PUFA)為主要底物的脂質(zhì)過氧化現(xiàn)象是細(xì)胞損傷及死亡過程的重要參與者,且該現(xiàn)象與AD腦功能障礙存在聯(lián)系。本文將綜述鐵死亡脂質(zhì)過氧化過程與部分調(diào)控信號軸,并整理該過程與AD特征性病理過程的關(guān)系。
氧化還原穩(wěn)態(tài)失衡是多種病理現(xiàn)象發(fā)生的重要機(jī)制。生理狀態(tài)下,氧化與抗氧化過程呈動態(tài)平衡狀態(tài),維持體內(nèi)功能正常運(yùn)作。一旦平衡遭到破壞,抗氧化能力下降或氧化過程加劇,極易引發(fā)過氧化連鎖反應(yīng)并導(dǎo)致活性氧積累,造成胞內(nèi)脂質(zhì)、蛋白質(zhì)及核酸等成分被氧化破壞,嚴(yán)重影響細(xì)胞結(jié)構(gòu)及功能。2012年,Dixon等[2]在前人研究成果的基礎(chǔ)上,將一種顯著區(qū)別于細(xì)胞凋亡、焦亡、自噬及壞死并能被鐵螯合劑所抑制的調(diào)節(jié)性細(xì)胞死亡方式命名為鐵死亡。鐵死亡形態(tài)學(xué)特征主要表現(xiàn)為線粒體體積縮小、膜密度增高、嵴顯著減少及細(xì)胞膜破裂;生化特征為鐵代謝異常、谷胱甘肽代謝紊亂、活性氧累積及脂質(zhì)過氧化,其中脂質(zhì)過氧化是鐵死亡復(fù)雜機(jī)制網(wǎng)絡(luò)中的關(guān)鍵一環(huán)。鐵死亡中的脂質(zhì)過氧化是細(xì)胞內(nèi)脂質(zhì)在過氧化酶或自由基作用下失去氫原子,導(dǎo)致碳鏈氧化、斷裂及縮短,脂質(zhì)自由基、脂質(zhì)氫過氧化物及丙二醛(malondialdehyde, MDA)、4-羥基壬烯醛(4-hydroxy-2-nonenal, 4-HNE)等過氧化中間產(chǎn)物生成,最終使脂質(zhì)氧化降解,破壞細(xì)胞膜脂質(zhì)雙分子層結(jié)構(gòu)的過程[3]。該過程可大致分為含PUFA的磷脂底物合成、自由基引發(fā)的過氧化和酶誘導(dǎo)的過氧化3個(gè)部分,其中后二者可平行進(jìn)行,生成磷脂氫過氧化物,引發(fā)鐵死亡。
1.1 底物合成過程 在鐵死亡過程中,脂質(zhì)過氧化多在富含磷脂的膜結(jié)構(gòu)中進(jìn)行。參與膜磷脂合成的PUFA因其含有多個(gè)碳-碳雙鍵及較為脆弱的碳-氫鍵而對過氧化過程尤為敏感,其能在長鏈脂酰輔酶A合成酶4(acyl-CoA synthetase long-chain family member 4, ACSL4)參與下,生成PUFA-CoA,并由溶血磷脂?;D(zhuǎn)移酶3(lysophospholipid acyltransferase 3, LPCAT3)酯化后并入膜磷脂,形成鐵死亡脂質(zhì)過氧化底物PUFA-PL,開啟下游過氧化反應(yīng)。
上述過程中,ACSL4已被確認(rèn)為鐵死亡標(biāo)志物[4]。有關(guān)ACSL4的研究顯示,在多種PUFA中,已探明其對花生四烯酸(arachidonic acid, AA)及腎上腺素酸(adrenic acid, AdA)作用尤為顯著,其與膜磷脂中的磷脂酰乙醇胺(phosphatidylethanolamine, PE)結(jié)合后將作為酶促過氧化過程的特異性底物(AA/AdA-PE)[5]。ACSL4對不同種類PUFA的作用是否具有選擇性目前尚無定論。
1.2 自由基介導(dǎo)的過氧化過程 由大量自由基引發(fā)的PUFA-PL過氧化級聯(lián)反應(yīng)可分為始動、傳播和終止三個(gè)階段。始動階段,胞內(nèi)未以鐵蛋白或鐵硫簇形式儲存的不穩(wěn)定鐵與過氧化氫發(fā)生芬頓反應(yīng)(Fenton reaction)和哈伯-韋斯反應(yīng)(Haber-Weiss reaction),形成以氧為中心的羥基自由基與過氧自由基。傳播階段,上述自由基攻擊PUFA-PL,使其脫去一個(gè)氫原子,形成磷脂自由基(PL·);該自由基與氧發(fā)生反應(yīng),生成磷脂過氧自由基(PLOO·);PLOO·與PUFA-PL中的另一個(gè)氫原子結(jié)合,生成磷脂氫過氧化物(PUFA-PL-OOH)與另一個(gè)PL·,引發(fā)過氧化循環(huán)。終止階段,在抗氧化系統(tǒng)失常背景下,過氧化底物被耗盡,級聯(lián)反應(yīng)終止,并造成脂質(zhì)體膜氧化破損及泄漏,嚴(yán)重?fù)p傷細(xì)胞膜[6]。
除終產(chǎn)物外,上述級聯(lián)反應(yīng)過程中還可形成大量碳?xì)浠衔?、醇類及醛類中間產(chǎn)物。其中活性醛MDA及4-HNE具有細(xì)胞毒性,能異常修飾胞內(nèi)磷脂、蛋白質(zhì)及核酸構(gòu)象,使細(xì)胞多項(xiàng)功能受損[7]。
1.3 酶介導(dǎo)的過氧化過程 脂氧合酶(lipoxygenases, LOXs)家族是開啟鐵死亡中酶促脂質(zhì)過氧化過程的關(guān)鍵,其中15-LOX能與磷脂酰乙醇胺結(jié)合蛋白1(phosphatidyl ethanolamine-binding protein 1, PEBP1)結(jié)合,特異性將膜上的AA/AdA-PE氧化為AA/AdA-PE-OOH,引發(fā)鐵死亡。
除LOXs外,位于內(nèi)質(zhì)網(wǎng)的細(xì)胞色素P450還原酶(NADPH-cytochrome P450 reductase, POR)與細(xì)胞色素b5還原酶(NADH-cytochrome b5 reductase, CYB5R1)可通過電子傳遞形成大量過氧化氫,為自由基介導(dǎo)的過氧化反應(yīng)啟動提供必要條件[8]。
對該過程的調(diào)節(jié)可從控制底物合成、靶向過氧化過程關(guān)鍵因子及干預(yù)過氧化物生成和積聚實(shí)現(xiàn)。研究較為深入的有以下3條信號軸,分別通過清除過氧化物、控制過氧化自由基生成及保護(hù)過氧化脂質(zhì)底物干預(yù)鐵死亡,見圖1。除此之外,還有多種方式對鐵死亡脂質(zhì)過氧化調(diào)控具有重要意義,將在下文簡述。
Figure 1. Lipid peroxidation process and regulating axes in ferroptosis. The red arrows represent the process of lipid peroxidation. The light brown hollow arrows represent glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis. The orange hollow arrows represent ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10) axis. The green hollow arrows represent GTP cyclohydrolase 1 (GCH1)/tetrahydrobiopterin (BH4) axis. The blue curved hollow arrow indicates that BH4 generate reduced CoQ10. The longitudinal black arrows represent other regulating processes of lipid peroxidation. The light blue letters represent key proteins in peroxidation-regulating processes. AA: arachidonic acid; ACC: acetyl coenzyme A carboxylase; ACSL3: acyl coenzyme A synthetase long-chain family member 3; ACSL4: acyl coenzyme A synthetase long-chain family member 4; AdA: adrenic acid; AMPK: AMP-activated protein kinase; CYB5R1: NADH-cytochrome b5 reductase; GCS: glutamyl cysteine synthetase; GSS: glutathione synthetase; LPCAT3: lysophosphatidylcholine acyltransferase 3; MDM2/X: MDM2/X proto-oncogene; MUFA: monounsaturated fatty acid; PE: phosphatidylethanolamine; PL: phospholipid; POR: cytochrome P450 oxidoreductase; PPARα: peroxisome proliferator-activated receptor α; PUFA: polyunsaturated fatty acid; YAP1: Yes-associated protein 1; 15-LOX: 15-lipoxygenase.
2.1 還原型谷胱甘肽(glutathione, GSH)/谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)信號軸 GPX4相關(guān)代謝過程異常是較早被明確的鐵死亡發(fā)生機(jī)制,其上游調(diào)節(jié)路徑涉及谷胱甘肽代謝。GPX4是細(xì)胞中脂質(zhì)過氧化物的主要還原劑,其可在GSH的協(xié)助下將PUFA-PL-OOH還原為羥基磷脂,抑制過氧化級聯(lián)反應(yīng)。GSH是機(jī)體重要的抗氧化劑,由谷氨酸、半胱氨酸和甘氨酸合成。其中胞內(nèi)的半胱氨酸主要由胱氨酸-谷氨酸反向轉(zhuǎn)運(yùn)體(cystine/glutamate antiporter, system xC-)通過向胞外釋放等量谷氨酸攝入。上述關(guān)鍵因素共同組成GSH/GPX4信號軸,通過控制脂質(zhì)過氧化產(chǎn)物生成干預(yù)鐵死亡。
靶向該信號軸中的關(guān)鍵因素可實(shí)現(xiàn)對鐵死亡脂質(zhì)過氧化過程的調(diào)控。system xC-由輕鏈xCT()與重鏈4F2hc()兩個(gè)亞基組成,其中負(fù)責(zé)氨基酸轉(zhuǎn)運(yùn)的xCT對system xC-的活性影響較大,實(shí)驗(yàn)證實(shí)靶向可通過限制胱氨酸攝入減緩GSH的合成,影響GPX4對脂質(zhì)過氧化物的還原能力,干預(yù)鐵死亡[9]。GSH合成過程中,谷氨酰半胱氨酸合成酶(glutamyl cysteine synthetase, GCS)與谷胱甘肽合成酶(glutathione synthetase, GSS)作為限速酶發(fā)揮作用,靶向GCS與GSS能夠干預(yù)GSH合成效率,影響細(xì)胞對過氧化反應(yīng)的敏感度[10]。GPX4已是公認(rèn)的鐵死亡調(diào)節(jié)靶點(diǎn),除直接干預(yù)其活性外,通過抑制甲羥戊酸途徑中的代謝產(chǎn)物異戊烯焦磷酸合成,能夠干擾硒代半胱氨酸(selenium cysteine, Sec)-tRNA的成熟,進(jìn)而抑制依賴Sec-tRNA吸附絲氨酸的硒蛋白GPX4的活性,降低機(jī)體對鐵死亡的抵抗力[11]。
2.2 鐵死亡抑制蛋白1(ferroptosis suppressor protein 1, FSP1)/輔酶Q10(coenzyme Q10, CoQ10)信號軸 FSP1于2019年被證實(shí)與CoQ10共同組成一條與GPX4途徑平行的鐵死亡調(diào)控途徑[12]。該信號軸滿足了機(jī)體在GPX4缺失時(shí)的抗氧化需求。有證據(jù)表明,F(xiàn)SP1在被豆蔻?;揎椇蟊憩F(xiàn)出強(qiáng)大的鐵死亡調(diào)控能力,其表達(dá)上調(diào)可促進(jìn)NAD(P)H依賴的CoQ10還原,使還原態(tài)CoQ10高效捕獲脂質(zhì)過氧化自由基,打破鐵死亡脂質(zhì)過氧化級聯(lián)反應(yīng)。靶向FSP1及CoQ10可干預(yù)鐵死亡進(jìn)程。據(jù)近期報(bào)道,F(xiàn)SP1水平可在癌基因及被抑制時(shí)上調(diào),其具體機(jī)制與過氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptor, PPAR)亞型PPARα有關(guān)[13]。上述兩種癌基因可能成為通過調(diào)節(jié)FSP1途徑影響鐵死亡脂質(zhì)過氧化的靶點(diǎn)。甲羥戊酸途徑對于CoQ10的合成至關(guān)重要,調(diào)控該途徑可控制胞內(nèi)CoQ10含量,干預(yù)脂質(zhì)過氧化自由基清除過程[14]。
2.3 GTP環(huán)水解酶1(GTP cyclohydrolase 1, GCH1)/四氫生物蝶呤(tetrahydrobiopterin, BH4)信號軸 GCH1與BH4代謝過程在近期被證實(shí)可調(diào)控erastin誘導(dǎo)的鐵死亡脂質(zhì)過氧化[15]。調(diào)節(jié)機(jī)體氧化應(yīng)激的重要因子BH4在胞內(nèi)通過合成與回收途徑生成,其合成途徑由關(guān)鍵酶GCH1催化開啟,回收途徑由二氫葉酸還原酶(dihydrofolate reductase, DHFR)介導(dǎo)[16]。據(jù)報(bào)道,GCH1過表達(dá)能夠選擇性保護(hù)具有兩條PUFA尾的膜磷脂,防止其發(fā)生過氧化;同時(shí)BH4可能通過干預(yù)苯丙氨酸向酪氨酸的轉(zhuǎn)化,影響CoQ10前體的合成,從而干預(yù)涉及CoQ10的脂質(zhì)過氧化調(diào)控途徑[17]。
2.4 涉及底物合成及關(guān)鍵因子活性的其他調(diào)節(jié)方式 除上述調(diào)節(jié)信號軸外,不易發(fā)生過氧化的外源性單不飽和脂肪酸(monounsaturated fatty acid, MUFA)被長鏈脂酰輔酶A合成酶3(acyl-CoA synthetase long-chain family member 3, ACSL3)激活后,可抑制PUFA并入膜磷脂并減少脂質(zhì)過氧化自由基生成[18]。PUFA氘化后在多種方式誘導(dǎo)的鐵死亡中顯示出較強(qiáng)的過氧化保護(hù)作用[19]。乙酰輔酶A羧化酶(acetyl-CoA carboxylase, ACC)可誘導(dǎo)細(xì)胞內(nèi)總游離脂肪酸的積累,增加PUFA含量,為脂質(zhì)過氧化提供充足底物[20]。AMP活化蛋白激酶(AMP-activated protein kinase, AMPK)在缺乏葡萄糖時(shí)被激活,可啟動能量壓力保護(hù)程序,阻斷PUFA的異常合成,抑制鐵死亡[21]。參與細(xì)胞增殖調(diào)控的Hippo-Yes相關(guān)蛋白1(Yes-associated protein 1,YAP1)信號通路在近期研究中被證實(shí)與鐵死亡存在聯(lián)系,實(shí)驗(yàn)證明高密度排列的細(xì)胞對鐵死亡的抵抗力上升,其機(jī)制可能與YAP1蛋白靶向ACSL4活性有關(guān)[22]。對上述調(diào)節(jié)方式進(jìn)一步探究有望完善鐵死亡脂質(zhì)過氧化調(diào)控體系。
脂質(zhì)是腦的重要組分,占大腦干重的40%~75%,髓鞘中可達(dá)80%,在能量代謝、信號傳導(dǎo)等方面發(fā)揮重要作用[23]。AD腦中高自由基水平環(huán)境易誘導(dǎo)脂質(zhì)過氧化發(fā)生[24]。已有研究顯示,AD患者海馬總游離脂肪酸水平顯著降低,ACSL4水平顯著升高,在多個(gè)腦區(qū)可檢測到高濃度的游離MDA及4-HNE[25],且GPX4表達(dá)下調(diào),為AD腦內(nèi)確有鐵死亡脂質(zhì)過氧化發(fā)生提供了證據(jù)。除此之外,AD多種標(biāo)志性病理產(chǎn)物生成及積聚涉及鐵死亡脂質(zhì)過氧化過程。該過程可能為AD發(fā)病的潛在機(jī)制。
3.1 鐵死亡脂質(zhì)過氧化過程參與病理性Aβ積聚 腦內(nèi)出現(xiàn)異常折疊并聚集的Aβ是AD標(biāo)志性病理變化之一。目前多數(shù)觀點(diǎn)認(rèn)為病理性Aβ由腦內(nèi)神經(jīng)元或外周器官細(xì)胞膜上的β-淀粉樣蛋白前體(amyloid β-protein precursor, APP)經(jīng)β-和γ-分泌酶連續(xù)水解而成,其中非腦內(nèi)形成的Aβ可通過血液循環(huán)進(jìn)入腦組織[26]。Aβ在腦中以單體、寡聚體和纖絲體三種形式存在,其中Aβ寡聚體對AD影響顯著[27]。據(jù)報(bào)道,其能使實(shí)驗(yàn)大鼠海馬的長時(shí)程增強(qiáng)受損,并異常激活小膠質(zhì)細(xì)胞促炎表型和補(bǔ)體系統(tǒng),誘發(fā)神經(jīng)炎癥和突觸丟失[28]。
Aβ與鐵死亡脂質(zhì)過氧化過程具有潛在聯(lián)系。實(shí)驗(yàn)顯示,腦內(nèi)富含Aβ寡聚體的區(qū)域4-HNE等脂質(zhì)過氧化物水平顯著升高,提示Aβ富集可能涉及脂質(zhì)過氧化[29]。Aβ寡聚體能夠嵌入脂質(zhì)雙分子層,影響自由基合成過程中膜磷脂的脫氫效率,控制鐵死亡脂質(zhì)過氧化非酶促過程的開啟[30]。影響FSP1表達(dá)的關(guān)鍵因子PPARα在近期被證實(shí)可降低部分APP表型的表達(dá),抑制β-分泌酶1活性,減少Aβ寡聚體釋放[31]。CoQ10作為鐵死亡脂質(zhì)過氧化通路中重要的抗氧化劑,已被證實(shí)可降低AD模型小鼠大腦皮層和海馬中的Aβ水平[32]??芍狝D重要病理產(chǎn)物Aβ與鐵死亡脂質(zhì)過氧化過程間可能相互影響,具體作用機(jī)制尚需研究。
3.2 鐵死亡脂質(zhì)過氧化過程參與tau蛋白過度磷酸化 微管相關(guān)蛋白tau過度磷酸化并引發(fā)神經(jīng)原纖維纏結(jié)是AD重要的病理標(biāo)志。已知tau蛋白具有大量易被磷酸化的絲氨酸/蘇氨酸及酪氨酸殘基[33]。當(dāng)促進(jìn)其磷酸化的蛋白激酶與抑制該過程的磷酸酶活性失衡時(shí),將使tau蛋白過度磷酸化,暴露內(nèi)部微管結(jié)合域,增強(qiáng)tau蛋白聚集能力并誘導(dǎo)神經(jīng)原纖維纏結(jié)形成[34]。修飾、聚集后的tau蛋白可引起微管變形退化,使神經(jīng)細(xì)胞物質(zhì)及信息轉(zhuǎn)運(yùn)功能受損,嚴(yán)重時(shí)可導(dǎo)致其功能喪失[35]。
異常磷酸化的tau蛋白與鐵死亡脂質(zhì)過氧化過程存在一定關(guān)聯(lián)。據(jù)報(bào)道,老年AD模型小鼠腦內(nèi)膜質(zhì)筏中能夠觀測到磷酸化tau蛋白沉積[36],且部分PUFA能促進(jìn)tau蛋白構(gòu)象改變及聚合[37],提示脂質(zhì)可能參與tau蛋白病變。磷酸化tau蛋白已被證實(shí)能夠與細(xì)胞膜脂質(zhì)雙分子層結(jié)合,并與膜磷脂相互作用形成具有細(xì)胞毒性的tau-磷脂復(fù)合物,但二者間具體作用機(jī)制未明[38]。研究顯示,鐵死亡脂質(zhì)過氧化過程關(guān)鍵調(diào)控因子AMPK表達(dá)上調(diào)除能夠抑制磷脂合成外,對磷酸化tau蛋白同樣有抑制作用[39],二者間可能存在聯(lián)系,其機(jī)理是否與tau-磷脂復(fù)合物相關(guān)需進(jìn)一步探索。
3.3 載脂蛋白E(apolipoprotein E, ApoE)通過鐵死亡脂質(zhì)過氧化過程參與AD進(jìn)展 AD風(fēng)險(xiǎn)因素ApoE是調(diào)節(jié)中樞神經(jīng)系統(tǒng)脂質(zhì)代謝的關(guān)鍵蛋白,參與膽固醇跨細(xì)胞運(yùn)輸。已有證據(jù)表明ApoE通過抑制膽固醇合成途徑的關(guān)鍵酶,積累大量膽固醇合成前體乙酰輔酶A。而乙酰輔酶A同樣作為PUFA合成前體發(fā)揮作用[40]。ApoE上調(diào)可能加速胞內(nèi)PUFA積累,為脂質(zhì)過氧化及鐵死亡發(fā)生提供適宜環(huán)境。神經(jīng)膠質(zhì)細(xì)胞功能異常被認(rèn)為是AD淀粉樣蛋白積累及突觸缺失的原因之一。近期研究顯示隨年齡增長,神經(jīng)膠質(zhì)細(xì)胞內(nèi)出現(xiàn)大量脂滴積聚,且其修剪突觸功能可受等位基因調(diào)控??芍窠?jīng)膠質(zhì)細(xì)胞內(nèi)出現(xiàn)脂質(zhì)代謝異常,其機(jī)制可能同樣涉及ApoE[41]。
針對Aβ的藥物aducanumab、gantenerumab、BAN2401及小分子口服藥物ALZ-801已于2021年上市。此類藥物雖可清除AD腦中的Aβ寡聚體,但具體療效尚缺乏有效臨床數(shù)據(jù)支持[42]。AD發(fā)病機(jī)制復(fù)雜,單一靶點(diǎn)干預(yù)難以取得滿意療效。多靶點(diǎn)干預(yù)鐵死亡脂質(zhì)過氧化過程治療AD是值得探索的方向,已有部分研究取得進(jìn)展。新型脂酸-煙酸二聚體N2L可減少多種脂質(zhì)過氧化物生成[43];四羥基二苯乙烯苷(tetrahydroxy stilbene glycoside, TSG)能激活GSH/GPX4信號軸,增強(qiáng)抗氧化系統(tǒng)活性[44];非西?。╢isetin)衍生物CMS121可清除4-HNE等過氧化中間產(chǎn)物,緩解認(rèn)知能力下降[45]。中藥復(fù)方天麻鉤藤飲可通過干預(yù)15-LOX,降低機(jī)體對神經(jīng)退行性疾病的易感性[46];中藥復(fù)方開心散能通過調(diào)節(jié)AA代謝和鞘脂代謝減緩脂質(zhì)過氧化程度,改善認(rèn)知能力[47]。從上述研究進(jìn)展可知,通過鐵死亡脂質(zhì)過氧化過程干預(yù)AD可行,調(diào)控過氧化關(guān)鍵途徑是AD藥物研發(fā)的有效思路。
淀粉樣蛋白級聯(lián)假說已在AD發(fā)病機(jī)制領(lǐng)域占據(jù)重要地位多年,但靶向該假說關(guān)鍵病理產(chǎn)物的藥物療效模糊。隨著鐵死亡研究不斷深化,越來越多證據(jù)表明AD發(fā)生發(fā)展涉及鐵死亡與氧化應(yīng)激。鐵死亡作為以脂質(zhì)過氧化物為執(zhí)行者的細(xì)胞死亡方式,其脂質(zhì)過氧化過程被多項(xiàng)研究證實(shí)參與AD腦內(nèi)病變。鐵死亡脂質(zhì)過氧化過程是極具潛力的AD發(fā)病機(jī)制研究方向,但目前對該過程認(rèn)知仍不夠明確,難以確定發(fā)生過氧化的具體脂質(zhì)類型,以及酶促與非酶促過氧化之間是否存在關(guān)聯(lián)、是否有其他關(guān)鍵酶參與等。隨著腦脂質(zhì)組學(xué)及對鐵死亡認(rèn)知的發(fā)展,完善AD病變與鐵死亡脂質(zhì)過氧化機(jī)制之間的具體聯(lián)系,建立AD調(diào)控網(wǎng)絡(luò)是未來明確AD發(fā)病機(jī)制、研制特效藥物的新方向。
[1] Ashraf A, Jeandriens J, Parkes HG, et al. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: evidence of ferroptosis[J]. Redox Biol, 2020, 32:101494.
[2] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
[3] Ayala A, Mu?oz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxid Med Cell Longev, 2014, 2014:360438.
[4] Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98.
[5] Kagan VE,Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1):81-90.
[6] Hadian K, Stockwell BR. SnapShot: ferroptosis[J]. Cell, 2020,181(5):1188.
[7] Kiyuna LA, Albuquerque RPE, Chen CH, et al. Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities[J]. Free Radic Biol Med, 2018, 129:155-168.
[8] Yan B, Ai Y, Sun Q, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81(2):355-369.
[9] Qiang Z, Dong H, Xia Y, et al. Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11[J]. Oxid Med Cell Longev, 2020, 2020:5146982.
[10] Ikawa T, Sato M,Oh-Hashi K, et al. Oxindole-curcumin hybrid compound enhances the transcription of γ-glutamylcysteine ligase[J]. Eur J Pharmacol, 2021, 896:173898.
[11] Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6):830-849.
[12] Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784):693-698.
[13] Venkatesh D, O'Brien NA, Zandkarimi F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling[J]. Genes Dev, 2020, 34(7/8):526-543.
[14] Zaleski AL, Taylor BA, Thompson PD. Coenzyme Q10 as treatment for statin-associated muscle symptoms: a good idea, but…[J]. Adv Nutr, 2018, 9(4):519S-523S.
[15] Hu Q, Wei W, Wu D, et al. Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis[J]. Front Cell Dev Biol, 2022, 10:810327.
[16] Lee I, Kim S, Nagar H, et al. CR6-interacting factor 1 deficiency reduces endothelial nitric oxide synthase activity by inhibiting biosynthesis of tetrahydrobiopterin[J]. Sci Rep, 2020, 10(1):842.
[17] Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1):41-53.
[18] Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3):420-432.
[19] Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113(34):E4966-E4975.
[20] Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5):280-296.
[21] Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2):225-234.
[22] Qin Y, Pei Z, Feng Z, et al. Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3-mediated lipid peroxidation accumulation[J]. Front Cell Dev Biol, 2021, 9:751593.
[23] Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: a review[J]. J Pharm Biomed Anal, 2016, 130:141-168.
[24] Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: consideration about physiological functions of vitamin E[J]. Free Radic Biol Med, 2021, 176:1-15.
[25] Dare LR, Garcia A, Soares CB, et al. The reversal of memory deficits in an Alzheimer's disease model using physical and cognitive exercise[J]. Front Behav Neurosci, 2020, 14:152.
[26] Wang J, Gu BJ, Masters CL, et al. A systemic view of Alzheimer disease-insights from amyloid-β metabolism beyond the brain[J]. Nat Rev Neurol, 2017, 13(10):612-623.
[27] Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8(6):595-608.
[28] 張赫,鄭焱. β淀粉樣蛋白級聯(lián)假說相關(guān)的阿爾茨海默病發(fā)病機(jī)制及防治策略研究進(jìn)展[J]. 中國醫(yī)學(xué)科學(xué)院學(xué)報(bào), 2019, 41(5):702-708.
Zhang H, Zheng Y. β Amyloid hypothesis in Alzheimer's disease: pathogenesis, prevention, and management[J]. Acta Acad Med Sin, 2019, 41(5):702-708.
[29] Butterfield DA, Boyd-Kimball D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62(3):1345-1367.
[30] García-Vi?uales S, Sciacca MFM, Lanza V, et al. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's disease: risk factors and therapeutic opportunities[J]. Chem Phys Lipids, 2021,236:105072.
[31] Zhang H, Gao Y, Qiao PF, et al. PPAR-α agonist regulates amyloid-β generation via inhibiting BACE-1 activity in human neuroblastoma SH-SY5Y cells transfected with APPswe gene[J]. Mol Cell Biochem, 2015, 408(1/2):37-46.
[32] Plascencia-Villa G, Perry G. Preventive and therapeutic strategies in Alzheimer's disease: focus on oxidative stress, redox metals, and ferroptosis[J]. Antioxid Redox Signal, 2021, 34(8):591-610.
[33] Wegmann S, Biernat J, Mandelkow E. A current view on tau protein phosphorylation in Alzheimer's disease[J]. Curr Opin Neurobiol, 2021, 69:131-138.
[34] 周艷,儲丹丹. 阿爾茨海默病中tau蛋白的病理改變與治療策略[J]. 南通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2021, 41(3):245-250.
Zhou Y, Chu DD. Pathological changes and therapeutic strategies of tau protein in Alzheimer's disease[J]. J Nantong Univ (Med Sci), 2021, 41(3):245-250.
[35] DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy[J]. Sci Transl Med, 2017, 9(374):eaag0481.
[36] Kawarabayashi T, Shoji M, Younkin LH, et al. Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease[J]. J Neurosci, 2004, 24(15):3801-3809.
[37] King ME, Gamblin TC, Kuret J, et al. Differential assembly of human tau isoforms in the presence of arachidonic acid[J]. J Neurochem, 2000, 74(4):1749-1757.
[38] Bok E, Leem E, Lee BR, et al. Role of the lipid membrane and membrane proteins in tau pathology[J]. Front Cell Dev Biol, 2021, 9:653815.
[39] Wang L, Li N, Shi FX, et al. Upregulation of AMPK ameliorates Alzheimer's disease-like tau pathology and memory impairment[J]. Mol Neurobiol, 2020, 57(8):3349-3361.
[40] Li X, Zhang J, Li D, et al. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory[J]. Neuron, 2021, 109(6):957-970.
[41] Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases[J]. Science, 2020, 370(6512):66-69.
[42] Tolar M, Abushakra S, Hey JA, et al. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer's disease with potential for near term approval[J]. Alzheimers Res Ther, 2020, 12(1):95.
[43] Peng W, Zhu Z, Yang Y, et al. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells[J]. Brain Res Bull, 2021, 174:250-259.
[44] Gao Y, Li J, Wu Q, et al. Tetrahydroxy stilbene glycoside ameliorates Alzheimer's disease in APP/PS1 mice via glutathione peroxidase related ferroptosis[J]. Int Immunopharmacol, 2021, 99:108002.
[45] Ates G, Goldberg J, Currais A, et al. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease[J]. Redox Biol, 2020, 36:101648.
[46] Jiang Y, Guo Y, Lu D, et al. Tianma gouteng granules decreases the susceptibility of Parkinson’s disease by inhibiting ALOX15-mediated lipid peroxidation[J]. J Ethnopharmacol, 2020, 256:112824.
[47] Gao H, Zhang A, Yu J, et al. High-throughput lipidomics characterize key lipid molecules as potential therapeutic targets of Kaixinsan protects against Alzheimer's disease in APP/PS1 transgenic mice[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1092:286-295.
Lipid peroxidation in ferroptosis and its relationship with Alzheimer disease
LI Jia-ming, HAN Ya-qi, WU Tong, ZHANG Tian-ci, DONG Xian-hui△
(,,050091,)
Lipid peroxidation is one of the commonest pathological processes of Alzheimer disease (AD) and a key player in a novel form of regulated cell death named ferroptosis. The products of lipid peroxidation are considered as executors of ferroptosis. Recent studies reveal that signature proteins of ferroptosis and products of lipid peroxidation accumulate in AD brains. Peroxidation process also involves amyloid β-protein deposition and pathological hyperphosphorylation of tau protein. Therefore, lipid peroxidation mechanism of ferroptosis might play a role in AD progression. This review summarizes the recent progress in lipid peroxidation mechanism and its regulated axis of ferroptosis, collating evidences of the relationship between lipid peroxidation and characteristic pathological processes of AD.
Ferroptosis; Lipid peroxidation; Alzheimer disease; Polyunsaturated fatty acid
R749.1+6; R363
A
10.3969/j.issn.1000-4718.2022.06.023
1000-4718(2022)06-1142-06
2022-03-21
2022-05-09
國家自然科學(xué)基金資助項(xiàng)目(No. 81803935);河北省自然科學(xué)基金資助項(xiàng)目(No. H2019423095);河北省中醫(yī)藥管理局課題(No. 2022085);河北省衛(wèi)健委重點(diǎn)科技研究計(jì)劃(No. 20200129)
Tel: 0311-89926252; E-mail: dongxianhuitj@126.com
(責(zé)任編輯:宋延君,羅森)