阿婷曦,邵春益,傅 瑤
上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院眼科,上海市眼眶病眼腫瘤重點(diǎn)實(shí)驗(yàn)室,上海 200011
調(diào)節(jié)性T 細(xì)胞(regulatory T cell,Treg 細(xì)胞)是一類具有免疫調(diào)節(jié)作用的T細(xì)胞,在抑制過度炎癥反應(yīng)、維持免疫平衡和誘導(dǎo)免疫耐受等方面發(fā)揮重要作用。GERSHON 和KONDO[1]最早在1970 年提出抑制性T 細(xì)胞這一概念,隨后SAKAGUCHI 等[2]首次發(fā)現(xiàn)CD4+CD25+的T細(xì)胞具有抑制自身免疫反應(yīng)的作用,將其命名為Treg 細(xì)胞,自此Treg 細(xì)胞成為免疫學(xué)領(lǐng)域的一個研究重點(diǎn)。
在解剖學(xué)上,眼表由角膜、結(jié)膜、眼瞼及其上面的瞼板腺、淚腺組成,長期暴露于各種環(huán)境刺激物、病原體和過敏原。為此,眼表具有成熟的免疫系統(tǒng),包括先天性和適應(yīng)性免疫,以提供保護(hù)作用[3]。眼表的黏膜免疫反應(yīng)與其他部位的黏膜類似,可以簡述為以下步驟:①抗原與黏膜上皮的相互作用。②啟動先天性免疫系統(tǒng)。③眼表的抗原提呈細(xì)胞(antigen presenting cell,APC)捕獲并處理抗原,再將其提呈給T 細(xì)胞。④效應(yīng)T 細(xì)胞和Treg 細(xì)胞的分化、增殖、遷移和激活。⑤體液免疫反應(yīng)。⑥黏膜先天性免疫、適應(yīng)性免疫和神經(jīng)系統(tǒng)之間廣泛的相互作用[4]。然而為了使組織器官能發(fā)揮正常的功能,黏膜需維持無炎癥的生理狀態(tài),這種無害抗原通過黏膜表面?zhèn)鬟f后引起的局部和全身免疫無應(yīng)答的狀態(tài)稱為黏膜免疫耐受,由Treg 細(xì)胞參與調(diào)控[3]。除黏膜免疫系統(tǒng)外,前房相關(guān)免疫偏倚(anterior chamber associated immune deviation,ACAID)也參與眼部免疫耐受的維持,Treg 細(xì)胞在其中發(fā)揮重要作用[5]。免疫調(diào)節(jié)功能障礙被認(rèn)為是許多眼表疾病的核心原因,因此本研究擬綜述Treg 細(xì)胞的生物學(xué)特性及其在多種眼表疾病中作用的相關(guān)研究進(jìn)展,并對靶向Treg 細(xì)胞的治療在眼表疾病中的應(yīng)用進(jìn)行展望。
Treg 細(xì)胞占外周血中CD4+T 細(xì)胞的5%~10%,特征性表達(dá)細(xì)胞膜標(biāo)志物CD25 和細(xì)胞核轉(zhuǎn)錄因子叉頭狀蛋白P3(forkhead box P3,F(xiàn)OXP3)[6]。FOXP3的表達(dá)對Treg 細(xì)胞的發(fā)育和功能的維持起著至關(guān)重要的作用[7]。在某些條件如極端的炎癥情況下,Treg細(xì)胞會變得不穩(wěn)定,失去FOXP3 表達(dá)和免疫抑制功能,轉(zhuǎn)化為效應(yīng)T細(xì)胞,這種現(xiàn)象被稱為Treg細(xì)胞的可塑性(plasticity)[8]。另有研究[9]發(fā)現(xiàn)CD127 的表達(dá)與FOXP3的表達(dá)及Treg細(xì)胞的抑制功能呈負(fù)相關(guān),因此也將CD4+CD25+CD127lowT 細(xì)胞定義為純化的Treg細(xì)胞。根據(jù)其來源不同Treg細(xì)胞被分為3類:胸腺衍生的Treg 細(xì)胞(tTreg 細(xì)胞,也稱天然Treg 細(xì)胞)、特定環(huán)境抗原刺激誘導(dǎo)外周的初始CD4+T 細(xì)胞分化成的Treg 細(xì)胞(pTreg 細(xì)胞)以及體外利用轉(zhuǎn)化生長因子-β(transforming growth factor β,TGF-β)等誘導(dǎo)初始CD4+T 細(xì)胞分化產(chǎn)生的Treg 細(xì)胞(iTreg細(xì)胞)[10]。目前尚無明確可區(qū)分人tTreg 細(xì)胞和pTreg細(xì)胞的表面標(biāo)志物,因此目前常用于實(shí)驗(yàn)和臨床研究的從人外周血中分離出來的Treg 細(xì)胞很可能同時(shí)含有tTreg細(xì)胞和pTreg細(xì)胞[11]。
Treg 細(xì)胞通過多種方式發(fā)揮免疫抑制作用,包括:①分泌產(chǎn)生抑制性細(xì)胞因子TGF-β、白細(xì)胞介素-35(interleukin-35,IL-35)和IL-10,參與調(diào)節(jié)多種譜系的T 細(xì)胞分化和功能,發(fā)揮免疫抑制作用[12-13]。②高表達(dá)CD25[又稱白介素-2 受體α(IL-2Rα)],競爭性結(jié)合T 細(xì)胞增殖所必需的細(xì)胞因子IL-2,阻止T 細(xì)胞的繼續(xù)增殖,導(dǎo)致已有細(xì)胞的代謝中斷和細(xì)胞死亡[14]。③表達(dá)抑制性共刺激受體細(xì)胞毒性T 淋巴細(xì)胞相關(guān)抗原4(cytotoxic T-lymphocyteassociated antigen-4,CTLA-4),與效應(yīng)T細(xì)胞競爭結(jié)合APC 表面共刺激分子CD80 和CD86,控制效應(yīng)T細(xì)胞的數(shù)量和影響免疫應(yīng)答[15];同時(shí)促進(jìn)APC 產(chǎn)生吲哚胺2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO),其代謝物可以發(fā)揮免疫抑制作用[16]。④表達(dá)淋巴細(xì)胞活化基因3(LAG3,又稱CD223),通過與APC 表達(dá)的Ⅱ類主要組織相容性復(fù)合體(major histocompatibility complex class Ⅱ,MHC-Ⅱ)結(jié)合,誘導(dǎo)免疫耐受[17]。⑤高表達(dá)環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP),調(diào)節(jié)效應(yīng)T細(xì)胞和APC 的功能活性[18]。⑥分泌顆粒酶B(granzyme B)和穿孔素-1(perforin-1)誘導(dǎo)自然殺傷細(xì)胞(natural killer cell,NK細(xì)胞)和細(xì)胞毒性T細(xì)胞的溶解[19]。
此外,最近的研究結(jié)果[20]表明,Treg 細(xì)胞也存在于健康組織,如骨骼肌、內(nèi)臟脂肪組織和皮膚的毛囊干細(xì)胞龕中,表達(dá)不同的歸巢和遷移標(biāo)志物,稱為組織調(diào)節(jié)性T 細(xì)胞(tissue regulatory T cell),且具有抑制炎癥以外的功能。
干眼癥是眼科常見疾病,淚膜和眼表協(xié)會(Tear Film and Ocularsurface Society,TFOS)干眼癥工作小組(Dry Eye Workshop,DEWS)發(fā)布的專家共識(TFOS DEWS Ⅱ)將其定義為以淚膜穩(wěn)態(tài)喪失并伴有淚膜不穩(wěn)定和高滲狀態(tài)、眼表炎癥和損傷以及神經(jīng)感覺異常等眼部癥狀的多因素眼表疾?。?1]。其核心驅(qū)動因素是干燥壓力誘發(fā)的炎癥惡性循環(huán),與CD4+T細(xì)胞的活化和浸潤有關(guān)[22-23]。在膽堿能受體拮抗劑誘發(fā)的小鼠干眼模型和環(huán)境誘導(dǎo)的小鼠干眼模型中均可以觀察到引流區(qū)淋巴結(jié)中Treg細(xì)胞的抑制能力受損、輔助性T 細(xì)胞17(helper T cell 17,Th17)/Treg 穩(wěn)態(tài)失衡,體內(nèi)阻斷IL-17可以恢復(fù)Treg細(xì)胞的功能,并顯著降低干眼的嚴(yán)重程度、延緩疾病進(jìn)展[24-25]。
通過靶向Treg 細(xì)胞治療干眼癥已在動物模型上取得較好效果。SIEMASKO等[26]發(fā)現(xiàn)過繼體外擴(kuò)增產(chǎn)生的FOXP3+Treg 細(xì)胞至干眼模型小鼠可以有效減少淚液中炎癥因子的含量,抑制免疫介導(dǎo)的炎癥反應(yīng)。RATAY 等[27]通過增加淚腺中趨化因子CCL22的局部釋放,誘導(dǎo)內(nèi)源性Treg 細(xì)胞的募集,與未經(jīng)治療組相比,引流區(qū)效應(yīng)性CD4+T 細(xì)胞的數(shù)量和淚腺中CD4+IFN-γ+(γ 干擾素)Th1 細(xì)胞的浸潤減少,淚液分泌增加,杯狀細(xì)胞增多,上皮病變減少,說明局部增加功能正常的Treg 細(xì)胞數(shù)量也能改變免疫失衡,進(jìn)而有效減輕實(shí)驗(yàn)性干眼模型中的炎癥反應(yīng),從而緩解干眼的相關(guān)癥狀。此外,靜脈注射色素上皮衍生 因 子(pigment epithelium-derived factor,PEDF)可以通過增加干眼小鼠的Treg 細(xì)胞數(shù)量和增強(qiáng)免疫抑制功能,減輕干眼的嚴(yán)重程度[28]。間充質(zhì)干細(xì)胞及其外泌體療法可以抑制Th17 細(xì)胞、誘導(dǎo)Treg 細(xì)胞的增殖,減輕干燥綜合征的嚴(yán)重程度[29-30]。由此可見,通過細(xì)胞療法或者藥物干預(yù)等手段增加Treg 細(xì)胞的循環(huán)或局部數(shù)量、增強(qiáng)其抑制功能,可能實(shí)現(xiàn)對干眼癥的治療和改善。
眼表的過敏性疾病包括季節(jié)性過敏性結(jié)膜炎、常年性過敏性結(jié)膜炎、春季角膜結(jié)膜炎和特應(yīng)性角膜結(jié)膜炎等一系列疾病,與抗原特異性IgE 介導(dǎo)的Ⅰ型超敏反應(yīng)和抗原特異性T細(xì)胞介導(dǎo)的Ⅳ型超敏反應(yīng)密切相關(guān)。研究[31-32]發(fā)現(xiàn)過敏性結(jié)膜炎患者中存在免疫失調(diào),與健康對照相比,常年性過敏性結(jié)膜炎人群外周血單核細(xì)胞中CD4+CD25+FOXP3+Treg 細(xì)胞的數(shù)量減少,CD4+CD25+FOXP3-T 細(xì)胞的數(shù)量增加,提示Treg 細(xì)胞受損可能參與過敏性結(jié)膜炎的發(fā)生發(fā)展。SUMI等[33]發(fā)現(xiàn)胸腺切除術(shù)和PC61(抗CD25 抗體)消耗小鼠體內(nèi)的CD25+T 細(xì)胞導(dǎo)致豚草(ragweed,RW)致敏的小鼠結(jié)膜嗜酸性粒細(xì)胞浸潤增多,增加實(shí)驗(yàn)性過敏性結(jié)膜炎 (experimental allergic conjunctivitis,EC)的嚴(yán)重程度,而過繼正常小鼠的CD4+CD25+T 細(xì)胞至致敏小鼠可以有效抑制EC 的發(fā)展。另一項(xiàng)研究[34]發(fā)現(xiàn),具有免疫調(diào)節(jié)作用的合成糖脂α-半乳糖神經(jīng)酰胺(α-galactosylceramide,α-GalCer),可以通過增加CD4+CD25+FOXP3+Treg細(xì)胞的數(shù)量抑制EC 的發(fā)展,提示Treg 細(xì)胞有希望成為過敏性結(jié)膜炎的治療靶點(diǎn)。
發(fā)生感染時(shí),Treg細(xì)胞的主要功能是控制過度的炎癥反應(yīng)以防止組織損害、減少對宿主的傷害,但在某些情況下Treg 細(xì)胞的免疫抑制能力會減弱機(jī)體的免疫監(jiān)測能力,促進(jìn)病毒的潛伏[35]。1型單純皰疹病毒(HSV-1)復(fù)發(fā)引起的角膜基質(zhì)炎為先天性免疫與適應(yīng)性免疫介導(dǎo)的慢性炎癥反應(yīng),其中效應(yīng)性CD4+T細(xì)胞為主要驅(qū)動因素,而Treg細(xì)胞在其中也發(fā)揮著重要作用[36]。通過PC61 耗竭小鼠體內(nèi)的Treg 細(xì)胞后,HSV-1誘導(dǎo)的角膜基質(zhì)炎的嚴(yán)重程度增加,而疾病早期過繼Treg 細(xì)胞可以抑制角膜的免疫炎癥[37-38]。BHELA 等[39]運(yùn)用FOXP3 表達(dá)追蹤轉(zhuǎn)基因小鼠品系(FOXP3Cre-GFP:Rosa26lsl-Td-Tomato),觀察到病毒誘導(dǎo)的角膜炎癥狀態(tài)下角膜Treg 細(xì)胞可塑性的變化,發(fā)現(xiàn)HSV-1 感染眼部后,角膜中Treg 細(xì)胞是不穩(wěn)定的,可轉(zhuǎn)化為具有效應(yīng)Th1 細(xì)胞表型的ex-Treg細(xì)胞,分泌IFN-γ,參與角膜基質(zhì)炎的發(fā)生。此外,過繼的體外誘導(dǎo)的正常功能iTreg 細(xì)胞在角膜炎癥的環(huán)境下也高度不穩(wěn)定,部分轉(zhuǎn)化為促進(jìn)角膜基質(zhì)炎發(fā)生的Th1 表型的ex-Treg 細(xì)胞[39]。而在這種情況下,氮雜胞苷、視黃酸和維生素C 等藥物能夠維持FOXP3+Treg 細(xì)胞特異性去甲基化區(qū)(Treg-specific demethylated region,TSDR)的去甲基化,有助于促進(jìn)Treg 細(xì)胞的穩(wěn)定性并改善其功能,更有效抑制角膜基質(zhì)炎的進(jìn)展[39-40]。
Treg細(xì)胞療法在誘導(dǎo)同種異體移植物的免疫耐受或者預(yù)防移植物抗宿主?。╣raftversushost disease,GVHD)方面已經(jīng)得到廣泛的研究[41]。Treg 細(xì)胞通過抑制宿主對移植物的免疫反應(yīng),促進(jìn)機(jī)體對移植物的耐受,在降低角膜移植排斥過程中方面發(fā)揮著重要作用,CD25+CD4+Treg 細(xì)胞的耗竭可加速角膜移植排斥的發(fā)生[42-43]。植床存在炎癥或新生血管的宿主更易對移植的角膜產(chǎn)生排斥反應(yīng),此類高危宿主的pTreg 細(xì)胞(而非tTreg 細(xì)胞)的數(shù)量和功能被抑制,表現(xiàn)為FOXP3 表達(dá)丟失,CTLA-4 表達(dá)降低,IL-10和TGF-β 的分泌減少,并且與pTreg 細(xì)胞向分泌IL-17 和IFN-γ 的ex-Treg 細(xì)胞的病理性轉(zhuǎn)換有關(guān)[44-46]。因此,通過不同途徑,靶向Treg 細(xì)胞來減少角膜移植的排斥反應(yīng)具有很好的發(fā)展前景。小劑量的IL-2治療可以顯著增加CD4+CD25+FOXP3+Treg 細(xì)胞的數(shù)量,增強(qiáng)其免疫抑制功能,進(jìn)而可提高角膜同種異體移植物的存活率[47]。在小鼠異體角膜移植模型中,結(jié)膜下注射Treg 細(xì)胞可以抑制角膜和淋巴組織中APC 的成熟,使角膜中IL-10、TGF-β 表達(dá)增加,CD45+炎癥細(xì)胞侵入減少,移植成功率增加[48]。
在機(jī)體受傷后,入侵的病原體、壞死的碎片、凝血反應(yīng)和組織內(nèi)的免疫細(xì)胞引發(fā)炎癥反應(yīng),促進(jìn)組織修復(fù)和瘢痕形成,然而過度的炎癥反應(yīng)會導(dǎo)致病理性纖維化,損害組織功能。Treg細(xì)胞可以通過影響中性粒細(xì)胞、誘導(dǎo)巨噬細(xì)胞分化和抑制效應(yīng)T細(xì)胞參與的免疫反應(yīng)來間接調(diào)節(jié)再生[49]。近年來研究發(fā)現(xiàn),Treg細(xì)胞除經(jīng)典的免疫抑制功能外,還能通過其他途徑在組織修復(fù)和再生方面發(fā)揮作用,包括促進(jìn)骨骼肌再生[50]、促進(jìn)皮膚傷口愈合[51]、促進(jìn)毛囊干細(xì)胞增殖和分化[52]、促進(jìn)心肌細(xì)胞增殖[53]等。然而目前對Treg 細(xì)胞在眼表組織損傷修復(fù)中的作用研究較少。YAN 等[54]發(fā)現(xiàn)在小鼠角膜堿燒傷急性期的結(jié)膜下注射Treg 細(xì)胞不僅能抑制過度炎癥反應(yīng),改善眼表環(huán)境,還能促進(jìn)小鼠堿燒傷后角膜上皮修復(fù),恢復(fù)角膜透明,推測這些作用與局部增高的雙調(diào)蛋白(amphiregulin,AREG)有關(guān)。AREG 是上皮生長因子受體(epidermal growth factor receptor,EGFR)的配體之一,通常由上皮細(xì)胞、間充質(zhì)細(xì)胞和淋巴細(xì)胞等分泌。AREG 與細(xì)胞上的EGFR 結(jié)合,可促進(jìn)這些細(xì)胞的增殖和遷移[55]。另一研究[56]發(fā)現(xiàn),Treg 細(xì)胞通過分泌IL-10 而非細(xì)胞間直接接觸的方式抑制IFN-γ 和腫瘤壞死因子α (tumor necrosis factor α,TNF-α) 誘導(dǎo)的角膜內(nèi)皮細(xì)胞的死亡。此外,ALTSHULER 等[57]發(fā)現(xiàn)角膜緣外緣存在CD4+CD25+FOXP3+Treg 細(xì)胞,在結(jié)膜下注射PC61.5(也是抗CD25 抗體)消耗Treg 細(xì)胞后,靜止角膜緣干細(xì)胞(quiescent limbal stem cell,qLSC)的標(biāo)志物CD63 和糖蛋白激素α 亞基2(glycoprotein hormone subunit α 2,GPHA2)顯著下降,而細(xì)胞增殖水平上升,推測Treg 細(xì)胞的缺失或功能抑制導(dǎo)致了qLSC 靜止?fàn)顟B(tài)的喪失,傷口愈合延遲。
FOXP3+Treg 細(xì)胞是眼表微環(huán)境的重要組成部分,它們積極地參與抑制針對自身、微生物和環(huán)境抗原的異常或過度的免疫反應(yīng),在眼表的免疫調(diào)節(jié)中發(fā)揮著重要作用。基于Treg 細(xì)胞誘導(dǎo)免疫耐受的能力,擴(kuò)增FOXP3+Treg 細(xì)胞或者增強(qiáng)其免疫抑制能力已成為治療自身免疫性疾病或者其他免疫相關(guān)疾病,以及防止器官移植排斥反應(yīng)的重要方法[58]。最簡單的方式為過繼細(xì)胞療法,即從患者體內(nèi)分離純化循環(huán)Treg細(xì)胞,在體外擴(kuò)增達(dá)到一定數(shù)量后回輸至患者體內(nèi)[58]。目前主流的Treg 細(xì)胞來源為患者的自體外周血或是臍帶血,通過流式細(xì)胞儀,或是帶標(biāo)記的磁珠分選CD4+CD25+T細(xì)胞或抑制能力更強(qiáng)的CD4+CD25+CD127lowT 細(xì) 胞[59]。Treg 細(xì) 胞 過 繼 療 法 在 治 療GVHD[60]、1 型糖尿病[61]、克羅恩?。?2]等疾病的臨床試驗(yàn)中已取得良好的結(jié)果。另有研究證明,小劑量的IL-2可安全有效增加丙型肝炎病毒相關(guān)性血管炎患者[63]和慢性GVHD患者[64]體內(nèi)Treg細(xì)胞的數(shù)量。
然而目前在眼表領(lǐng)域中Treg 細(xì)胞的研究還停留在基礎(chǔ)階段,缺乏基于眼表疾病的臨床試驗(yàn),基礎(chǔ)研究和臨床研究之間存在脫節(jié)。要將Treg 細(xì)胞運(yùn)用于眼表的疾病還有許多科學(xué)問題需要解決。比如,SHAO 等[48]研究發(fā)現(xiàn)小鼠球結(jié)膜下注射Treg 細(xì)胞,6 h 后Treg 細(xì)胞即可遷移至角膜和同側(cè)淋巴結(jié),48 h達(dá)高峰值,但7 d 后僅檢測到很少量的細(xì)胞。Treg 細(xì)胞是否需要多次注射使其能在眼表長期發(fā)揮生物學(xué)效應(yīng)仍待研究。此外,部分Treg 細(xì)胞的不穩(wěn)定性和可塑性也給其臨床應(yīng)用帶來挑戰(zhàn)。
總而言之,隨著對Treg 細(xì)胞領(lǐng)域的深入研究,使用新技術(shù)來改變細(xì)胞的基因組,以增強(qiáng)Treg 細(xì)胞功能、穩(wěn)定性、持久性和抗原特異性,提高Treg 細(xì)胞過繼療法的治療潛力是未來的發(fā)展方向。更進(jìn)一步地探究Treg 細(xì)胞在眼表疾病發(fā)生發(fā)展中的作用,針對性地開展靶向FOXP3+Treg 的治療方法在眼表疾病
領(lǐng)域具有廣闊的前景。
利益沖突聲明/Conflict of Interests
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)/Authors'Contributions
阿婷曦負(fù)責(zé)論文初稿的撰寫,邵春益參與了論文的審閱和修訂,傅瑤提出構(gòu)思以及參與論文的審閱和修訂。所有作者均閱讀并同意了最終稿件的提交。
A Tingxi drafted the original manuscript;SHAO Chunyi participated in the reviewing and editing;FU Yao conceived the idea and participated in the reviewing and editing.All the authors have read the last version of paper and consented for submission.
·Received:2022-02-07
·Accepted:2022-05-23
·Published online:2022-08-12
參·考·文·獻(xiàn)
[1] GERSHON R K, KONDO K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes[J]. Immunology, 1970,18(5):723-737.
[2] SAKAGUCHI S, SAKAGUCHI N,ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
[3] GALLETTI J G, GUZMáN M, GIORDANO M N. Mucosal immune tolerance at the ocular surface in health and disease[J].Immunology,2017,150(4):397-407.
[4] GALLETTI J G,DE PAIVA C S. The ocular surface immune system through the eyes of aging[J]. Ocul Surf,2021,20:139-162.
[5] HORI J, YAMAGUCHI T, KEINO H, et al. Immune privilege in corneal transplantation[J]. Prog Retin Eye Res,2019,72:100758.
[6] GROVER P, GOEL P N, GREENE M I. Regulatory T cells:regulation of identity and function[J]. Front Immunol, 2021, 12:750542.
[7] FONTENOT J D, GAVIN M A, RUDENSKY A Y. Foxp3 programs the development and function of CD4+CD25+regulatory T cells[J].Nat Immunol,2003,4(4):330-336.
[8] KOMATSU N,OKAMOTO K,SAWA S,et al. Pathogenic conversion of Foxp3+T cells into TH17 cells in autoimmune arthritis[J]. Nat Med,2014,20(1):62-68.
[9] LIU W H, PUTNAM A L, ZHOU X Y, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells[J]. J Exp Med,2006,203(7):1701-1711.
[10] SHEVACH E M, THORNTON A M. tTregs, pTregs, and iTregs:similarities and differences[J]. Immunol Rev,2014,259(1):88-102.
[11] RAFFIN C, VO L T, BLUESTONE J A. Tregcell-based therapies:challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3):158-172.
[12] SANJABI S, OH S A, LI M O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection[J]. Cold Spring Harb Perspect Biol,2017,9(6):a022236.
[13] WANG R X,YU C R,DAMBUZA I M,et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med,2014,20(6):633-641.
[14] CHINEN T,KANNAN A K,LEVINE A G,et al. An essential role for the IL-2 receptor in T reg cell function[J]. Nat Immunol,2016,17(11):1322-1333.
[15] WING J B, ISE W, KUROSAKI T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responsesviathe coreceptor CTLA-4[J]. Immunity, 2014, 41(6):1013-1025.
[16] YAN Y P,ZHANG G X,GRAN B,et al. IDO upregulates regulatory T cellsviatryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J].J Immunol,2010,185(10):5953-5961.
[17] BAUCHé D, JOYCE-SHAIKH B, JAIN R, et al. LAG3+regulatory T cells restrain interleukin-23-producing CX3CR1+gut-resident macrophages during group 3 innate lymphoid cell-driven colitis[J].Immunity,2018,49(2):342-352.e5.
[18] ALMAHARIQ M, MEI F C, WANG H, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression[J]. Biochem J,2015,465(2):295-303.
[19] CAO X F, CAI S F, FEHNIGER T A, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity,2007,27(4):635-646.
[20] MU?OZ-ROJAS A R, MATHIS D. Tissue regulatory T cells:regulatory chameleons[J]. Nat Rev Immunol,2021,21(9):597-611.
[21] CRAIG J P, NICHOLS K K, AKPEK E K, et al. TFOS DEWS Ⅱdefinition and classification report[J]. Ocular Surf, 2017, 15(3):276-283.
[22] BRON A J,DE PAIVA C S,CHAUHAN S K,et al. TFOS DEWS Ⅱpathophysiology report[J]. Ocular Surf,2017,15(3):438-510.
[23] SCHAUMBURG C S,SIEMASKO K F,DE PAIVA C S,et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis[J]. J Immunol,2011,187(7):3653-3662.
[24] CHEN Y H, CHAUHAN S K, LEE H S, et al. Effect of desiccating environmental stressversussystemic muscarinic AChR blockade on dry eye immunopathogenesis[J]. Invest Ophthalmol Vis Sci, 2013,54(4):2457-2464.
[25] CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al.Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol,2009,182(3):1247-1252.
[26] SIEMASKO K F, GAO J P, CALDER V L, et al.In vitroexpanded CD4+CD25+Foxp3+regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation[J].Invest Ophthalmol Vis Sci,2008,49(12):5434-5440.
[27] RATAY M L, GLOWACKI A J, BALMERT S C, et al. Tregrecruiting microspheres prevent inflammation in a murine model of dry eye disease[J]. J Control Release,2017,258:208-217.
[28] SINGH R B, BLANCO T, MITTAL S K, et al. Pigment epitheliumderived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease[J]. Am J Pathol, 2021, 191(4):720-729.
[29] YAO G H, QI J J, LIANG J, et al. Mesenchymal stem cell transplantation alleviates experimental Sj?gren's syndrome through IFN- β/IL-27 signaling axis[J]. Theranostics, 2019, 9(26): 8253-8265.
[30] XU J J,WANG D D,LIU D Y,et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sj?gren syndrome[J].Blood,2012,120(15):3142-3151.
[31] NIETO J E, CASANOVA I, SERNA-OJEDA J C, et al. Increased expression of TLR4 in circulating CD4+T cells in patients with allergic conjunctivitis andin vitroattenuation of Th2 inflammatory response by α-MSH[J]. Int J Mol Sci,2020,21(21):7861.
[32] GALICIA-CARREóN J, SANTACRUZ C, AYALA-BALBOA J, et al. An imbalance between frequency of CD4+CD25+FOXP3+regulatory T cells and CCR4+and CCR9+circulating helper T cells is associated with active perennial allergic conjunctivitis[J]. Clin Dev Immunol,2013,2013:919742.
[33] SUMI T, FUKUSHIMA A, FUKUDA K, et al. Thymus-derived CD4+CD25+T cells suppress the development of murine allergic conjunctivitis[J]. Int Arch Allergy Immunol,2007,143(4):276-281.
[34] FUKUSHIMA A, SUMI T, ISHIDA W, et al. Depletion of thymusderived CD4+CD25+T cells abrogates the suppressive effects of alpha-galactosylceramide treatment on experimental allergic conjunctivitis[J]. Allergol Int,2008,57(3):241-246.
[35] YU W C, GENG S, SUO Y Z, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1[J]. Cell Rep,2018,25(9):2379-2389.e3.
[36] LOBO A M,AGELIDIS A M, SHUKLA D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation[J]. Ocul Surf,2019,17(1):40-49.
[37] SEHRAWAT S, SUVAS S, SARANGI P P, et al.In vitro-generated antigen-specific CD4+CD25+Foxp3+regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions[J]. J Virol,2008,82(14):6838-6851.
[38] SUVAS S,AZKUR A K,KIM B S,et al. CD4+CD25+regulatory T cells control the severity of viral immunoinflammatory lesions[J]. J Immunol,2004,172(7):4123-4132.
[39] BHELA S, VARANASI S K, JAGGI U, et al. The plasticity and stability of regulatory T cells during viral-induced inflammatory lesions[J]. J Immunol,2017,199(4):1342-1352.
[40] VARANASI S K, REDDY P B J, BHELA S, et al. Azacytidine treatment inhibits the progression of herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol,2017,91(7):e02367-e02316.
[41] LAM A J, HOEPPLI R E, LEVINGS M K. Harnessing advances in T regulatory cell biology for cellular therapy in transplantation[J].Transplantation,2017,101(10):2277-2287.
[42] CHAUHAN S K, SABAN D R, LEE H K, et al. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation[J].J Immunol,2009,182(1):148-153.
[43] HORI J,TANIGUCHI H,WANG M C, et al. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts[J]. Invest Ophthalmol Vis Sci,2010,51(12):6556-6565.
[44] INOMATA T, HUA J, DI ZAZZO A, et al. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection[J]. Sci Rep,2016,6:39924.
[45] INOMATA T, HUA J, NAKAO T, et al. Corneal tissue from dry eye donors leads to enhanced graft rejection[J]. Cornea, 2018, 37(1):95-101.
[46] HUA J, INOMATA T, CHEN Y H, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance[J]. Sci Rep,2018,8(1):7059.
[47] TAHVILDARI M, OMOTO M, CHEN Y H, et al.In vivoexpansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation[J]. Transplantation,2016,100(3):525-532.
[48] SHAO C Y, CHEN Y H, NAKAO T, et al. Local delivery of regulatory T cells promotes corneal allograft survival[J].Transplantation,2019,103(1):182-190.
[49] LI J T, TAN J, MARTINO M M, et al. Regulatory T-cells: potential regulator of tissue repair and regeneration[J]. Front Immunol, 2018,9:585.
[50] SCHIAFFINO S, PEREIRA M G, CICILIOT S, et al. Regulatory T cells and skeletal muscle regeneration[J]. FEBS J, 2017, 284(4):517-524.
[51] NOSBAUM A, PREVEL N, TRUONG H A, et al. Cutting edge:regulatory T cells facilitate cutaneous wound healing[J]. J Immunol,2016,196(5):2010-2014.
[52] ALI N W,ZIRAK B,RODRIGUEZ R S,et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell,2017,169(6):1119-1129.e11.
[53] LI J T, YANG K Y, TAM R C Y, et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner[J]. Theranostics, 2019, 9(15):4324-4341.
[54] YAN D, YU F, CHEN L B, et al. Subconjunctival injection of regulatory T cells potentiates corneal healingviaorchestrating inflammation and tissue repair after acute alkali burn[J]. Invest Ophthalmol Vis Sci,2020,61(14):22.
[55] ARPAIA N, GREEN J A, MOLTEDO B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089.
[56] COCO G, FOULSHAM W, NAKAO T, et al. Regulatory T cells promote corneal endothelial cell survival following transplantationviainterleukin-10[J]. Am J Transplant,2020,20(2):389-398.
[57] ALTSHULER A, AMITAI-LANGE A, TARAZI N, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing[J]. Cell Stem Cell,2021,28(7):1248-1261.e8.
[58] PILAT N, SPRENT J. Treg therapies revisited: tolerance beyond deletion[J]. Front Immunol,2021,11:622810.
[59] MACDONALD K N, PIRET J M, LEVINGS M K. Methods to manufacture regulatory T cells for cell therapy[J]. Clin Exp Immunol,2019,197(1):52-63.
[60] BRUNSTEIN C G, MILLER J S, MCKENNA D H, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics,toxicity profile, and clinical effect[J]. Blood, 2016, 127(8): 1044-1051.
[61] BLUESTONE J A, BUCKNER J H, FITCH M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells[J]. Sci Transl Med,2015,7(315):315ra189.
[62] DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease[J]. Gastroenterology, 2012, 143(5): 1207-1217.e2.
[63] SAADOUN D, ROSENZWAJG M, JOLY F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis[J].N Engl J Med,2011,365(22):2067-2077.
[64] KORETH J, MATSUOKA K I, KIM H T, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease[J]. N Engl J Med,2011,365(22):2055-2066.