葉露 李秀芹 王建青
摘要:肝臟疾病的發(fā)病機制研究一直廣受關(guān)注。內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)是細胞的一種自我保護機制,但持續(xù)、嚴重的應(yīng)激可誘導(dǎo)凋亡、自噬和鐵死亡。其中,鐵死亡作為近年研究熱點,主要特征為鐵依賴性脂質(zhì)過氧化物的積累,在肝臟疾病的發(fā)生發(fā)展中發(fā)揮著關(guān)鍵作用,但目前關(guān)于肝臟疾病中ERS參與鐵死亡的相關(guān)研究尚少。本文歸納了ERS相關(guān)信號通路和鐵死亡的發(fā)生機制及其在肝臟疾病中的研究進展,為肝病治療研究提供更多方向。
關(guān)鍵詞:肝疾?。?內(nèi)質(zhì)網(wǎng)應(yīng)激; 鐵死亡
基金項目:國家自然科學(xué)基金(82073566); 安徽省高校優(yōu)秀青年人才支持計劃資助項目 (gxyq2019014); 臨床藥學(xué)與藥理學(xué)共建項目(2020)
Association between endoplasmic reticulum stress and ferroptosis in liver diseases
YE Lu1,2,3, LI Xiuqin1,2, WANG Jianqing1,2. (1. Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230012, China; 2. Anhui Public Health Clinical Center, Hefei 230012, China; 3. School of Pharmacy, Anhui Medical University, Hefei 230032, China)
Corresponding author:WANG Jianqing, jianqingwang81@126.com (ORCID:0000-0002-7935-9520)
Abstract:
Research on the pathogenesis of liver diseases has attracted great attention. Endoplasmic reticulum stress (ERS) is a self-protective mechanism of cells, but sustained and severe ERS can induce apoptosis, autophagy, and ferroptosis, among which ferroptosis has been a research hotspot in recent years. Ferroptosis is mainly characterized by the accumulation of iron-dependent lipid peroxides and plays a key role in the development and progression of liver diseases, but there are currently few studies on the involvement of ERS in ferroptosis in liver diseases. This article summarizes the research advances in ERS-related signaling pathways, the mechanism of ferroptosis, and the involvement of ERS in liver diseases, so as to provide more ideas for research on the treatment of liver diseases.
Key words:
Liver Diseases; Endoplasmic Reticulum Stress; Ferroptosis
Research funding:
National Natural Science Foundation of China (82073566); The Program of Excellent Young Talents in Universities of Anhui Province (gxyq2019014); Clinical Pharmacy and Pharmacology (2020)
內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)在維持細胞穩(wěn)態(tài)與機體健康之間的平衡中發(fā)揮著重要作用[1]。ER長期處于負荷狀態(tài)時,其折疊蛋白質(zhì)的能力下降,進而產(chǎn)生大量未折疊蛋白或錯誤折疊蛋白,該狀態(tài)被稱為ER應(yīng)激(endoplasmic reticulum stress,ERS),未折疊蛋白反應(yīng)(unfolded protein response,UPR)是一種ERS的保護性反應(yīng)[2]。然而,強烈或持續(xù)的ERS仍會影響ER正常的生理功能并導(dǎo)致細胞損傷或死亡[3]。鐵死亡是一種區(qū)別于凋亡、壞死、自噬的新型細胞死亡方式。其由于谷胱甘肽(glutathione,GSH)過氧化物酶4(glutathione peroxidase 4,GPX4)和GSH等抗氧化系統(tǒng)的功能受損,從而引起脂質(zhì)過氧化物堆積。最近研究發(fā)現(xiàn),ERS在肝臟疾病的發(fā)生、發(fā)展過程中往往也伴隨著鐵超載或脂質(zhì)過氧化物累積等鐵死亡的發(fā)生標志。現(xiàn)就ERS通過調(diào)控鐵死亡影響肝臟疾病的相關(guān)研究進展作一綜述。
1 ERS的發(fā)生機制
當ER出現(xiàn)蛋白折疊錯誤并積累到臨界值以上時即可誘發(fā)ERS,并啟動UPR來維持ER穩(wěn)態(tài)[4]。UPR可由3種ER跨膜蛋白——肌醇需要酶1α(inositol requiring enzyme 1α,IRE1α)、蛋白激酶樣ER激酶(protein kinase RNA-like ER kinase,PERK)和激活轉(zhuǎn)錄因子6(activating transcription factor 6,ATF6)調(diào)控,當穩(wěn)態(tài)重構(gòu)失敗時ERS將引起細胞死亡[5-6]。
1.1 IRE1α通路 當錯誤折疊蛋白與IRE1α細胞質(zhì)尾部的絲氨酸/蘇氨酸結(jié)構(gòu)域和核糖核酸酶(ribonuclease,RNase)結(jié)構(gòu)域結(jié)合時,IRE1α自磷酸化可導(dǎo)致相鄰RNase激活,其RNase將從編碼X-box蛋白1(X-box protein 1,XBP1)轉(zhuǎn)錄因子的 mRNA 中切除1個 26 nt 內(nèi)含子以產(chǎn)生穩(wěn)態(tài)轉(zhuǎn)錄因子 XBP1s,促進蛋白質(zhì)折疊能力的恢復(fù)、ER相關(guān)降解通路的激活、蛋白質(zhì)分泌基因的轉(zhuǎn)錄,進而減輕ER負荷[7-8]。
1.2 PERK通路 PERK同樣通過反式磷酸化激活,當其激酶結(jié)構(gòu)域在錯誤折疊蛋白存在的情況下二聚化時,真核翻譯起始因子2α(eukaryotic translation initiation factor 2α,eIF2α)磷酸化。磷酸化后eIF2α 活性被抑制,并因此減慢整體蛋白質(zhì)翻譯,從而使細胞有更多時間處理積壓在ER腔內(nèi)的蛋白質(zhì)。與此同時,當eIF2α積累到一定程度時將選擇性地增加ATF4的表達,其再調(diào)控70 kDa熱休克蛋白5(recombinant heat shock 70 kDa protein 5,HSPA5)等有利于細胞生存的基因,保護細胞免于死亡[9-10]。
1.3 ATF6通路 ATF6被酶解后,剩余的N端胞質(zhì)為含有堿性亮氨酸拉鏈的轉(zhuǎn)錄激活功能域,其與XBP1s通過異二聚化的串擾增加靶標的轉(zhuǎn)錄,從而擴大ER面積并增加其蛋白質(zhì)折疊能力以促進細胞存活,并通過調(diào)節(jié)ER蛋白57等分子伴侶基因的轉(zhuǎn)錄,如葡萄糖調(diào)節(jié)蛋白 78(glucose-regulated protein 78,GRP78)、GRP78/結(jié)合免疫球蛋白、C/EBP同源蛋白(C/EBP homologus protein,CHOP),促進錯誤折疊蛋白的降解[11-12]。
當UPR的3個傳感器在嘗試重構(gòu)ER穩(wěn)態(tài)時,其適應(yīng)性反應(yīng)不足以恢復(fù)其蛋白質(zhì)折疊能力,則會表現(xiàn)出更強烈的ERS[13-14]。
2 鐵死亡的發(fā)生機制
鐵死亡是一種新型的程序性細胞死亡,該術(shù)語于2012年由Stockwell實驗室首創(chuàng),描述了由鐵死亡誘導(dǎo)劑(erastin)或鐵死亡激活劑(GPX4抑制劑,RSL3)導(dǎo)致的獨特類型的細胞死亡[15]。目前,鐵死亡發(fā)生機制相關(guān)研究已頗為全面,其主要發(fā)生機制可歸納為以下兩點。
2.1 鐵代謝異常 正常條件下機體中的鐵代謝處于穩(wěn)態(tài),血液循環(huán)中的Fe3+通過轉(zhuǎn)鐵蛋白受體進入體內(nèi)再轉(zhuǎn)化為Fe2+。當發(fā)生鐵代謝紊亂時,F(xiàn)e2+在細胞內(nèi)大量積蓄導(dǎo)致芬頓反應(yīng),產(chǎn)生大量脂質(zhì)過氧化物,進而誘發(fā)鐵死亡[16]。
2.2 抗氧化系統(tǒng)異常 胱氨酸/谷氨酸逆向轉(zhuǎn)運體(cystine-glutamate antiporter,System xc-)和GPX4目前被認為是介導(dǎo)鐵死亡的關(guān)鍵調(diào)節(jié)因子。胱氨酸可通過System xc-進入細胞內(nèi)參與GSH的合成,GSH再通過GPX4作用減少活性氧(reactive oxygen species,ROS)的產(chǎn)生,同時GPX4還可將被?;o酶A合成酶長鏈家族成員4(acyl-Co A synthetase longchain family member 4,ACSL4)和溶血磷脂酰膽堿?;D(zhuǎn)移酶3(lyso-phosphatidylcholine acyltransferase 3,LPCAT3)氧化成磷脂氫過氧化物的多不飽和脂肪酸(polyunsaturated fatty acid,PUFA)——花生四烯酸、二十二碳四烯酸等還原成無毒的脂質(zhì)醇。當System xc-或GPX4被抑制時可導(dǎo)致脂質(zhì)過氧化物積累,是鐵死亡的關(guān)鍵信號[17-18]。同時,P53基因作為一種抑癌基因,可通過下調(diào)溶質(zhì)轉(zhuǎn)運家族7A11(solute carrier 7A11,SLC7A11)的表達來抑制System xc-對胱氨酸的攝取,從而影響GPX4的活性,導(dǎo)致抗氧化能力降低,ROS積累和鐵死亡[19]。
3 ERS反應(yīng)促進細胞鐵死亡
ERS通過調(diào)控相關(guān)信號通路可參與自噬、凋亡和鐵死亡。自噬作為重要的蛋白質(zhì)降解途徑,可通過降解錯誤折疊蛋白和清除功能細胞器來緩解ERS。當ERS持續(xù)超出臨界值且UPR不足以緩解ERS時,UPR過度激活自噬或溶酶體活性異常導(dǎo)致細胞過度降解不能發(fā)揮其正常功能而引起細胞凋亡或鐵死亡。
Chen等[20]在研究ATF4靶向人腦膠質(zhì)瘤的實驗中發(fā)現(xiàn),ATF4的敲低顯著降低了System xc-表達水平,增加了人腦膠質(zhì)瘤對鐵死亡的敏感性。因此,ATF-System xc-通路可能是ERS影響鐵死亡的另一條通路。此外,Xu等[21]研究發(fā)現(xiàn),在潰瘍性結(jié)腸炎患者或葡聚糖硫酸鈉誘導(dǎo)的潰瘍性結(jié)腸炎小鼠模型中觀察到鐵死亡和ERS反應(yīng)的發(fā)生,當采用PERK的抑制劑GSK414治療結(jié)腸炎小鼠時,葡聚糖硫酸鈉引起的鐵死亡明顯被抑制。Park等[22]在香煙煙霧冷凝物誘導(dǎo)人支氣管上皮細胞鐵死亡的實驗中發(fā)現(xiàn),香煙煙霧冷凝物不僅可以引起鐵死亡,同時還激活了ERS中的PERK通路?;蛐酒Y(jié)果分析顯示,ERS的發(fā)生可增加鐵死亡的易感性。
4 ERS參與鐵死亡在肝臟相關(guān)疾病中的研究現(xiàn)狀
目前,鐵死亡在肝臟疾病中主要應(yīng)用于藥物性肝損傷、非酒精性脂肪性肝?。∟AFLD)和肝細胞癌(HCC),而ERS觸發(fā)的UPR可通過各種途徑參與細胞鐵死亡(圖1)。因此,對ERS參與鐵死亡的發(fā)生、發(fā)展過程的研究可為肝臟疾病的防治提供有效靶點。
4.1 NAFLD NAFLD是21世紀全球最常見的肝病之一,其發(fā)病率仍在逐漸升高[23],但目前其發(fā)病機制尚不明確。NAFLD的疾病發(fā)展包含從單純性脂肪變性到非酒精性肝炎(NASH)的一系列疾病,并可進展為肝硬化和HCC,是一種代謝異常綜合征的肝損傷,其危險程度不言而喻。
姜嫄等[24]通過GEO數(shù)據(jù)庫的GSE89632數(shù)據(jù)集和鐵死亡數(shù)據(jù)庫(FerrDb)分析NAFLD肝組織中表達差異的鐵死亡基因主要在脂肪分化、氧化應(yīng)激、三價鐵(Fe3+)結(jié)合方面富集。而在ERS反應(yīng)的過程中,一些酶和轉(zhuǎn)運蛋白可使進入到細胞質(zhì)和線粒體基質(zhì)中的Fe3+轉(zhuǎn)變?yōu)镕e2+。Wei等[25]在研究砷誘導(dǎo)成年雄性 Sprague-Dawley大鼠發(fā)生NASH時發(fā)現(xiàn),鐵死亡關(guān)鍵因子GPX4、GSH下調(diào),ACSL4 mRNA 水平顯著上調(diào)且細胞線粒體膜破裂和嵴減少或消失,且鐵抑素-1治療砷誘導(dǎo)人肝細胞系L-02細胞時,細胞死亡率明顯下降,GPX4的蛋白表達上升,線粒體形態(tài)改
善等表明砷誘導(dǎo)NASH中有鐵死亡的參與。進一步實驗證實,抑制ACSL4是降低砷引發(fā)鐵死亡的關(guān)鍵。此外,研究也發(fā)現(xiàn)大鼠肝臟中磷酸化IRE1α和GRP78的水平上調(diào),提示ERS的發(fā)生。采用IRE1α 的強效抑制劑 Irestatin9389預(yù)處理細胞后,GPX4 蛋白表達恢復(fù),GSH水平顯著上調(diào),丙二醛含量下調(diào),表明砷可通過IRE1α-ACSL4通路參與鐵死亡,從而引起NASH。
4.2 HCC HCC是發(fā)生在肝細胞或肝內(nèi)膽管上皮細胞中的惡性腫瘤,其預(yù)后較差[26],對HCC發(fā)病機制的探索迫在眉睫。
目前,治療HCC的最有效方式仍是誘導(dǎo)肝癌細胞死亡[27]。Wang等[28]在研究雙氫青蒿素(dihydroartemisinin,DHA)治療肝癌時發(fā)現(xiàn),DHA誘導(dǎo)的4種磷脂酶C(phospholipase,PLC)細胞毒性均可被甲磺酸去鐵胺和鐵抑素-1治療,表明DHA可誘導(dǎo)PLC細胞鐵死亡。同時PERK、eIF2α、IRE1α等ERS相關(guān)因子的表達水平上調(diào),提示UPR信號通路的3個分支均被DHA激活,敲低UPR的3個傳感器后,PLC細胞活力增加。DHA通過增加陽離子轉(zhuǎn)運調(diào)控樣蛋白1抗體(cation transport regulator like protein 1,CHAC1)啟動子活性來誘導(dǎo)鐵死亡,CHAC1用于降解GSH。在CHAC1上存在ATF4、XBP1和ATF6等多個結(jié)合位點,當ATF4(或XBP1、ATF6)表達敲低后,DHA誘導(dǎo)鐵死亡的效應(yīng)顯著減弱。綜上所述,雙氫青蒿素可通過ATF4、XBP1或ATF6誘導(dǎo)的CHAC1表達上調(diào)來引發(fā)原發(fā)性肝癌細胞中的鐵死亡事件發(fā)生。碳離子輻射對HCC早/中期可提供更好的治療效果[29]。Zheng等[30]利用碳離子照射聯(lián)合索拉非尼治療后,HepG2細胞表現(xiàn)出線粒體萎縮、膜密度增加、波峰降低等鐵死亡的形態(tài)學(xué)特征,同時可見SLC7A11下調(diào),脂質(zhì)過氧化物產(chǎn)物——丙二醛水平上調(diào),研究表明,碳離子照射可誘導(dǎo)鐵死亡。GRP78/結(jié)合免疫球蛋白、PERK、ATF4 mRNA水平增加的同時,P53水平也隨之上調(diào),表明碳離子照射可誘發(fā)ERS,并促進P53基因表達。前期已有研究[31]表明,p53可通過轉(zhuǎn)錄抑制SLC7A11促進鐵死亡。因此,推測碳離子照射可誘導(dǎo)PERK-ATF4-P53通路來下調(diào)SLC7A11促進細胞鐵死亡。
4.3 其他肝病 藥物性肝損傷是指在藥物使用過程中,因藥物本身及其代謝產(chǎn)物或由于特殊體質(zhì)對藥物的超敏感性或耐受性降低所導(dǎo)致的肝損傷[32]。其中,對乙酰氨基酚是最主要的致病源,其中毒特征為脂質(zhì)過氧化物誘導(dǎo)的鐵死亡。Tak等[33]在研究肝細胞特異性Gα12蛋白過度表達可能會影響急性肝損傷的實驗中發(fā)現(xiàn),ERS可通過IRE1α-XBP1通路反式激活Gα12蛋白,并在后續(xù)一系列實驗中證實Gα12蛋白是通過誘導(dǎo)花生四烯酸12脂氧合酶 (arachidonate 12-lipoxygenase,ALOX12) 促進脂質(zhì)過氧化物產(chǎn)生誘發(fā)鐵死亡,結(jié)果表明,ERS中IRE1α-XBP1通路介導(dǎo)Gα12蛋白誘導(dǎo)ALOX12有助于鐵死亡。
酒精性肝病是一種大量飲酒導(dǎo)致的肝臟疾?。?4]。已有證據(jù)[35]發(fā)現(xiàn),在酒精誘導(dǎo)的肝損傷小鼠模型中,肝臟鐵過載可誘發(fā)ERS。但在ERS的早期階段,CHOP作為一種新型體內(nèi)鐵調(diào)素生產(chǎn)抑制劑,可顯著抑制鐵調(diào)素的表達[36],從而促進鐵死亡的發(fā)生。因此,酒精性肝病的治療也可將關(guān)注點轉(zhuǎn)向ERS與鐵死亡之間的關(guān)系。
5 小結(jié)
基于ERS參與鐵死亡探索肝病治療方法的模式將受到越來越多的關(guān)注。靶向鐵死亡在防止由脂質(zhì)過氧化、炎癥浸潤和免疫原性介導(dǎo)的各種肝損傷方面發(fā)揮重要作用,而ERS的參與也為肝病治療提供了更多的方法和可能。綜上所述,鐵死亡是一種在形式和形態(tài)上均有別于其他細胞死亡類型的調(diào)節(jié)性細胞死亡,可受ERS調(diào)控。目前,關(guān)于ERS參與鐵死亡的相關(guān)研究仍處于起步階段,因此,需要進一步明確ERS參與鐵死亡對肝臟病理生理學(xué)的影響,并積極探索ERS和鐵死亡在更多疾病特異性背景下的潛在調(diào)節(jié)機制。
利益沖突聲明:所有作者均聲明不存在利益沖突。
作者貢獻聲明:葉露負責查閱文章,撰寫論文;李秀芹、王建青負責修改文章并最后定稿。
參考文獻:
[1]WANG M, KAUFMAN RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease[J]. Nature, 2016, 529(7586): 326-335. DOI: 10.1038/nature17041.
[2]HETZ C, PAPA FR. The unfolded protein response and cell fate control[J]. Mol Cell, 2018, 69(2): 169-181. DOI: 10.1016/j.molcel.2017.06.017.
[3]HAN CC, WAN FS. New insights into the role of endoplasmic reticulum stress in breast cancer metastasis[J]. J Breast Cancer, 2018, 21(4): 354-362. DOI: 10.4048/jbc.2018.21.e51.
[4]UDDIN MS, TEWARI D, SHARMA G, et al. Molecular mechanisms of ER stress and UPR in the pathogenesis of alzheimers disease[J]. Mol Neurobiol, 2020, 57(7): 2902-2919. DOI: 10.1007/s12035-020-01929-y.
[5]HETZ C, ZHANG K, KAUFMAN RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 421-438. DOI: 10.1038/s41580-020-0250-z.
[6]KOPP MC, LARBURU N, DURAIRAJ V, et al. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor[J]. Nat Struct Mol Biol, 2019, 26(11): 1053-1062. DOI: 10.1038/s41594-019-0324-9.
[7]CALFON M, ZENG H, URANO F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature, 2002, 415(6867): 92-96. DOI: 10.1038/415092a.
[8]YOSHIDA H, MATSUI T, YAMAMOTO A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell, 2001, 107(7): 881-891. DOI: 10.1016/s0092-8674(01)00611-0.
[9]DONNELLY N, GORMAN AM, GUPTA S, et al. The eIF2α kinases: their structures and functions[J]. Cell Mol Life Sci, 2013, 70(19): 3493-3511. DOI: 10.1007/s00018-012-1252-6.
[10]MAMADY H, STOREY KB. Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels[J]. Arch Biochem Biophys, 2008, 477(1): 77-85. DOI: 10.1016/j.abb.2008.05.006.
[11]SANTAMARA PG, MAZN MJ, ERASO P, et al. UPR: An upstream signal to EMT induction in cancer[J]. J Clin Med, 2019, 8(5): 624. DOI: 10.3390/jcm8050624.
[12]KIM JM, KIM JS, KIM N, et al. Helicobacter pylori vacuolating cytotoxin induces apoptosis via activation of endoplasmic reticulum stress in dendritic cells[J]. J Gastroenterol Hepatol, 2015, 30(1): 99-108. DOI: 10.1111/jgh.12663.
[13]WALTER P, RON D. The unfolded protein response: from stress pathway to homeostatic regulation[J]. Science, 2011, 334(6059): 1081-1086. DOI: 10.1126/science.1209038.
[14]SHORE GC, PAPA FR, OAKES SA. Signaling cell death from the endoplasmic reticulum stress response[J]. Curr Opin Cell Biol, 2011, 23(2): 143-149. DOI: 10.1016/j.ceb.2010.11.003.
[15]DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
[16]STOCKWELL BR, FRIEDMANN ANGELI JP, BAYIR H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.
[17]KAGAN VE, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. DOI: 10.1038/nchembio.2238.
[18]JIANG L, HICKMAN JH, WANG SJ, et al. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses[J]. Cell Cycle, 2015, 14(18): 2881-2885. DOI: 10.1080/15384101.2015.1068479.
[19]JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344.
[20]CHEN D, FAN Z, RAUH M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner[J]. Oncogene, 2017, 36(40): 5593-5608. DOI: 10.1038/onc.2017.146.
[21]XU M, TAO J, YANG Y, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis[J]. Cell Death Dis, 2020, 11(2): 86. DOI: 10.1038/s41419-020-2299-1.
[22]PARK EJ, PARK YJ, LEE SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells[J]. Toxicol Lett, 2019, 303: 55-66. DOI: 10.1016/j.toxlet.2018.12.007.
[23]WANG CE, XU WT, GONG J, et al.Progress in the treatment of nonalcoholic fatty liver disease[J]. Clin J Med Offic, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
王彩娥, 許文濤, 宮建, 等. 非酒精性脂肪性肝病治療研究進展[J]. 臨床軍醫(yī)雜志, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
[24]JIANG Y, HUANG JM, LIANG YZ, et al. Basic study on the mechanism of iron death in non-alcoholic fatty liver disease[J]. J Guangxi Med Univ, 2022, 39(1): 13-20. DOI: 10.16190/j.cnki.45-1211/r.2022.01.003.
姜嫄, 黃錦明, 梁瑜禎, 等. 非酒精性脂肪性肝病鐵死亡機制的基礎(chǔ)研究[J]. 廣西醫(yī)科大學(xué)學(xué)報, 2022, 39(1): 13-20. DOI: 10.16190/j.cnki.45-1211/r.2022.01.003.
[25]WEI S, QIU T, WANG N, et al. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis[J]. Environ Res, 2020, 188: 109824. DOI: 10.1016/j.envres.2020.109824.
[26]
WANG KJ, HUANG ZH, SHI QL, et al. Research progress of precise hepatectomy for hepatocellular carcinoma[J]. China Med Herald, 2021, 18(23): 43-46.
王克凈, 黃祖鴻, 石清蘭, 等. 肝細胞癌精準肝切除的研究進展[J]. 中國醫(yī)藥導(dǎo)報, 2021, 18(23): 43-46.
[27]HASSANNIA B, VANDENABEELE P, VANDEN BERGHE T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6): 830-849. DOI: 10.1016/j.ccell.2019.04.002.
[28]WANG Z, LI M, LIU Y, et al. Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response-induced upregulation of CHAC1 expression[J]. Oncol Rep, 2021, 46(5): 240. DOI: 10.3892/or.2021.8191.
[29]SPYCHALSKI P, KOBIELA J, ANTOSZEWSKA M, et al. Patient specific outcomes of charged particle therapy for hepatocellular carcinoma - A systematic review and quantitative analysis[J]. Radiother Oncol, 2019, 132: 127-134. DOI: 10.1016/j.radonc.2018.12.012.
[30]ZHENG X, LIU B, LIU X, et al. PERK regulates the sensitivity of hepatocellular carcinoma cells to high-LET carbon ions via either apoptosis or ferroptosis[J]. J Cancer, 2022, 13(2): 669-680. DOI: 10.7150/jca.61622.
[31]KANG R, KROEMER G, TANG D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133: 162-168. DOI: 10.1016/j.freeradbiomed.2018.05.074.
[32]WANG YW, LIANG YR. Research progress on liver transplantation for drug-induced liver injury[J]. Ogran Transplant, 2022, 13(3): 338-343. DOI: 10.3969/j.issn.1674-7445.2022.03.009.
王硯偉, 梁雨榮. 藥物性肝損傷肝移植治療進展[J]. 器官移植, 2022, 13(3): 338-343. DOI: 10.3969/j.issn.1674-7445.2022.03.009.
[33]TAK J, KIM YS, KIM TH, et al. Gα12 overexpression in hepatocytes by ER stress exacerbates acute liver injury via ROCK1-mediated miR-15a and ALOX12 dysregulation[J]. Theranostics, 2022, 12(4): 1570-1588. DOI: 10.7150/thno.67722.
[34]European Association for the Study of the Liver. EASL clinical practice guidelines: Management of alcohol-related liver disease[J]. J Hepatol, 2018, 69(1): 154-181. DOI: 10.1016/j.jhep.2018.03.018.
[35]CZAJA AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications[J]. Aliment Pharmacol Ther, 2019, 49(6): 681-701. DOI: 10.1111/apt.15173.
[36]MUELLER K, SUNAMI Y, STUETZLE M, et al. CHOP-mediated hepcidin suppression modulates hepatic iron load[J]. J Pathol, 2013, 231(4): 532-542. DOI: 10.1002/path.4221.
收稿日期:
2022-08-24;錄用日期:2022-10-08
本文編輯:邢翔宇