董佳雪
[摘 ?要] 試卷講評(píng)課是高中數(shù)學(xué)課堂教學(xué)的重要課型之一,通過(guò)有效講評(píng)教師不僅可以了解學(xué)生的實(shí)際學(xué)情,幫助學(xué)生鞏固知識(shí),還可以檢驗(yàn)教學(xué)效果,改進(jìn)教學(xué)方法,從而有效提升教學(xué)效率. 講評(píng)試卷時(shí),教師要重視發(fā)揮學(xué)生的主體性,通過(guò)學(xué)生講評(píng)和教師講評(píng)相結(jié)合的方式提高講評(píng)效果以及教學(xué)有效性.
[關(guān)鍵詞] 試卷講評(píng)課;學(xué)生講評(píng);教師講評(píng)
在傳統(tǒng)的試卷講評(píng)中,部分教師喜歡以講授為主,教學(xué)形式單一,學(xué)生參與的積極性不高,試卷講評(píng)課的價(jià)值難以體現(xiàn),影響了課堂教學(xué)效果. 基于此,教學(xué)中教師應(yīng)想辦法讓學(xué)生參與其中,盡量呈現(xiàn)學(xué)生的思維過(guò)程,以此通過(guò)有效的師生互動(dòng)來(lái)提高學(xué)生學(xué)習(xí)的積極性,提高教學(xué)效益. 筆者在此淺談對(duì)試卷講評(píng)的幾點(diǎn)認(rèn)識(shí),若有不足,請(qǐng)指正.
課前準(zhǔn)備
1. 教師的準(zhǔn)備
在教學(xué)中,部分教師沒(méi)有認(rèn)真講評(píng),沒(méi)有嘗試從學(xué)生的角度思考,而是直接將“標(biāo)準(zhǔn)答案”呈現(xiàn)給學(xué)生,從而使課堂變得生硬、低效. 為解決這樣的問(wèn)題,教學(xué)前教師應(yīng)做好以下準(zhǔn)備工作:
(1)獨(dú)立完成試卷解答,認(rèn)真分析試卷,把握命題立意,尋求多種方法解決問(wèn)題,從而做到心中有數(shù),有的放矢.
(2)認(rèn)真批改試卷,做好試卷的分析和統(tǒng)計(jì). 根據(jù)分析和統(tǒng)計(jì)了解學(xué)生的基本學(xué)情,分析學(xué)生學(xué)習(xí)中存在的問(wèn)題,了解學(xué)生對(duì)各類知識(shí)點(diǎn)的掌握情況,以此為教學(xué)方案的制定提供依據(jù).
(3)根據(jù)試卷分析和學(xué)生考試反饋確定主講內(nèi)容,題目的選擇應(yīng)有針對(duì)性,做到重點(diǎn)突出.
(4)對(duì)于一些錯(cuò)誤率較高、得分率低的題目,教師應(yīng)設(shè)計(jì)一些變式題,以此通過(guò)有效變式揭示題目的本質(zhì),讓學(xué)生真懂真會(huì).
通過(guò)以上分析、整理,教師對(duì)試卷內(nèi)容和學(xué)生學(xué)情就有了整體的、全面的把握,知道哪些內(nèi)容可以略講,哪些內(nèi)容需要重點(diǎn)講、展開(kāi)講,真正做到心中有數(shù).
2. 學(xué)生的準(zhǔn)備
教學(xué)中筆者發(fā)現(xiàn),很多學(xué)生是考前“精雕細(xì)刻”,考后“輕描淡寫”,錯(cuò)誤認(rèn)為考試是某學(xué)段的一個(gè)終結(jié). 因此,教學(xué)中教師要改變學(xué)生這一錯(cuò)誤觀念,引導(dǎo)學(xué)生重視考后反思,及時(shí)修補(bǔ)知識(shí)漏缺,以此避免或減少錯(cuò)誤再次發(fā)生. 講評(píng)前教師可以安排學(xué)生完成以下工作:
(1)獨(dú)立思考. 試卷下發(fā)后,學(xué)生要通覽試卷,并自我分析和自我糾錯(cuò). 學(xué)生自我分析時(shí)應(yīng)重視錯(cuò)因分析,只有找到真正的錯(cuò)因,才能對(duì)癥下藥,從而避免類似錯(cuò)誤再次發(fā)生.
(2)分組討論. 教學(xué)中教師組織學(xué)生分組討論,充分發(fā)揮學(xué)生個(gè)體差異的優(yōu)勢(shì),讓學(xué)生共同分析出錯(cuò)的原因,探討解決問(wèn)題的方法. 這樣通過(guò)分組討論既可以汲取他人的教訓(xùn),也可以吸收他人的經(jīng)驗(yàn),以此提升解題技能.
通過(guò)課前的分析、思考、討論等活動(dòng),學(xué)生對(duì)試卷、對(duì)自己一旦有了清晰的認(rèn)識(shí),就可以快速地融入課堂,有效提高課堂教學(xué)效果.
講評(píng)過(guò)程
在講評(píng)過(guò)程中,教師要改變單一的“以師為主”的教學(xué)模式,給學(xué)生預(yù)留一些時(shí)間和空間展示其學(xué)習(xí)成果,這樣既可以提高學(xué)生參與課堂的積極性,還可以讓教師更好地理解學(xué)生,以便教師及時(shí)調(diào)整教學(xué)策略,改進(jìn)教學(xué)方法,提高教學(xué)有效性. 基于此,試卷講評(píng)可以通過(guò)學(xué)生講評(píng)和教師講評(píng)相結(jié)合的方式來(lái)實(shí)施,在有效互動(dòng)中,提高教學(xué)效益.
1. 學(xué)生講評(píng)
(1)對(duì)出錯(cuò)率高的題目進(jìn)行講評(píng)
課前學(xué)生針對(duì)出錯(cuò)率高的題目進(jìn)行了分組討論,找到了出錯(cuò)的原因及解決策略,此時(shí)教師可以預(yù)留時(shí)間讓學(xué)生說(shuō)一說(shuō)當(dāng)時(shí)是怎么想的,正確的解題思路是什么,談一談如何避免再錯(cuò),以此提高學(xué)生的參與度,檢測(cè)課前準(zhǔn)備成果.
例1 過(guò)原點(diǎn)且與圓(x-1)2+(y+)2=1相切的直線方程是______.
例1的難度不大,但得分率不高,主要是因?yàn)閷W(xué)生解題時(shí)漏掉了直線斜率不存在的情況而使答案出現(xiàn)了漏解——大多數(shù)學(xué)生給出的答案為y=-x. 學(xué)生通過(guò)自我剖析,認(rèn)識(shí)到之所以出現(xiàn)錯(cuò)誤,是因?yàn)榛A(chǔ)知識(shí)掌握不牢,分類討論意識(shí)不強(qiáng). 當(dāng)學(xué)生自我分析和自我糾錯(cuò)后,教師可以指出,解決此類問(wèn)題時(shí)不妨運(yùn)用數(shù)形結(jié)合思想方法,“以形助數(shù)”不僅可以優(yōu)化解題思路,而且可以有效避免漏解情況的發(fā)生.
(2)對(duì)解答中斷的題目進(jìn)行講評(píng)
考試時(shí)不少教師發(fā)現(xiàn),很多學(xué)生的解題思路已經(jīng)呈現(xiàn),卻沒(méi)有將問(wèn)題解答到底. 對(duì)于這種情況,教師可以讓學(xué)生給出沒(méi)有解答到底的原因,進(jìn)而根據(jù)具體原因進(jìn)行針對(duì)性的強(qiáng)化,以此提高解題效果.
例2 △ABC是邊長(zhǎng)為1的正三角形,沿平行于BC的直線作一條直線,將△ABC分成兩部分,其中一部分為梯形,記S=,則S的最小值是______.
從學(xué)生反饋來(lái)看,大多數(shù)學(xué)生根據(jù)題意得S=·(0 思路1:利用導(dǎo)數(shù)法求函數(shù)的最值. 對(duì)函數(shù)S求導(dǎo),令S′=0求出x的值,根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,進(jìn)而求得最小值. 思路2:利用一元二次函數(shù)的性質(zhì)求最小值. 令3-x=t,通過(guò)換元法將S轉(zhuǎn)化為關(guān)于t的一元二次函數(shù),應(yīng)用一元二次函數(shù)的性質(zhì)求最小值. 若解題時(shí)能夠?qū)⑦@兩種思路進(jìn)行到底,都可以得到最終答案,不過(guò)事與愿違,很多學(xué)生并沒(méi)有完成. 不少學(xué)生認(rèn)為出現(xiàn)錯(cuò)誤的原因是自己的運(yùn)算能力不強(qiáng),意志不堅(jiān)定,沒(méi)有深度思考. 因此,他們認(rèn)為在平時(shí)學(xué)習(xí)中應(yīng)重視提高計(jì)算能力,磨煉自己的意志,要有將問(wèn)題解答到底的決心. 同時(shí),解題時(shí)要勤于思考,學(xué)會(huì)從不同角度分析,找到適合自己的解題方案. 當(dāng)然,學(xué)生講評(píng)并不局限于以上兩種情況,對(duì)于一些獨(dú)特解法、典型錯(cuò)誤等也可以讓學(xué)生講評(píng),以此通過(guò)有效互動(dòng)豐富學(xué)生認(rèn)知,提高課堂有效性. 2. 教師講評(píng) 教師作為課堂教學(xué)的組織者和引導(dǎo)者,要結(jié)合課前分析和學(xué)生反饋有選擇地進(jìn)行重點(diǎn)講評(píng). 教師講評(píng)時(shí)應(yīng)重視夯實(shí)基礎(chǔ)、滲透思想、提煉方法,善于通過(guò)一題多解、一題多變等教學(xué)手段進(jìn)行引導(dǎo),以此培養(yǎng)學(xué)生舉一反三的能力,提高學(xué)生的解題素養(yǎng). 例3 在△ABC中,若AB=2,AC=BC,則S△ABC的最大值是______. 例3是一個(gè)比較典型的問(wèn)題,學(xué)生的出錯(cuò)率較高. 教師將此題作為重點(diǎn)內(nèi)容進(jìn)行講評(píng),可以捕捉學(xué)生的錯(cuò)誤點(diǎn)、模糊點(diǎn),通過(guò)深度剖析幫助學(xué)生形成正確的解題策略. 師:誰(shuí)來(lái)說(shuō)一說(shuō),該題你想如何求解? 生:我想利用函數(shù)思想方法求最值,不過(guò)最終沒(méi)有得到答案. 師:是一個(gè)不錯(cuò)的思路,還有其他的解決方案嗎? 通過(guò)充分交流后,教師呈現(xiàn)了解題過(guò)程: 設(shè)BC=x,則AC=x,S△ABC=AB·BC·sinB=×2x. 又cosB===,將其代入上式并整理得S△ABC=. 由三角形的三邊關(guān)系得 x+x>2, x+2>x, 解得2-2 給出解題過(guò)程后,教師預(yù)留時(shí)間讓學(xué)生總結(jié)自己出現(xiàn)錯(cuò)誤的原因,同時(shí)又提出了這樣的問(wèn)題:以上思路可以求解,不過(guò)運(yùn)算量較大,有沒(méi)有什么辦法可以減少計(jì)算量呢? 學(xué)生通過(guò)思考、交流沒(méi)有想到更好的辦法,接下來(lái)教師給出了這樣兩個(gè)題目讓學(xué)生對(duì)比分析: (1)已知M(x,y)與兩定點(diǎn)O(0,0),A(3,0)的距離比為,則點(diǎn)M的坐標(biāo)應(yīng)滿足什么關(guān)系? (2)已知點(diǎn)M到橢圓+=1的左、右焦點(diǎn)的距離比為2∶3,求點(diǎn)M的軌跡方程. 以上題目為教材例題,學(xué)生輕松就解決了問(wèn)題. 問(wèn)題解決后,教師預(yù)留時(shí)間讓學(xué)生回頭看例3,此時(shí)學(xué)生很容易就發(fā)現(xiàn),例3可以改編為:在平面直角坐標(biāo)系xOy中,A(-1,0),B(1,0),且AC=BC,求點(diǎn)C的軌跡方程. 改編后,問(wèn)題便可迎刃而解. “改編”這個(gè)新方法能有效優(yōu)化運(yùn)算過(guò)程,提高解題效率. 問(wèn)題解決后,教師還可以引導(dǎo)學(xué)生向一般化轉(zhuǎn)化,由此引出阿波羅尼斯圓. 在此次講評(píng)中,教師以學(xué)生的思維為起點(diǎn),順著學(xué)生的思路完善了解題過(guò)程. 解題后,教師經(jīng)過(guò)錯(cuò)因分析發(fā)現(xiàn),學(xué)生解題出錯(cuò)的最大原因其實(shí)就在運(yùn)算中,由此引發(fā)了優(yōu)化運(yùn)算過(guò)程的思考. 為了讓學(xué)生能夠自主找到解決問(wèn)題的又一方法,教師呈現(xiàn)了教材中的經(jīng)典案例,由此通過(guò)有效啟發(fā)讓學(xué)生輕松地解決了問(wèn)題. 在此基礎(chǔ)上,教師引導(dǎo)學(xué)生進(jìn)一步推廣,發(fā)散了學(xué)生的思維. 至此,通過(guò)系統(tǒng)分析,學(xué)生知道了題目的背景,掌握了解決問(wèn)題的有效方法,豐富了認(rèn)知內(nèi)涵,促進(jìn)了分析問(wèn)題和解決問(wèn)題能力的提升. 教師講評(píng)時(shí)要摒棄“就題論題”的單一講授,要從整體、全局的角度思考問(wèn)題,以此幫助學(xué)生建構(gòu)完善的知識(shí)體系,提高學(xué)生的解題能力. 課后整理 課后整理是試卷講評(píng)的關(guān)鍵一步. 教師可以讓學(xué)生將失分情況做成統(tǒng)計(jì)表,并制定解決措施和努力方向. 同時(shí),讓學(xué)生有效反思學(xué)習(xí)中存在的問(wèn)題及考試的收獲,并將錯(cuò)題整理成錯(cuò)題集,寫出錯(cuò)因、錯(cuò)解、正解及相應(yīng)的變式題,以此通過(guò)有效的總結(jié)歸納,提升學(xué)生的應(yīng)試水平,優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),提高學(xué)生的解題效率. 總之,試卷講評(píng)不是簡(jiǎn)單的錯(cuò)題訂正,教學(xué)過(guò)程中教師不能只講結(jié)果,還應(yīng)關(guān)注錯(cuò)因、關(guān)注過(guò)程、關(guān)注思想方法,善于通過(guò)變式、辯論等方式來(lái)優(yōu)化學(xué)生認(rèn)知,提升學(xué)生的遷移能力,落實(shí)學(xué)生的數(shù)學(xué)素養(yǎng).