朱小紅?鄭怡凡? 張晶?李妍?司書(shū)毅
摘要: 革蘭陰性菌耐藥問(wèn)題是目前全球面對(duì)的最嚴(yán)重的公共衛(wèi)生問(wèn)題之一,耐藥菌的不斷出現(xiàn)與傳播使得細(xì)菌感染的預(yù)防與治療面臨嚴(yán)峻挑戰(zhàn)。外膜蛋白(outer membrane proteins, OMPs)是革蘭陰性菌特有的外膜結(jié)構(gòu)的重要蛋白,對(duì)于外膜的形成和穩(wěn)定起到關(guān)鍵的作用,而OMPs在外膜上的正確折疊和組裝是其功能正常發(fā)揮的基礎(chǔ)。β-桶狀蛋白折疊組裝輔助因子(β-barrel assembly machine, BAM)即BAM復(fù)合體在外膜蛋白的折疊裝配中起到至關(guān)重要的作用。本文對(duì)BAM復(fù)合體的結(jié)構(gòu)與功能,以及靶向BAM復(fù)合體的抗革蘭陰性菌先導(dǎo)藥物研究進(jìn)展等方面進(jìn)行綜合論述,以期為新型抗革蘭陰性菌藥物的發(fā)現(xiàn)提供參考。
關(guān)鍵詞: 革蘭陰性菌;耐藥性;OMPs;BAM復(fù)合體
中圖分類號(hào):R978.1 文獻(xiàn)標(biāo)志碼:A
Research progress of BAM complex and its targeted anti-Gram-negative
bacteria drugs
Zhu Xiao-hong, Zheng Yi-fan, Zhang Jing, Li Yan, and Si Shu-yi
(Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100050)
Abstract The problem of drug resistance of Gram-negative bacteria is one of the most serious public health problems facing the world. The continuous emergence and spread of drug-resistant bacteria has brought serious challenges to the prevention and treatment of bacterial infections. Outer membrane proteins (OMPs) are important components unique to the outer membrane of Gram-negative bacteria, which play a key role in the formation and stability of the outer membrane. The correct folding and assembly of OMPs on the outer membrane is the basis for their normal function. The β-barrel assembly machine (BAM complex) plays a crucial role in the folding and assembly of outer membrane proteins. This review comprehensively discusses the structure and function of BAM complexes, as well as the research progress of anti-Gram-negative bacteria leading drugs targeting BAM complexes, in order to provide references for the discovery of new anti-Gram-negative bacteria drugs.
Key words Gram-negative bacteria; Drug resistance; OMPs; BAM complex
多重耐藥(multidrug resistant, MDR)細(xì)菌是當(dāng)前對(duì)公眾健康最大的威脅之一,在過(guò)去的20年中,由這些病原體引起的感染變得日趨嚴(yán)重,是高發(fā)病率和死亡率以及長(zhǎng)期住院的重要因素之一[1-3]。其中,革蘭陰性菌耐藥情況尤為嚴(yán)重,美國(guó)疾病預(yù)防控制中心(CDC)發(fā)布的報(bào)告中威脅公共衛(wèi)生的14種病原體其中有9種是革蘭陰性菌[2-3]。藥物作用靶標(biāo)發(fā)生改變而引起的耐藥是主要耐藥機(jī)制之一,因此針對(duì)新靶標(biāo),發(fā)現(xiàn)新型抗生素對(duì)抗菌藥物的研發(fā)具有重要的意義。
革蘭陰性菌外膜(outer membrane,OM)是革蘭陰性菌特有的結(jié)構(gòu),它包圍在菌體的最外層,由外層脂多糖和內(nèi)層非對(duì)稱脂質(zhì)雙分子層及外膜蛋白組成[4]。OM具有選擇滲透性,保護(hù)菌體免受外部環(huán)境的有害影響,也是造成革蘭陰性菌固有耐藥的關(guān)鍵因素[5-8]。外膜蛋白(outer membrane proteins, OMPs)是存在于外膜上的重要蛋白,對(duì)于外膜的組裝、穩(wěn)定以及選擇性滲透功能起到非常關(guān)鍵的作用[5,8-9]。OMPs在外膜中多數(shù)以β-折疊的形式存在,這種折疊結(jié)構(gòu)是其穩(wěn)定存在于外膜并正常發(fā)揮其功能的重要結(jié)構(gòu)基礎(chǔ)。BAM復(fù)合體在OMPs折疊、插入外膜及其在外膜的定位組裝中起著至關(guān)重要的作用。靶向破壞BAM復(fù)合體可能會(huì)造成OMPs的異常,進(jìn)而破壞外膜的形成,未折疊外膜蛋白在周質(zhì)空間中的堆積也對(duì)菌體的生長(zhǎng)產(chǎn)生毒性,導(dǎo)致菌體死亡。此外,營(yíng)養(yǎng)物質(zhì)獲取和宿主細(xì)胞粘附等基本細(xì)胞過(guò)程使OMPs對(duì)感染的發(fā)病機(jī)制尤為重要,靶向破壞BAM的功能也將下調(diào)毒力因子的產(chǎn)生,從而抑制病原體對(duì)抗宿主免疫反應(yīng)的能力。因此,以BAM復(fù)合體為靶標(biāo)的抗革蘭陰性菌藥物的研究受到越來(lái)越多的關(guān)注。本文將對(duì)BAM復(fù)合體的結(jié)構(gòu)與功能和作為抗菌藥物靶標(biāo)的潛在可能性以及目前以BAM復(fù)合體為靶標(biāo)的抗革蘭陰性菌藥物研究進(jìn)展等方面進(jìn)行綜合論述。
1 BAM復(fù)合體
BAM復(fù)合體由多個(gè)組分組成,其構(gòu)成因物種不同而有所差異,但是絕大多數(shù)革蘭陰性菌中的BAM復(fù)合物包含BamA、B、C、D和E 5個(gè)蛋白(圖1)[10-17]。BamA是BAM復(fù)合體的核心成分,是外膜蛋白在外膜上折疊和裝配的主要場(chǎng)所。BamA在革蘭陰性菌中高度保守,是菌體生存的必需蛋白[10-15]。除了BamA之外,多數(shù)革蘭陰性菌中的BAM復(fù)合物還包括4種脂蛋白BamB、BamC、BamD和BamE,它們通過(guò)直接或間接與BamA相互作用錨定在周質(zhì)空間中[18-21]。在這4個(gè)蛋白中,BamD在絕大多數(shù)革蘭陰性菌中是必需且保守的,BamB和BamE主要存在于α-,β-和γ-變形桿菌中,而B(niǎo)amC僅存在于β-和γ-變形桿菌中[10-15]。在α-變形桿菌中發(fā)現(xiàn)了一個(gè)新的脂蛋白亞基BamF[12]。
BamA本身也是一個(gè)由16條β-折疊鏈組成的外膜蛋白,是Omp85超家族的成員。它的C-末端為整合到外膜的16鏈β-桶結(jié)構(gòu)域,其中β1和β16接縫的橫向分離是BAM功能所需的,未折疊的底物蛋白可沿BamA蛋白β-桶的管腔橫向穿過(guò)而整合到OM中[22]。BamA的N-末端伸向周質(zhì)空間,由多肽轉(zhuǎn)運(yùn)相關(guān)(polypeptide transport-Ass[11,22-24], POTRA)重復(fù)序列組成[23-24]。來(lái)自不同細(xì)菌物種的BamA蛋白的POTRA結(jié)構(gòu)域數(shù)目不同,但是包括大腸埃希菌在內(nèi)的大多數(shù)革蘭陰性菌的BamA蛋白具有5個(gè)POTRA結(jié)構(gòu)域,從N-末端到C-末端方向依次被命名為POTRA1-POTRA5[23-25]。POTRA結(jié)構(gòu)有高/低柔韌性的不同區(qū)域,該結(jié)構(gòu)被認(rèn)為是BAM復(fù)合體輔助蛋白的支架[22,25-28],募集結(jié)合其他成分共同組成BAM復(fù)合體。
BamD包含5個(gè)四肽重復(fù)(tetratricopeptide repeat, TPR)結(jié)構(gòu)域,其直接與外膜上的BamA的POTRA5結(jié)合[18,29-33]。BamD的N-末端結(jié)構(gòu)域接收從周質(zhì)空間伴侶分子轉(zhuǎn)運(yùn)的未折疊外膜蛋白(uOMPs),與uOMPs羧基端的β信號(hào)肽結(jié)合,以促進(jìn)其遞送至BamA的β-桶結(jié)構(gòu)域后組裝/整合到OM中[34-35]。在細(xì)胞質(zhì)中,BamD也能夠與未折疊的BamA蛋白C-末端的β信號(hào)肽結(jié)合,促進(jìn)BamA蛋白定位到外膜進(jìn)行折疊組裝[36]。BamD的C-末端結(jié)構(gòu)域?qū)ζ渑cBamA,BamC和BamE蛋白的相互作用至關(guān)重要[26,37-40]。
單獨(dú)的BamB、C和E對(duì)于細(xì)胞生存是非必需的,但它們的整體缺失會(huì)嚴(yán)重?fù)p害細(xì)胞生長(zhǎng)和OMP的生成[41-42]。BamB具有八葉β-螺旋折疊,它與BamA的POTRA結(jié)構(gòu)域主要沿著POTRA2和POTRA3之間的鉸鏈區(qū)相互作用[43-44]。有研究認(rèn)為BamB是一種支架蛋白,可以最佳定向BamA的柔性周質(zhì)結(jié)構(gòu)域,使其與其他BAM組分和/或底物相互作用,并有助于將底物從分子伴侶中轉(zhuǎn)移至BAM[39,45-48]。BamA-BamB相互作用復(fù)合物對(duì)于在外膜形成有組織的組裝區(qū)非常重要,但是具體機(jī)制有待深入研究[39,45-48]。
BamC的N-末端帶有一個(gè)高度保守的區(qū)域,存在于周質(zhì)中,其C-末端結(jié)構(gòu)域暴露在菌體的表面,因此BamC的拓?fù)浣Y(jié)構(gòu)仍然是一個(gè)有爭(zhēng)議的話題[43-44,49]。BamC的N-末端柔性結(jié)構(gòu)域只有在與BamD結(jié)合時(shí)才能觀察到,該結(jié)構(gòu)直接與BamD相互作用,但尚未報(bào)道存在穩(wěn)定相互作用,因此BamC以及BamC與BamD相互作用在BAM中的作用機(jī)制尚不明確[32-33,50-51]。BamE具有ααβββ折疊結(jié)構(gòu),與BamD直接相互作用,并通過(guò)橋接其他相互作用來(lái)實(shí)現(xiàn)增強(qiáng)BamD與BamA的結(jié)合[52-55]。BamB-E與BamA均沿POTRA域和桶狀結(jié)構(gòu)域的基部相互作用,其中BamCDE復(fù)合體主要與POTRA5和部分POTRA4相互作用[53-57]。與BamC相似,盡管BamE不是生存必需蛋白,但BAM中某些底物或其他未知功能可能需要BamE參與,缺失BamE會(huì)阻礙OMP/RcsF復(fù)合物的裝配,然而B(niǎo)amE的作用機(jī)制仍然有待確證[42,52,54,56-59]。
2 BAM介導(dǎo)的OMP蛋白折疊機(jī)制
雖然已經(jīng)明確BAM復(fù)合體在OMPs的折疊過(guò)程中起到重要的作用,但是BAM復(fù)合體在這個(gè)過(guò)程中扮演的角色目前并不是特別的清晰,其介導(dǎo)的OMP生物折疊組裝機(jī)制目前主要有兩種理論[60-61]。一種是BamA輔助機(jī)制,該機(jī)制認(rèn)為BamA作用下會(huì)造成其周邊外膜的不穩(wěn)定性,BAM復(fù)合體在接收了分子伴侶穩(wěn)定的OMP底物后,催化其插入外膜中[62-64]。一些OMPs體外折疊研究支持這一觀點(diǎn),這些研究發(fā)現(xiàn)單一的BamA能夠有效地促進(jìn)OMPs在外膜上的折疊,而且這種折疊催化作用在變薄或者不穩(wěn)定的膜層中更加有效[25]。在此過(guò)程中,關(guān)于BamA的狀態(tài)存在兩種矛盾的觀點(diǎn),一種觀點(diǎn)認(rèn)為處于穩(wěn)定狀態(tài)的BamA對(duì)于OMPs插入外膜是必須的,但是另外一個(gè)觀點(diǎn)認(rèn)為BamA在這個(gè)過(guò)程中需要構(gòu)象的改變,尤其是它的側(cè)縫區(qū)域。一種更為激進(jìn)的BamA輔助機(jī)制認(rèn)為OMPs在插入外膜之前已經(jīng)在周質(zhì)空間中部分或者完全完成折疊,這種折疊需要分子伴侶和(或)BAM復(fù)合體的介導(dǎo)或協(xié)助[25]。
另外一種可以稱作BamA萌芽機(jī)制,在這種機(jī)制中,分子伴侶穩(wěn)定的未折疊OMP的β信號(hào)區(qū)域識(shí)別BAM復(fù)合體,BamA折疊桶狀結(jié)構(gòu)的第一條鏈的裸露邊緣作為新OMP折疊的模板鏈與OMP結(jié)合形成BamA:OMP雜交體,然后每條添加的鏈以此為核心形成下一條鏈。當(dāng)新產(chǎn)生的OMP的β信號(hào)區(qū)域從BamA桶的第一鏈解離,并且以更高的親和力和特異性結(jié)合到它自己的第一條鏈時(shí),OMP的折疊終止。為了防止在外膜上形成超核,新OMP將經(jīng)歷一個(gè)“萌芽”或氣泡樣冒出而從BamA的核心桶狀結(jié)構(gòu)域中脫離。新OMP的兩親鏈的極性殘基朝向內(nèi),疏水殘基朝向桶外,介導(dǎo)與膜的相互作用。這種理論來(lái)源于多項(xiàng)研究支持,研究發(fā)現(xiàn)BamA蛋白桶狀結(jié)構(gòu)的側(cè)向會(huì)發(fā)生向外張開(kāi)和向內(nèi)張開(kāi)的構(gòu)象轉(zhuǎn)換。通過(guò)交聯(lián)阻止側(cè)向接縫開(kāi)口會(huì)阻礙BAM的功能,也表明BamA的作用應(yīng)該不僅僅是局部破壞膜的穩(wěn)定[56,65]。此外,所有OMP的β-桶狀結(jié)構(gòu)域均為反平行鏈的線性排列形式,這表明折疊過(guò)程是系統(tǒng)的而不是隨機(jī)的[63,66-70]。
3? ? 以BAM復(fù)合物為靶標(biāo)的抗革蘭陰性菌藥物研究進(jìn)展
隨著B(niǎo)AM功能和結(jié)構(gòu)的解析,其作為抗革蘭陰性菌藥物靶標(biāo)受到越來(lái)越多的關(guān)注,目前已發(fā)現(xiàn)多個(gè)化合物通過(guò)作用于BAM復(fù)合體發(fā)揮抗菌活性[66,69,71]。BamA和BamD是BAM復(fù)合體中最重要的核心組成部分,存在于所有的革蘭陰性菌中,并具有高度的保守性,當(dāng)其功能受到破壞時(shí)細(xì)菌無(wú)法存活[55,72],其他Bam蛋白的單獨(dú)缺失對(duì)菌絲生長(zhǎng)沒(méi)有致死性,因此以BAM為靶標(biāo)的抗菌藥物研究目前集中在BamA和BamD這兩個(gè)組分(圖2~3)[73]。
3.1 以BamA為靶標(biāo)的抗革蘭陰性菌藥物
BamA是BAM復(fù)合體的核心成分,并且它的β-折疊結(jié)構(gòu)域延伸到外膜外側(cè),因此靶向BamA的化合物有可能不需要跨膜發(fā)揮其抗菌作用,這克服了外膜帶來(lái)的固有耐藥性,因此BamA作為抗菌藥物篩選靶標(biāo)受到更多的關(guān)注。隨著B(niǎo)amA結(jié)構(gòu)和功能的深入解析,已發(fā)現(xiàn)了多個(gè)針對(duì)BamA的具有抗菌活性的化合物。Urfer等[69]研究發(fā)現(xiàn),新型β-hairpin大環(huán)肽JB-95有較強(qiáng)的抗菌活性,尤其對(duì)大腸埃希菌的MIC為0.25 μg/mL。它能夠選擇性破壞大腸埃希菌OM,上調(diào)OM應(yīng)激反應(yīng)基因ClpX、DegP、PhoQ和RstB的表達(dá)。應(yīng)用JB-95的光反應(yīng)性衍生物檢測(cè)發(fā)現(xiàn)其能夠與BamA和LptD(LPS轉(zhuǎn)運(yùn)蛋白D)結(jié)合,同時(shí)下調(diào)外膜上OMPs的含量,這些結(jié)果提示其可能通過(guò)靶向BAM復(fù)合體發(fā)揮抗菌活性。Storek等[71]在BamA抗體的研究中篩選鑒定出單克隆抗體(monoclonal antibodies, mAbs)MAB1,該抗體在體外對(duì)大腸埃希菌表現(xiàn)出殺菌活性。MAB1能夠識(shí)別結(jié)合BamA細(xì)胞外的loop4表位,并且能夠抑制BamA的外膜蛋白折疊功能,由于MAB1的抗菌活性具有抗原表位的局限性,這限制了它在臨床治療的潛在應(yīng)用性,但是該抗體的研究為新型的抗體類抗生素研發(fā)提供了很好的思路。Ghequire等[74]在一項(xiàng)對(duì)凝集素樣細(xì)菌素 (lectin-like bacteriocins, LlpAs)的研究中發(fā)現(xiàn),在銅綠假單胞菌中,BamA表面暴露的Loop6結(jié)構(gòu)是細(xì)菌素靶標(biāo)識(shí)別的關(guān)鍵,LlpAs可以靶向BamA引起B(yǎng)AM機(jī)制損傷,從而發(fā)揮其殺菌作用。Hart等[75]報(bào)道了BamA的一種小分子抑制劑MRL-494,該化合物作用下外膜上的多個(gè)OMPs含量下降,菌體通透性改變,而B(niǎo)amA的突變株對(duì)該化合物產(chǎn)生耐藥。該化合物并未進(jìn)入到菌體內(nèi),因此推測(cè)該化合物可能是通過(guò)直接結(jié)合BamA的β-berral結(jié)構(gòu)域從而抑制OMPs的合成,或者通過(guò)影響脂多糖層的穩(wěn)定性進(jìn)而影響B(tài)AM復(fù)合體的功能。MRL-494作用于外膜發(fā)揮抗菌活性,避免了外膜的屏障作用和外排泵的影響,因此是一個(gè)極具潛力的抗革蘭陰性菌先導(dǎo)化合物。Imai等[76]從Photorhabdus分離株中發(fā)現(xiàn)了新抗生素darobactin,它對(duì)多種臨床上重要的革蘭陰性致病菌具有良好的抑制活性,對(duì)重要的大腸埃希菌和肺炎克雷伯菌的臨床耐藥株也具有良好的殺傷活性,MIC在2~16 μg/mL。但是該化合物對(duì)革蘭陽(yáng)性細(xì)菌和哺乳動(dòng)物細(xì)胞在128 μg/mL未見(jiàn)生長(zhǎng)抑制活性。機(jī)制研究發(fā)現(xiàn)darobactin作用下菌體的外膜的完整性受到破壞,進(jìn)一步深入研究發(fā)現(xiàn)這種外膜的損傷與BamA相關(guān)。Darobactin與BamA結(jié)合,可穩(wěn)定BamA的側(cè)向封閉構(gòu)象阻止其打開(kāi),使得OMPs底物不能在外膜中正確折疊組裝,進(jìn)而抑制了外膜的形成。該化合物在動(dòng)物模型上對(duì)大腸埃希菌、銅綠假單胞菌以及肺炎克雷伯菌感染均具有良好的抑菌活性,因此,Darobactin是目前非常具有抗革蘭陰性菌藥物開(kāi)發(fā)前景的BamA靶向性先導(dǎo)化合物。
BamA本身也是外膜蛋白,它在菌體內(nèi)合成后,跨膜轉(zhuǎn)運(yùn)到外膜進(jìn)行β-折疊和組裝,它的高效折疊和組裝也需要BAM復(fù)合體的協(xié)助。未折疊的BamA蛋白其N-末端能夠被BamD蛋白識(shí)別并與其結(jié)合,傳遞到BAM復(fù)合體進(jìn)行高效折疊。Li等[77]成功構(gòu)建了未折疊狀態(tài)的BamA和BamD蛋白相互作用酵母雙雜交模型,并且通過(guò)高通量篩選獲得化合物IMB-H4。選該化合物能夠與未折疊的BamA結(jié)合阻斷其與BamD之間的相互作用,抑制OMPs的組裝,破壞外膜完整性。IMB-H4在體外對(duì)大腸埃希菌具有較好的生長(zhǎng)抑制活性,對(duì)銅綠假單胞菌和肺炎克雷伯菌等革蘭陰性菌也具有一定的抑制作用。該工作也是首次針對(duì)BAM復(fù)合體進(jìn)行的靶向性藥物高通量篩選的嘗試。
3.2 以BamD為靶標(biāo)的抗革蘭陰性菌藥物
以另外一個(gè)保守的BAM復(fù)合體組分BamD蛋白為靶標(biāo)的抗菌藥物研究也多有報(bào)道。Mori等[78]在一項(xiàng)研究中基于銅綠假單胞菌的BamD上與BamA結(jié)合區(qū)域的保守氨基酸序列合成了多肽FIRL,該多肽序列在大腸埃希菌等革蘭陰性菌上也具有一定的保守性。FIRL單獨(dú)使用時(shí)抗菌活性較差,但是其對(duì)OM具有較強(qiáng)的親和力,能夠增加OM的通透性。體內(nèi)外研究表明FIRL能夠增強(qiáng)多個(gè)抗生素對(duì)銅綠假單胞菌的藥敏活性,且在動(dòng)物體內(nèi)與左氟沙星(LVX)和美羅培南(MEM)聯(lián)用,能夠增強(qiáng)它們的抗菌活性。Hagan等[79-80]研究發(fā)現(xiàn),來(lái)自未折疊BamA的C-末端β-barrel折疊區(qū)域的肽段能夠在菌體內(nèi)外抑制BamA與BamD的結(jié)合,并且抑制BamA本身的折疊和外膜蛋白的折疊,過(guò)表達(dá)該肽段的大腸埃希菌生長(zhǎng)變慢,并且能夠增加其他透膜困難的抗生素的抗菌活性。
4 展望
鑒于BAM復(fù)合體在外膜蛋白折疊裝配中的重要作用,BAM復(fù)合體具備作為新型抗革蘭陰性菌藥物靶標(biāo)的潛能。盡管迄今為止發(fā)現(xiàn)靶向BAM復(fù)合體化合物很少,且尚未有應(yīng)用于臨床,但這些探索為發(fā)現(xiàn)新型抗革蘭陰性菌藥物提供了新思路與新方向。BAM復(fù)合體尤其是BamA本身結(jié)構(gòu)復(fù)雜,BAM復(fù)合體折疊機(jī)制尚未闡明,因此很難實(shí)現(xiàn)以BAM復(fù)合體尤其是外膜上折疊的BamA為靶標(biāo)的抗革蘭陰性菌先導(dǎo)化合物的高通量篩選。目前發(fā)現(xiàn)的多個(gè)靶向抑制劑中,除了IMB-H4是來(lái)自于靶向未折疊BamA蛋白的高通量篩選,其他抑制劑多來(lái)源于抗菌機(jī)制的研究。因此,深入解析BAM復(fù)合體的結(jié)構(gòu)和功能,進(jìn)而建立篩選模型有針對(duì)性地進(jìn)行靶向BAM復(fù)合體功能的先導(dǎo)化合物的研究,將會(huì)更好地促進(jìn)新型抗革蘭陰性菌藥物的研發(fā)。
參 考 文 獻(xiàn)
van Duin D, Paterson D L. Multidrug-resistant bacteria in the community: Trends and lessons learned[J]. Infect Dis Clin North Am, 2016, 30(2): 377-390.
Solomon S L, Oliver K B. Antibiotic resistance threats in the United States: stepping back from the brink[J]. Am Fam Physician, 2014, 89(12): 938-941.
Frieden T. Antibiotic resistance threats.[EB/OL].(2013-4-23)[2020-04-15]. https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.
Ruiz N, Kahne D, Silhavy T J. Advances in understanding bacterial outer-membrane biogenesis[J]. Nature Rev Microbiol, 2006, 4(1): 57-66.
Tokuda H. Biogenesis of outer membranes in Gram-negative bacteria[J]. Biosci Biotechnol Biochem, 2009, 73(3): 465-473.
Delcour A H.Outer membrane permeability and antibiotic resistance[J]. Biochim Biophys Acta, 2009, 1794(5): 808-816.
Bos M P, Robert V, Tommassen J. Biogenesis of the Gram-negative bacterial outer membrane[J]. Annu Rev Microbiol, 2007, 61: 191-214.
Nikaido H. Molecular basis of bacterial outer membrane permeability revisited[J]. Microbiol Mol Biol Rev, 2003, 67(4): 593-656.
Henderson I R, Nataro J P. Virulence functions of autotransporter proteins[J]. Infect Immun, 2001, 69(3): 1231-1243.
Noinaj N, Kuszak A J, Gumbart J C, et al. Structural insight into the biogenesis of beta-barrel membrane proteins[J].Nature, 2013, 501(7467): 385-390.
Paramasivam N, Habeck M, Linke D. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?[J]. BMC Genomics, 2012, 13(1): 510.
Anwari K, Webb C T, Poggio S, et al. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex[J]. Mol Microbiol, 2012, 84(5): 832-844.
Webb C T, Heinz E, Lithgow T. Evolution of the beta-barrel assembly machinery[J]. Trends Microbiol, 2012, 20(12): 612-620.
Anwari K, Poggio S, Perry A, et al. A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus[J]. PLoS One, 2010, 5(1): e8619.
Volokhina E B, Beckers F, Tommassen J, et al. The beta-barrel outer membrane protein assembly complex of Neisseria meningitidis[J]. J Bacteriol, 2009, 191(22): 7074-7085.
Konovalova A, Kahne D E, Silhavy T J. Outer membrane biogenesis[J]. Ann Rev Microbiol, 2017, 71(1): 539-556.
Wu R, Stephenson R, Gichaba A, et al.The big BAM theory: An open and closed case?[J]. Biochim Biophys Acta Biomembr, 2020, 1862(1): 183062.
Wu T, Malinverni J, Ruiz N, et al.Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli[J]. Cell, 2005, 121(2): 235-245.
Gentle I E, Burri L, Lithgow T. Molecular architecture and function of the Omp85 family of proteins[J]. Mol Microbiol, 2005, 58(5): 1216-1225.
Voulhoux R, Tommassen J. Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly[J]. Res Microbiol, 2004, 155(3): 129-135.
Genevrois S, Steeghs L, Roholl P, et al. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane[J]. Embo J, 2003, 22(8): 1780-1789.
Gatzeva-Topalova P Z, Walton T A, Sousa M C. Crystal structure of YaeT: Conformational flexibility and substrate recognition[J]. Structure, 2008, 16(12): 1873-1881.
Koenig P, Mirus O, Haarmann R, et al. Conserved properties of polypeptide transport-associated (POTRA) domains derived? from cyanobacterial Omp85[J]. J Biol Chem, 2010, 285(23): 18016-18024.
Arnold T, Zeth K, Linke D. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs? from proteobacterial Omp85 in structure and domain composition[J]. J Biol Chem, 2010, 285(23): 18003-18015.
Plummer A M, Fleming K G. BamA alone accelerates outer membrane protein folding in vitro through a catalytic mechanism[J]. Biochemistry, 2015, 54(39): 6009-6011.
Gatzeva-Topalova P Z, Warner L R, Pardi A, et al. Structure and flexibility of the complete periplasmic domain of BamA: The protein insertion machine of the outer membrane[J]. Structure, 2010, 18(11): 1492-1501.
Knowles T J, Jeeves M, Bobat S, et al. Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes[J]. Mol Microbiol, 2008, 68(5): 1216-1227.
Kim S, Malinverni JC, Sliz P, et al. Structure and function of an essential component of the outer membrane protein assembly machine[J]. Science, 2007, 317(5840): 961-964.
Sikora A E, Wierzbicki I H, Zielke R A, et al. Structural and functional insights into the role of BamD and BamE within the beta-barrel assembly machinery in Neisseria gonorrhoeae[J]. J Biol Chem, 2018, 293(4): 1106-1119.
Dong C, Hou H F, Yang X, et al. Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly[J]. Acta Crystallogr D Biol Crystallogr, 2012, 68(Pt 2): 95-101.
Sandoval C M, Baker S L, Jansen K, et al. Crystal structure of BamD: An essential component of the beta-Barrel assembly machinery of gram-negative bacteria[J]. J Mol Biol, 2011, 409(3): 348-357.
Albrecht R, Zeth K. Structural basis of outer membrane protein biogenesis in bacteria[J]. J Biol Che, 2011, 286(31): 27792-27803.
Kim K H, Aulakh S, Paetzel M. Crystal structure of beta-barrel assembly machinery BamCD protein complex[J].J Biol Chem, 2011, 286(45): 39116-39121.
Lee J, Sutterlin H A, Wzorek J S, et al. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion[J]. Proc Natl Acad Sci U S A, 2018, 115(10): 2359-2364.
Lee J, Xue M, Wzorek J S, et al. Characterization of a stalled complex on the beta-barrel assembly machine[J]. Proc Natl Acad Sci U S A, 2016, 113(31): 8717-8722.
Hagan C L, Westwood D B, Kahne D. Bam lipoproteins assemble BamA in vitro[J]. Biochemistry, 2013, 52(35): 6108-6113.
Bergal H T, Hopkins A H, Metzner S I, et al. The structure of a BamA-BamD fusion illuminates the architecture of the beta-barrel assembly machine core[J]. Structure, 2016, 24(2): 243-251.
Fleming P J, Patel D S, Wu E L, et al. BamA POTRA domain interacts with a native lipid membrane surface[J].Bioph J, 2016, 110(12): 2698-2709.
Jansen K B, Baker S L, Sousa M C. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the beta-barrel assembly machine[J]. J Biol Chem, 2015, 290(4): 2126-2136.
Voulhoux R, Bos M P, Geurtsen J, et al. Role of a highly conserved bacterial protein in outer membrane protein assembly[J]. Science, 2003, 299(5604): 262-265.
Tellez R J, Misra R. Substitutions in the BamA β-barrel domain overcome the conditional lethal phenotype of a ΔbamB ΔbamE strain of Escherichia coli[J]. J Bacteriol, 2012, 194(2): 317-324.
Sklar J G, Wu T, Gronenberg L S, et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli[J]. Proc Natl Acad Sci U S A, 2007, 104(15): 6400-6405.
Gunasinghe S D, Shiota T, Stubenrauch C J, et al. The WD40 Protein BamB mediates coupling of BAM complexes into assembly precincts? in the bacterial outer membrane[J].Cell Reports, 2018, 23(9): 2782-2794.
Rassam P, Copeland N A, Birkholz O, et al. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria[J]. Nature, 2015, 523(7560): 333-336.
Jansen K B, Baker S L, Sousa M C. Crystal structure of BamB from Pseudomonas aeruginosa and functional evaluation of its conserved structural features[J]. PLoS One, 2012, 7(11): e49749.
Noinaj N, Fairman J W, Buchanan S K. The crystal structure of BamB suggests interactions with BamA and its role within the BAM complex[J]. J Mol Biol, 2011, 407(2): 248-260.
Vuong P, Bennion D, Mantei J, et al. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry[J]. J Bacteriol, 2008, 190(5): 1507-1517.
Ureta A R, Endres R G, Wingreen N S, et al. Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment[J].J Bacteriol, 2007, 189(2): 446-454.
Webb C T, Selkrig J, Perry A J, et al. Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC[J]. J Mol Biol, 2012, 422(4): 545-555.
Warner L R, Varga K, Lange O F, et al. Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set[J]. J Mol Biol, 2011, 411(1): 83-95.
Kim K H, Aulakh S, Tan W, et al. Crystallographic analysis of the C-terminal domain of the Escherichia coli lipoprotein BamC[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67(Pt 11): 1350-1358.
Han L, Zheng J, Wang Y, et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins[J]. Nat Struct Mol Biol, 2016, 23(3): 192-196.
Gu Y, Li H, Dong H, et al.Structural basis of outer membrane protein insertion by the BAM complex[J]. Nature, 2016, 531(7592): 64-69.
Bakelar J, Buchanan S K, Noinaj N. The structure of the beta-barrel assembly machinery complex[J]. Science, 2016, 351(6269): 180-186.
Malinverni J C, Werner J, Kim S, et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli[J]. Mol Microbiol, 2006, 61(1): 151-164.
Iadanza M G, Higgins A J, Schiffrin B, et al. Lateral opening in the intact beta-barrel assembly machinery captured by cryo-EM[J]. Nature Commun, 2016, 7: 12865.
Hart E M, Gupta M, Wuhr M, et al. The synthetic phenotype of Δ bamB Δ bamE double mutants results from a lethal jamming of the bam complex by the lipoprotein RcsF[J]. MBio, 2019, 10(3): e00662-19.
Tata M, Konovalova A. Improper coordination of BamA and BamD results in Bam complex jamming by a lipoprotein substrate[J]. MBio, 2019, 10(3): e00660-19.
Gu Y, Li H, Dong H, et al. Structural basis of outer membrane protein insertion by the BAM complex[J]. Nature, 2016, 531(7592): 64-69.
Wu R, Stephenson R, Gichaba A, et al. The big BAM theory: An open and closed case?[J]. Biochim Biophys Acta Biomembr, 2020, 1862(1): 183062.
Noinaj N, Gumbart J C, Buchanan S K. The beta-barrel assembly machinery in motion[J]. Nature Rev Microbiol, 2017, 15(4): 197-204.
Danoff E J, Fleming K G. Novel kinetic intermediates populated along the folding pathway of the transmembrane beta-Barrel OmpA[J]. Biochemistry, 2017, 56(1): 47-60.
Gessmann D, Chung Y H, Danoff E J, et al. Outer membrane beta-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA[J]. Proc Natl Acad Sci U S A, 2014, 111(16): 5878-5883.
Burgess N K, Dao T P, Stanley A M, et al. Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro[J]. J Biol Chem, 2008, 283(39): 26748-26758.
Noinaj N, Kuszak A J, Balusek C, et al. Lateral opening and exit pore formation are required for BamA function[J].Structure, 2014, 22(7): 1055-1062.
Choi U, Lee C R. Antimicrobial agents that inhibit the outer membrane assembly machines of Gram-negative bacteria[J]. J Microbiol Biotechnol, 2019, 29(1): 1-10.
Doyle M T, Bernstein H D. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA beta-barrel[J]. Nature Comm, 2019, 10(1): 3358.
Hohr A, Lindau C, Wirth C, et al. Membrane protein insertion through a mitochondrial beta-barrel gate[J]. Science, 2018, 359(6373): eaah6834.
Urfer M, Bogdanovic J, Lo Monte F, et al. A peptidomimetic antibiotic targets outer membrane proteins and disrupts selectively the outer membrane in Escherichia coli[J]. J Biol Chem, 2016, 291(4): 1921-1932.
Plummer A M, Fleming K G. From chaperones to the membrane with a BAM![J]. Trends Biochem Sci, 2016, 41(10): 872-882.
Storek K M, Auerbach M R, Shi H, et al. Monoclonal antibody targeting the beta-barrel assembly machine of Escherichia coli is bactericidal[J]. Proc Natl Acad Sci U S A, 2018, 115(14): 3692-3697.
Werner J, Misra R. YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli[J]. Mol Microbiol, 2005, 57(5): 1450-1459.
Lehman K M, Grabowicz M. Countering Gram-negative antibiotic resistance: Recent progress in disrupting the outer membrane with novel therapeutics[J]. Antibiotics (Basel), 2019, 8(4): 163.
Ghequire M, Swings T, Michiels J, et al. Hitting with a BAM: Selective killing by lectin-like bacteriocins[J]. MBio, 2018, 9(2): e02138-17.
Hart E M, Mitchell A M, Konovalova A, et al. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier[J]. Proc Natl Acad Sci U S A, 2019, 116(43): 21748-21757.
Imai Y, Meyer K J, Iinishi A, et al. A new antibiotic selectively kills Gram-negative pathogens[J]. Nature, 2019, 576(7787): 459-464.
Li Y, Zhu X, Zhang J, et al. Identification of a compound that inhibits the growth of gram-negative bacteria by blocking BamA-BamD interaction[J]. Front Microbiol, 2020, 11: 1252.
Mori N, Ishii Y, Tateda K, et al. A peptide based on homologous sequences of the beta-barrel assembly machinery component BamD potentiates antibiotic susceptibility of Pseudomonas aeruginosa[J]. J Antimicrob Chemother, 2012, 67(9): 2173-2181.
Hagan C L, Wzorek J S, Kahne D. Inhibition of the beta-barrel assembly machine by a peptide that binds BamD[J].Proc Natl Acad Sci U S A, 2015, 112(7): 2011-2016.
Kutik S, Stojanovski D, Becker L, et al. Dissecting membrane insertion of mitochondrial beta-barrel proteins[J]. Cell, 2008, 132(6): 1011-1024.