徐志勇?熊偉?吳磊?劉云飛?謝傳奇?徐靜
摘要:紅樹林植物長期處于高鹽、缺氧、頻繁潮汐等獨(dú)特環(huán)境,其內(nèi)生真菌與宿主植物共同進(jìn)化,從中挖掘出了許多結(jié)構(gòu)新穎的功能分子,是天然產(chǎn)物先導(dǎo)化合物發(fā)現(xiàn)的重要來源。本文綜述了2018年1月—2019年12月發(fā)現(xiàn)的來源于紅樹林植物內(nèi)生真菌的次級(jí)代謝產(chǎn)物,重點(diǎn)總結(jié)了它們的化學(xué)結(jié)構(gòu)類型、宿主來源。描述化合物460個(gè),其中新化合物217個(gè),出新率達(dá)47.2%;結(jié)構(gòu)類型涉及聚酮類、萜類、生物堿;研究較多的菌屬為曲霉屬Aspergillus、間座殼屬Diaporthe、青霉屬Penicillium、枝孢屬Cladosporium;研究較多的宿主植物為秋茄、紅海欖、海蓮、角果木。本文旨在總結(jié)本領(lǐng)域的研究成果與存在問題,為今后研究提供參考。
關(guān)鍵詞:紅樹林內(nèi)生真菌;次級(jí)代謝產(chǎn)物;化學(xué)結(jié)構(gòu)
中圖分類號(hào):Q936文獻(xiàn)標(biāo)志碼:A
Research progress on the secondary metabolites produced by endophytic fungi isolated from mangrove plants (2018—2019)
Xu Zhi-yong1, Xiong Wei1, Wu Lei1, Liu Yun-fei1, Xie Chuan-qi1, and Xu Jing2
(1 Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096;
2 School of Chemical Engineering and Technology, Hainan University, Haikou 570228)
Abstract Mangrove plants have long been in a unique environment such as high salinity, hypoxia, and frequent tides. Their endophytic fungi co-evolved with their host plants, and many functional molecules with novel structures have been unearthed. They are important source of lead compounds of natural products. This paper reviews the secondary metabolites produced by endophytic fungi derived from mangrove plants from the beginning of 2018 to the end of 2019, with emphasis on compounds structural types and host sources. 460 compounds are described, including 217 new compounds (47.2%). Structural types involve polyketides, terpenes, and alkaloids. The main producing strains are affiliated to genera such as Aspergillus, Diaporthe, Penicillium, and Cladosporium. The main host plants are Kandelia candel, Rhizophora stylosa, Bruguiera sexangula, and Ceriops tagal. Research progress and open questions are summarized and discussed to provide references for future research in the paper.
Key words Mangrove endophytic fungi; Secondary metabolites; Chemical structure
紅樹林(Mangrove)是一類生長在熱帶、亞熱帶海岸或者河口潮間帶的耐鹽植物群落,是陸地和海洋環(huán)境之間動(dòng)態(tài)過渡的重要生態(tài)系統(tǒng)。紅樹林植物生境特殊,包括高鹽、高溫潮濕、厭氧的土壤、潮汐活動(dòng)和高強(qiáng)度的微生物和動(dòng)物競爭[1-3],其內(nèi)生真菌與宿主長期進(jìn)化,從中已挖掘出許多結(jié)構(gòu)新穎的功能分子。事實(shí)證明,紅樹林來源微生物是挖掘天然產(chǎn)物的巨大寶藏,是小分子藥物的重要來源。迄今為止,很多研究者們對天然產(chǎn)物來源微生物和內(nèi)生真菌代謝產(chǎn)物進(jìn)行了綜述,Xu等[4-5]在Curr Med Chem和Rsc Adv雜志上對2011年之前和2011—2013年報(bào)道的紅樹林微生物來源的功能分子和活性天然產(chǎn)物進(jìn)行了評(píng)述,在2011年之前發(fā)現(xiàn)了348個(gè)功能分子,2013年之前共464個(gè)新代謝物,Wang等[6]綜述了2008年到2013年中段,在中國南海起源的紅樹林真菌產(chǎn)生的110個(gè)化合物;Proksch教授課題組對2000—2010年間紅樹林內(nèi)共生真菌作為生物活性天然產(chǎn)物來源的開發(fā)潛力及研究進(jìn)展進(jìn)行了概述[3,7],Blunt和Carroll等[8-11]對海洋天然產(chǎn)物進(jìn)行綜述,其中一節(jié)包括2014—2017年紅樹林來源真菌產(chǎn)生的新化合物(共486個(gè))。本文將對2018年1月—2019年12月文獻(xiàn)報(bào)道的紅樹林植物內(nèi)生真菌次級(jí)代謝產(chǎn)物按化合物的結(jié)構(gòu)分類進(jìn)行評(píng)述,所有新化合物的化學(xué)結(jié)構(gòu)式如圖1。首次出現(xiàn)的宿主植物均在正文里標(biāo)注了拉丁名和樣品來源,凡是后續(xù)沒有提供來源的菌株均為前述提到過的同一菌株。
1 聚酮類化合物
1. 1 香豆素及異香豆素類化合物
Yan等[12]從紅樹林植物老鼠簕(Acanthus ilicifolius Linn.,中國廣東)新鮮果實(shí)中的1株內(nèi)生真菌Epicoccum nigrum SCNU-F0002中分離得到1個(gè)新的香豆素類化合物(1)和兩個(gè)新的異香豆素類化合物(2~3)。10個(gè)新的異香豆素peniisocoumarins A~J (4~13)及3個(gè)已知類似物(14~16)分離自紅樹林植物秋茄(Kandelia candel,中國珠海)果實(shí)內(nèi)生真菌Penicillium commune QQF-3[13]。Chen等[14]從半紅樹林植物闊苞菊(Pluchea indica,中國廣西)健康樹枝內(nèi)生菌Ascomycota sp. CYSK-4中分離獲得3個(gè)新二氯異香豆素(17~19)及6個(gè)已知類似物(11, 14, 20~23)。Wu等[15]從老鼠簕(中國海南)生鮮葉內(nèi)生菌Aspergillus sp.HN15-5D中分離獲得3個(gè)新異香豆素衍生物aspergisocoumrins A~C(24~26)及兩個(gè)已知類似物(14, 27)。8個(gè)新的異香豆素peniciisocoumarins A~H(28~35)及3個(gè)已知類似物(36~38)分離自紅樹林植物尖瓣海蓮(Bruguiera sexangula var. rhynchopetala,中國南海)內(nèi)生真菌Penicillium sp. TGM112[16]。4個(gè)新的異香豆素botryospyrones A-D(39~42)分離自半紅樹植物苦檻藍(lán)(Myoporum bontioides (Siebold & Zucc.) A. Gray,中國雷州半島)葉內(nèi)生真菌Botryosphaeria ramosa L29[17]。3個(gè)已知的異香豆素(16, 43~44)分離自尖瓣海蓮(中國南海)莖內(nèi)生真菌D. eschscholtzii HJ004[18]。Xu等[19]從紅樹林植物紅海欖(Rhizophora stylosa,中國海南)樹枝來源內(nèi)生真菌Pestalotiopsis sp.101里分離獲得1個(gè)新的異香豆素類化合物pestalotiopisorin B(45)和1個(gè)已知物(46)。兩對新的異香豆素異構(gòu)體penicoffrazins B~C(47~48)被Cao等[20]從紅樹林植物使君子科拉關(guān)木(Laguncularia racemosa,中國海南)葉內(nèi)生菌Penicillium co?eae MA-314中分離獲得。
1.2 色酮類化合物
Luo等[21]從紅海欖(中國海南)內(nèi)生真菌Diaporthe sp. SCSIO 41011分離得到1個(gè)新的色酮衍生物pestalotiopsone H(49)和4個(gè)已知的色酮類化合物(50~53)。同年,兩個(gè)新色酮衍生物(2S)-7-O-α-D-呋喃型核糖基-5-羥基-2-甲基苯并吡喃-4-酮(54)和(2S, 3S, 4R)-2-甲基苯并吡喃-3,4,5-三醇(55)被分離自紅樹林植物海漆(Excoecaria agallocha,中國海南)莖的內(nèi)生真菌Cladosporium sp. OUCMDZ-302,并且通過X單晶衍射和酸性水解物的糖分析首次確定了54的絕對構(gòu)型 [22]。Zheng等[23]從紅樹林植被木果楝(Xylocarpus granatum,中國南海)莖中的1株內(nèi)生真菌Dothiorella sp. ML002分離得到1個(gè)新的cytosporone類化合物(56)和兩個(gè)已知的類似物(57~58)。新化合物chaetochromone D(59)分離自秋茄(中國廣西)枝內(nèi)生真菌Phoma sp. SYSU-SK-7[24]。新色酮類化合物(2S)-2,3-dihydro-5,6-dihydroxy- -2-methyl-4H-1-benzopyran-4-one(60)分離自紅樹林植物角果木(Ceriops tagal,中國海南)的1株內(nèi)生真菌Colletotrichum gloeosporioides[25]。3個(gè)新的色酮:7-羥基-5-甲氧基-2,3-二甲基色酮(61)、5-甲氧基-2-丙基色酮(62)和7-乙基-8-羥基-6-甲氧基-2,3-二甲基色酮(63)及4個(gè)已知色酮(53, 64~66)分離自尖瓣海蓮(中國南海)內(nèi)生真菌D. eschscholtzii HJ004[26]。新吡喃酮衍生物clapone(67)和兩個(gè)已知的色酮衍生物(68~69)分別分離自角果木(中國海南)根內(nèi)生真菌Cladosporium sp. HNWSW-1和角果木(中國南海)莖塊真菌Cladosporium sp. JJM22[27-28]。
1.3 醌類化合物
Cui等[29]在生物活性測試指導(dǎo)下,對1株分離自秋茄 (中國廣西)枝內(nèi)生真菌Neofusicoccum austral SYSU-SKS024二氯甲烷段浸膏化學(xué)成分進(jìn)行分析,得到3個(gè)新的乙基萘醌衍生物:neofusnaphthoquinone A(70)、6-(1-methoxylethy1)-2,7- dimethoxy juglone(71)和(3R,4R)-3-methoxyl-botryo-sphaerone D(75)以及6個(gè)已知的類似物(72~74和76~78),化合物70為不對稱萘醌二聚體結(jié)構(gòu)。Yang等[30]從紅海欖葉的1株內(nèi)生真菌Aspergillus nidulans MA143分離獲得6個(gè)醌類化合物,包括新天然產(chǎn)物isoversicolorin C(79)和5個(gè)類似物(80~84)。1個(gè)已知的蒽醌chrysophanol(85)分離自秋茄(中國廣西)葉內(nèi)生真菌Ascomycota sp. SK2YWS-L[31-32]。3個(gè)已知的醌類化合物(86~88)分離自角果木(中國海南)內(nèi)生真菌Cladosporium sp. JS1-2。兩個(gè)新的四氫萘酮daldiniones C-D(89~90)和5個(gè)已知的醌類化合物(91~95)被分離自之前描述的真菌D. eschscholtzii HJ004[18] 。新化合物6-乙基-5-羥基-2,7-二甲氧基萘-1,4-二酮(96)分離自紅海欖樹皮內(nèi)生真菌Phomopsis sp.33#[33]。已知蒽醌化合物anthraquinone(97)獲得自之前描述的Cladosporium sp. HNWSW-1[27]。兩個(gè)新萘醌6-羥基-astropaquinone B(98)和astropaquinone D(99)以及1個(gè)已知萘醌衍生物(100)分離自紅樹林植物紅茄苳(Rhizophora mucronata,印度尼西亞南蘇拉威西)枝內(nèi)生菌Fusarium napiforme[34]。3個(gè)四氫萘酮,包括已知化合物(102~103)和反式(3R,4R)-3,4,8-三羥基-6,7-二甲基-3,4-二氫萘(101)(新化合物)分離自前文所述Cladosporium sp. JJM22[28]。
1.4 氧雜蒽酮類化合物
Hu等[35]從泰國木果楝葉的內(nèi)生真菌Phomopsis sp.xy21分離得到6個(gè)新的氧雜蒽酮類化合物phomoxanthones F-K(104~109)和3個(gè)已知聚酮類化合物(110~112),脫羧苯并吡喃酮母核在10a處被4-甲基二氫呋喃取代得到化合物104、化合物105和106為高度氧化的氧雜蒽酮類衍生物,含有新穎的5-甲基-6-氧雜雙環(huán)部分。3個(gè)氧雜蒽酮類似物(113~115)分離自前文所述的Diaporthe sp. SCSIO 41011,同時(shí)從菌株P(guān)homopsis sp.33#也分離到化合物113和114[21,33]。前文所述的Aspergillus nidulans MA143產(chǎn)生新天然產(chǎn)物isosecosterigmatocystin(116)和已知化合物sterigmatocystin(117);Phomopsis sp. xy21產(chǎn)生3個(gè)新的黃酮二聚體phomoxanthones C~E(118~120),化合物118和119具有高度氧化六氫蒽酮骨架;Ascomycota sp. SK2YWSL產(chǎn)生1對新穎的對映體(±)-ascomindone D(121)、1個(gè)新的烯丙基化聚酮類化合物ascomarugosin A(122)和兩個(gè)已知物(123~124),其中121通過手性HPLC分離純化得到,是在天然產(chǎn)物中拆分二芳基茚酮異構(gòu)體的第一個(gè)實(shí)例。Cladosporium sp. JS1-2產(chǎn)生已知物secalonic acid D(125)[30-32,35]。Zheng等[36]從尖瓣海蓮(中國南海)莖中的1株內(nèi)生真菌Penicillium citrinum HL-5126分離得到兩個(gè)新化合物penibenzophenones A-B(126~127)和1個(gè)已知化合物sulochrin(128)。
1.5 酚和酚酸類化合物
紅樹林植物木欖(Bruguiera gymnorrhiza,中國湛江)莖塊中的一株內(nèi)生菌Penicillium sp. GD6中分離得到一個(gè)新的sorbicillin衍生物(129)和一個(gè)已知的類似物(130),130也曾從苦檻藍(lán)內(nèi)生真菌Penicillium chrysogenum V11中分離得到[37-38]。近兩年酚衍生倍半萜在曲霉屬(Aspergillus)中被多次發(fā)現(xiàn),并擁有多種生物活性,如Cui等[39]從海漆(中國廣西)樹枝中的Aspergillus versicolor SYSU-SKS025分離得到已知化合物(131~136)。Wang等[40]從泰國紅樹植物木果楝葉內(nèi)生菌Aspergillus sp. xy02中分離得到7個(gè)新化合物(137~143)及已知化合物(132~134,144~145)。Wu等[41]從紅樹林植物秋茄(中國惠州)枝中的Aspergillus flavus QQSG-3分離得到11個(gè)酚類化合物(136,146~155),其中146~151為新化合物,148~151為酚類衍生倍半萜。Cui等[42]報(bào)道了海漆(中國珠海)枝內(nèi)生菌Diaporthe sp. SYSU-HQ3的6個(gè)酚類化合物(156~161),其中Diaporindenes A-D(156~159)為新化合物,具有2,3-二氫-1氫-茚環(huán)兼1,4-苯并二惡烷的新穎骨架。Cai等[43]從秋茄(中國湛江)葉中的Aspergillus sp. ZJ-68分離得到一個(gè)新的苯丙烷衍生物asperpanoid A(162)、已知物2-(羥甲基)-3-丙基苯酚(163)和isochroman A(164)。Qiu等[44]從木欖(中國海南)果實(shí)的內(nèi)生菌Mycosphaerella sp. SYSU- DZG01分離得到兩個(gè)新的epicoccine衍生物(165~166)及已知物(167~170)。Elissawy等[45]從紅樹林植物白骨壤(Avicennia marina,埃及)葉內(nèi)生菌Aspergillus sp. AV-2分離得到1個(gè)新的烯丙基苯甲醛衍生物dioxoauroglaucin(171)。前文所述的Diaporthe sp. SCSIO 41011產(chǎn)生已知酚衍生長支鏈酮(172~185)[21];Cladosporium sp. OUCMDZ-302 產(chǎn)生化合物186 [22];Dothiorella sp. ML002產(chǎn)生兩個(gè)新的cytosporone衍生物dothiorelones K~L(187~188)及4個(gè)已知類似物(189~192)[23];Epicoccum nigrum SCNU-F0002產(chǎn)1個(gè)新的苯并呋喃酮193及5個(gè)已知物(194~197, 170)[46]。Phoma sp. SYSU-SK-7產(chǎn)生新化合物(198~200)和已知化合物(201~204)[24];Colletotrichum gloeosporioides產(chǎn)生具有潛在抗菌活性的新化合物(2'R)-2-(2'-羥丙基)-4-甲氧基-1,3-苯二醇(205)[25];D. eschscholtzii HJ004產(chǎn)生4個(gè)新化合物(206~209),206~207為兩個(gè)四氫萘酮類化合物[18];Penicillium citrinum產(chǎn)生兩個(gè)已知酚類(210~211)[36];Pleosporales sp. SK7產(chǎn)生4個(gè)已知酚類(210, 212~214) [47]。
1.6 內(nèi)酯類化合物
Zhang等[48]從木欖葉內(nèi)生菌Cladosporium cladosporioides MA-299分離得到4個(gè)新的十二元大環(huán)內(nèi)酯類化合物thiocladospolides A~D(215-218)、已知的同源物pandangolide 3(219)、5個(gè)新內(nèi)酯化合物(220~224)和兩個(gè)已知物(225~226),其中215~219在C-2處都有硫取代基,通過X衍射單晶首次確定了含硫十二元大環(huán)內(nèi)酯215的絕對構(gòu)型,222~225為呋喃環(huán)內(nèi)酯。Supratman等[49]利用單菌株多化合物(OSMAC)方法,對分離自印度尼西亞木欖枝的內(nèi)生真菌Clonostachys rosea B5-2培養(yǎng)發(fā)酵時(shí)加入蘋果汁,研究化學(xué)成分得到新單環(huán)呋喃類內(nèi)酯化合物(-)-dihydro-vertinolide(227)及已知同類物228。3個(gè)新的單環(huán)呋喃類內(nèi)酯化合物penicilactones A~C(229~231)分離自前文所述真菌Penicillium sp. TGM112[50]。Fan等[51]發(fā)現(xiàn)紅樹林植物正紅樹(Rhizophora apiculata,中國海南)根來源的Penicillium camemberti OUCMDZ-1492產(chǎn)生的單環(huán)α-吡喃酮內(nèi)酯化合物(232~236),232為新化合物。單環(huán)α-吡喃酮內(nèi)酯化合物不斷在多種紅樹林真菌中發(fā)現(xiàn),如分離自白骨壤共生真菌Sarocladium kiliense HDN11-112的化合物(237~239)[52];分離自木果楝莖內(nèi)生真菌Xylaria sp. HNWSW-2的化合物astropyrone(240)[53];秋茄內(nèi)生真菌Colletotrichum tropicale SCSIO 41022產(chǎn)生化合物acropyrone(241)[54];前文所述Penicillium coffeae MA-314和D. eschscholtzii HJ004分別產(chǎn)生新內(nèi)酯penicoffeazine A(242)[20]、化合物(243~246)[18]。前文所述Colletotrichum gloeosporioides產(chǎn)生4-乙基-3-羥基-6-丙烯基-2H-吡喃-2-酮(247)[25]。紅樹林內(nèi)生真菌Trichoderma sp. 307與Acinetobacter johnsonii B2共培養(yǎng)產(chǎn)生了新化合物botryorhodine H(248)及3個(gè)類似物(249~251)[55]。Liu等[56]從紅樹林植物Rhizophora racemosa內(nèi)生真菌Annulohypoxylon sp.中分離得到10元大環(huán)內(nèi)酯hypoxylide(252)。前文所述的Epicoccum nigrum SCNU-F0002產(chǎn)生4個(gè)新的異苯并呋喃酮單體(253~256)及已知物257,分別為(±)-epicoccone C、epicoccone D、epicoccone E、epicolactone A和epicolactone[12];Diaporthe sp. SYSU-HQ3產(chǎn)生新穎化合物isoprenylisobenzofuran A(258)[42];Ascomycota sp. SK2YWS-L產(chǎn)生新烯丙基聚酮ascomfurans C(259)[31];Diaporthe sp. SCSIO 41011產(chǎn)生4個(gè)已知苯并呋喃衍生物(260~263)及一個(gè)α-吡喃酮單環(huán)衍生物(264)[21]。
1.7 其它聚酮類化合物
Zhou等[57]從正紅樹根內(nèi)生菌Fusarium solani HDN15-410分離得到兩個(gè)之前沒有描述過的γ-吡喃酮衍生物fusolanones A~B(265~266)。Peng等[58]從紅海欖根內(nèi)生耐鹽真菌Cladosporium cladosporioides OUCMDZ-187(10%鹽度培養(yǎng)下)分離得到3種新的脂肪酸酯cladosporesters A~C(267~269)和5種新的脂肪酸cladosporacids A~E(270~274)。前文所述真菌Diaporthe sp. SCSIO 41011產(chǎn)生氧化氯雜苯甲酮衍生物(275~279)[59];Aspergillus sp. ZJ-68產(chǎn)生3個(gè)新的苯并呋喃類化合物asperfuranoids A~C(280~282)、1個(gè)新的苯基丙烷類衍生物(283)和6個(gè)已知的類似物(284~289)[43];Mycosphaerella sp. SYSU-DZG01產(chǎn)生新化合物dibefurin B(290)[44];Cladosporium sp. JS1-2產(chǎn)生戊烯酸衍生物1,1'-dioxine-2,2'-dipropionic acid(291)[32];Clonostachys rosea B5-2產(chǎn)生新的clonostach酸(292~294)[49];Cladosporium sp. OUCMDZ-302產(chǎn)生兩個(gè)新其它類型聚酮化合物(295~296)[22]。
2 萜類化合物
2.1 倍半萜類化合物
Liu等[60]從紅樹林鹵蕨(Acrostichums aureum,喀麥隆杜阿拉)葉來源真菌Rhinocladiella similis分離得到10個(gè)新倍半萜衍生物rhinomilisins A-J(297-306)及6個(gè)已知類似物(307~312)。Qiu等[61]從角果木(Ceriops tagal,中國海南)葉內(nèi)生真菌Penicillium sp. J-54分離得到4種新的常春藤型倍半萜penicieudesmol A~D(313~316)。Chen等[62]繼續(xù)對Penicillium sp. J-54化學(xué)成分研究得到3個(gè)新的杜鵑花型倍半萜penicieudesmols E-G(317~319)。Deng等[63]從角果木內(nèi)生真菌Cytospora sp.中得到1個(gè)新雙環(huán)倍半萜seiricardine D(320)。前文所述的Pleosporales sp. SK7產(chǎn)生1個(gè)脫落酸型倍半萜(321)[47];Diaporthe sp. SCSIO 41011產(chǎn)生1個(gè)新倍半萜1-methoxypestabacillin B(322)和1個(gè)已知倍半萜323[64];Xylaria sp. HNWSW-2[53]產(chǎn)生1個(gè)已知倍半萜guaidiol(324)。
2.2 二倍半萜類化合物
Zhu等[65]從木欖來源真菌Aspergillus ustus 094102分離得到7個(gè)新蛇孢菌素(ophiobolins)型二倍半萜衍生物(325~331)及11個(gè)已知類似物(332~342)。Cai等[66]從秋茄葉內(nèi)生真菌Aspergillus sp. ZJ-68分離得到11個(gè)新蛇孢菌素型二倍半萜衍生物asperophiobolins A~K(343~353)及上述報(bào)道的已知類似物(325、332~337、339~342),化合物343~346是第一個(gè)被發(fā)現(xiàn)在C-5和C-21之間具有五元內(nèi)酰胺單元的ophiobolin衍生物。
2.3 混元萜類化合物
Li等[67]從尖瓣海蓮來源內(nèi)生菌Penicillium simplicissimum MA-332分離得到1個(gè)新骨架混元萜simpterpenoid A(354),其具有高度官能化的環(huán)己二烯部分,同時(shí)環(huán)己二烯同一個(gè)碳上有-1,2-二酮和甲酸甲酯基團(tuán)的取代。Chen等[68]從紅樹林內(nèi)生真菌Talaromyces amestolkiae YX1分離得到4個(gè)新混元萜amestolkolides A~D(355~358)及3個(gè)已知的混元萜(359~361)。Xu等[69]從紅樹林海蓮胚內(nèi)生真菌P. capitalensis分離得到4個(gè)已知混元萜(362~365)。前文所述的Penicillium sp. TGM112產(chǎn)兩個(gè)新混元萜(366~367)及7個(gè)已知類似物(368~374)[16];Liu等[70]從秋茄內(nèi)生真菌Aspergillus terreus H010中分離得到一個(gè)新混元萜1,2-dehydro-terredehydroaustin(375)及兩個(gè)已知的類似物(376~377)。Diaporthe sp. SCSIO 41011產(chǎn)生6個(gè)已知的chrodrimanin型混元萜(378~383)[64]。
3 生物堿
3.1 胺與酰胺類化合物
Zhou等[71]從角果木內(nèi)生菌Penicillium herquei JX4分離得到兩對新穎的差向異構(gòu)化合物penicilquei A-D(384~387)。前文所述的Penicillium chrysogenum V11產(chǎn)生一個(gè)新的酰胺類化合物N-fumaryl-L-alanine dimethyl ester(388)及一個(gè)新天然產(chǎn)物N,N-bis[(S)-1-methoxycarbonylethyl]fumaric diamide(389)[38]。
3.2 吲哚衍生物
Li等[72-73]從紅樹林植物桐棉(Thespesia populnea,中國廣東)共生菌Aspergillus versicolor HDN 1184分離得到1個(gè)新吲哚生物堿taichunamide H(390)。3個(gè)吲哚二萜penicilindoles A~C(391~393)分離自木果楝內(nèi)生真菌Eupenicillium sp. HJ002 。Chang等[74]從紅樹林植物秋茄來源共生菌Diaporthe arecae中分離到1個(gè)新indoleglycerol,命名為arecine(394)。前文所述的內(nèi)生菌Botryosphaeria ramosa L29,在利用來自宿主成分的抑制性應(yīng)激策略(UISCH)之后產(chǎn)生一個(gè)新天然色胺(3aS, 8aS)-1-acetyl-1, 2, 3, 3a, 8, 8a-hexahydro pyrrolo [2,3b] indol-3a-ol(395)[17];Colletotrichum tropicale SCSIO 41022產(chǎn)生1個(gè)新吲哚衍生物colletoindole A(396)及兩個(gè)新天然產(chǎn)物(397~398)[54];Penicillium chrysogenum V11產(chǎn)生兩個(gè)已知的吲哚生物堿chaetoglobosin C(399)和chaetoglobosin F (400) [38]。
3.3 吡咯衍生物
Chen等[75]從半紅樹林植物闊苞菊(中國廣西)健康樹枝內(nèi)生菌Didymella sp. CYSK-4中分離得到3個(gè)新的十二和十三元環(huán)大環(huán)生物堿ascomylactams A~C(401~403)及2個(gè)已知類似物phomapyrrolidone C(404)與pyrrolidone A(405),化合物401和402的絕對構(gòu)型被單晶X射線衍射實(shí)驗(yàn)所決定,初次描述了(6/5/6/5)四環(huán)碳骨架稠合十二或十三元環(huán)部分的單晶結(jié)構(gòu)。Yang等[76]從尖瓣海蓮內(nèi)生真菌D. eschscholtzii HJ001分離得到1個(gè)新的細(xì)胞松弛素[11]-cytochalasa-5(6),13-diene-1,21-dione-7,18-dihydroxy-16,18- dimethyl-10-phenyl-(7S*,13E,16S*,18R*)(406)和1個(gè)已知的類似物(407)。前文所述的內(nèi)生菌Cladosporium sp. HNWSW-1產(chǎn)生2個(gè)新的含琥珀酰亞胺的衍生物cladosporitins A~B(408~409)及1個(gè)已知吡咯衍生物talaroconvolutin A(410)[27];Mycosphaerella sp. SYSU-DZG01產(chǎn)生1個(gè)新的細(xì)胞松弛素衍生物asperchalasine I(411)及2個(gè)已知的類似物(412~413)[44];Xylaria sp. HNWSW-2產(chǎn)生1個(gè)新的細(xì)胞松弛素衍生物xylarisin B(414)[53]。
3.4 肽類
Cai等[77]從秋茄葉內(nèi)生真菌Aspergillus sp. SK-28中分離得到1對具有6/5/4/5/6五環(huán)骨架的對映體哌嗪(含吲哚二酮)二聚體(±)-asperginulin A(415),對映二聚體通過手性HPLC實(shí)現(xiàn)了分離。Zhu等[78]從苦檻藍(lán)根內(nèi)生菌Fusarium sp. R5中分離得到2個(gè)新環(huán)狀六肽fusarihexins A~B(416~417)及2個(gè)已知的環(huán)肽cyclo-[(L)Leu-(L)Leu-(D)Leu-(L)Leu-(L)Val)(418)和cyclo-[(L)Leu-(L)Leu-(D)Leu-(L)Leu-(L)Ile)(419)。前文所述的內(nèi)生菌Penicillium sp. GD6產(chǎn)生1個(gè)新二酮哌嗪化合物5(S-hydroxynorvaline-S-Ile)(420)、2個(gè)新天然產(chǎn)物3(S-hydroxylcyclo, S-Pro-S-Phe)(421)、cyclo(S-Phe-S-Gln)(422)以及2個(gè)已知的生物堿(423~424)[37];Diaporthe arecae產(chǎn)生23個(gè)已知的二酮哌嗪(425~447)[74];Sarocladium kiliense HDN11-112產(chǎn)2個(gè)新的十肽(448~449)[52]。
3.5 其它含氮化合物
Chen等[79]從紅樹林內(nèi)生真菌Phomopsis sp. 33#分離得到4個(gè)新的色酮吡啶衍生物phochrodines A~D(450~53)。前文所述的內(nèi)生菌Fusarium solani HDN15-410產(chǎn)生4個(gè)新的吡啶衍生物fusaricates H-K(454~457)及1個(gè)已知的類似物fusaric acid(458)[57];Aspergillus sp. AV-2產(chǎn)生1個(gè)新的含氮化合物(459)[45];Cladosporium sp. JS1-2產(chǎn)生1個(gè)含氮的新天然產(chǎn)物2-methylacetate-3,5,6 -trimethylpyrazine(460)[32]。
4 分析與討論
紅樹林的特殊生境決定了植物內(nèi)生菌代謝產(chǎn)物的多樣性和特殊性。本文系統(tǒng)總結(jié)了2018—2019年報(bào)道的紅樹林植物內(nèi)生真菌次級(jí)代謝產(chǎn)物,收錄的460個(gè)化合物經(jīng)分類,主要的結(jié)構(gòu)類型為酚類、內(nèi)酯類、異香豆素,其次是醌類、肽類,其他聚酮類、倍半萜類、二倍半萜類、混元萜類,出新率相對較高的代謝產(chǎn)物結(jié)構(gòu)類型為萜類中的倍半萜類、二倍半萜類,其他聚酮以及其他含氮生物堿。
統(tǒng)計(jì)2018—2019年報(bào)道的460個(gè)代謝產(chǎn)物在各屬真菌中的分布發(fā)現(xiàn),已鑒定的菌屬有27個(gè),化合物在各屬之間分布差異較為明顯,曲霉屬Aspergillus、間座殼屬Diaporthe、青霉屬Penicillium和枝孢屬Cladosporium代謝產(chǎn)物較豐富,次級(jí)代謝產(chǎn)物數(shù)量均超過60個(gè);來源于Annulohypoxylon屬、Eupenicillium屬、Clonostachys屬等的次級(jí)代謝產(chǎn)物報(bào)道較少,但出新率較高。另有大約3%代謝產(chǎn)物由尚不確定菌屬的菌株產(chǎn)生,提示還有很多尚未被研究的菌種有待開發(fā),挖掘新的菌種可能是微生物藥物研究領(lǐng)域中一條較有效的途徑,同時(shí)僅有少量報(bào)道的產(chǎn)物來自內(nèi)生真菌的表觀遺傳調(diào)控、共培養(yǎng)[30,55],這提示激活在實(shí)驗(yàn)室普通培養(yǎng)條件下未表達(dá)的“沉默基因”,將進(jìn)一步豐富真菌次級(jí)代謝產(chǎn)物的種類和數(shù)量。
僅就本論文統(tǒng)計(jì)結(jié)果而言,產(chǎn)生次級(jí)代謝產(chǎn)物及新化合物最多的真菌宿主主要有秋茄樹屬、紅樹屬、木欖屬、角果木屬、海漆屬、老鼠簕屬、白骨壤屬、木果楝屬和鹵蕨屬等真紅樹植物,其中研究最多的4種宿主為秋茄、紅海欖、海蓮以及角果木。但關(guān)于半紅樹植物和伴生植物如闊苞菊屬、苦檻藍(lán)屬等鮮有報(bào)道,這一統(tǒng)計(jì)結(jié)果為今后紅樹林內(nèi)生真菌多樣性及代謝化學(xué)成分研究的宿主選擇,提供了參考,具有一定的指導(dǎo)意義。
5 總結(jié)
紅樹林植物內(nèi)生真菌是一個(gè)化學(xué)結(jié)構(gòu)多樣性的寶庫,2018—2019年報(bào)道的紅樹林植物內(nèi)生真菌次級(jí)代謝產(chǎn)物,共有460個(gè),其中新化合物217個(gè),出新率達(dá)47.2%,其中通過模擬紅樹林特殊生態(tài)環(huán)境、或真菌-細(xì)菌共培養(yǎng)或真菌-真菌共培養(yǎng)、添加表觀遺傳修飾劑、genome mining技術(shù),OSMAC策略來激活沉默次級(jí)代謝產(chǎn)物生物合成基因,進(jìn)一步挖掘次級(jí)代謝產(chǎn)物潛力的研究不多,因此可以加大這些方面的研究力度;紅樹林內(nèi)生真菌的分離鑒定,仍集中在部分真紅樹的植物科屬宿主,以及在實(shí)驗(yàn)“標(biāo)準(zhǔn)”條件下易于生長和培養(yǎng)的少數(shù)可培養(yǎng)真菌類群中,無論宿主植物還是活性菌株都尚未得到充分研究,對新穎性高的菌種開展研究能提高獲得新化合物的幾率。分離篩選技術(shù)的進(jìn)步與多學(xué)科交叉融合的興起,紅樹林內(nèi)生真菌將為新型海洋藥物先導(dǎo)化合物的發(fā)現(xiàn)提供一個(gè)龐大并有待開發(fā)的微生物資源寶庫。
參 考 文 獻(xiàn)
Sridhar K R. Mangrove fungi in India[J]. Curr Sci, 2004, 86(12): 1586-1587.
Jones G, Stanley S J, Pinruan U. Marine endophyte sources of new chemical natural products: A review[J]. Bot Mar, 2008, 51(3): 163-170.
Debbab A, Aly A H, Proksch P. Mangrove derived fungal endophytes- a chemical and biological perception[J]. Fungal Divers, 2013, 61(1): 1-27.
Xu J. Biomolecules produced by mangrove-associated microbes[J]. Curr Med Chem, 2011, 18(34): 5224-5266.
Xu J. Bioactive natural products derived from mangrove-associated microbes[J]. Rsc Adv, 2015, 5(2): 841-892.
Wang X, Mao Z G, Song B B, et al. Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China Sea[J]. Mar Drugs, 2013, 16(10): 3601-3616.
Debbab A, Aly A H, Proksch P. Bioactive secondary metabolites from endophytes and associated marine derived fungi[J]. Fungal Divers, 2011, 49(1): 1-12.
Blunt J W, Copp B R, Keyzers R A, et al. Marine natural products[J]. Nat Prod Rep, 2017, 34(3): 235-294.
Blunt J W, Carroll A R, Copp B R, et al. Marine natural products[J]. Nat Prod Rep, 2018, 35(1): 8-53.
Carroll A R, Copp B R, Davis R A, et al. Marine natural products[J]. Nat Prod Rep, 2019, 36(1): 122-173.
Carroll A R, Copp B R, Davis R A, et al. Marine natural products[J]. Nat Prod Rep, 2020, 37(2): 175-223.
Yan Z, Huang C, Guo H, et al. Isobenzofuranone monomer and dimer derivatives from the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002 possess α-glucosidase inhibitory and antioxidant activity[J]. Bioorg Chem, 2019, 94: 103407.
Cai R, Wu Y, Chen S, et al. Peniisocoumarins A-J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel[J]. J Nat Prod, 2018, 81(6): 1376-1383.
Chen Y, Liu Z, Liu H, et al. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK-4[J]. Mar Drugs, 2018, 16(2): 54.
Wu Y, Chen S, Liu H, et al. Cytotoxic isocoumarin derivatives from the mangrove endophytic fungus Aspergillus sp. HN15-5D[J]. Arch Pharm Res, 2019, 42(4): 326-331.
Bai M, Zheng C J, Huang G L, et al. Bioactive meroterpenoids and isocoumarins from the mangrove-derived fungus Penicillium sp. TGM112[J]. J Nat Prod, 2019, 82(5): 1155-1164.
Wu Z, Chen J, Zhang X, et al. Four new isocoumarins and a new natural tryptamine with antifungal activities from a mangrove endophytic fungus Botryosphaeria ramosa L29[J]. Mar Drugs, 2019, 17(2): 88.
Liao H X, Zheng C J, Huang G L, et al. Bioactive polyketide derivatives from the mangrove-derived fungus Daldinia eschscholtzii HJ004[J]. J Nat Prod, 2019, 82(8): 2211-2219.
Xu Z, Wu X, Li G, et al. Pestalotiopisorin B, a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101[J]. Nat Prod Res, 2020, 34(7): 1002-1007.
Cao J, Li X M, Li X, et al. New lactone and isocoumarin derivatives from the marine mangrove-derived endophytic fungus Penicillium coffeae MA-314[J]. Phytochem Lett, 2019, 32: 1-5.
Luo X, Yang J, Chen F, et al. Structurally diverse polyketides from the mangrove-derived fungus Diaporthe sp. SCSIO 41011 with their anti-influenza A virus activities[J]. Front Chem, 2018, 6: 282.
Wang L, Han X, Zhu G, et al. Polyketides from the endophytic fungus Cladosporium sp. isolated from the mangrove plant Excoecaria agallocha[J]. Front Chem, 2018, 6: 344.
Zheng C J, Huang G L, Liao H X, et al. Bioactive cytosporone derivatives isolated from the mangrove-derived fungus Dothiorella sp. ML002[J]. Bioorg Chem, 2019, 85: 382-385.
Chen Y, Yang W, Zou G, et al. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7[J]. Fitoterapia, 2019, 139: 104369.
Luo Y P, Zheng C J, Chen G Y, et al. Three new polyketides from a mangrove-derived fungus Colletotrichum gloeosporioides[J]. J Antibiot, 2019, 72(7): 513-517.
Liao H X, Shao T M, Mei R Q, et al. Bioactive secondary metabolites from the culture of the mangrove-derived fungus Daldinia eschscholtzii HJ004[J]. Mar Drugs, 2019, 17(12): 710.
Wang P, Cui Y, Cai C, et al. Two new succinimide derivatives cladosporitins A and B from the mangrove-derived fungus Cladosporium sp. HNWSW-1[J]. Mar Drugs, 2019, 17(1): 4.
Wu J T, Zheng C J, Zhang B, et al. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JJM22[J]. Nat Prod Res, 2019, 33(1): 34-40.
Cui H, Zhang H, Liu Y, et al. Ethylnaphthoquinone derivatives as inhibitors of indoleamine-2, 3-dioxygenase from the mangrove endophytic fungus Neofusicoccum austral SYSU-SKS024[J]. Fitoterapia, 2018, 125: 281-285.
Yang S Q, Li X M, X G M, et al. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy[J]. J Antibiot, 2018, 71(9): 778-784.
Liu Z, Qiu P, Li J, et al. Anti-inflammatory polyketides from the mangrove-derived fungus Ascomycota sp. SK2YWS-L[J]. Tetrahedron, 2018, 74(7): 746-751.
Bai M, Zheng C J, Tang D Q, et al. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JS1-2[J]. J Antibiot, 2019, 72(10): 779-782.
Wang Y, Chen J H, Guo D X, et al. Two novel chromone derivatives: crystal structures and anti-lymphoma activity[J]. Main Group Chem, 2019, 18(2): 101-106.
Supratman U, Hirai N, Sato S, et al. New naphthoquinone derivatives from Fusarium napiforme of a mangrove plant[J]. Nat Prod Res, 2019, 35(9): 1406-1412.
Hu H B, Luo Y F, Wang P, et al. Xanthone-derived polyketides from the Thai mangrove endophytic fungus Phomopsis sp. xy21[J]. Fitoterapia, 2018, 131: 265-271.
Zheng C J, Liao H X, Mei R Q, et al. Two new benzophenones and one new natural amide alkaloid isolated from a mangrove-derived fungus Penicillium citrinum[J]. Nat Prod Res, 2019, 33(8): 1127-1134.
Jiang C S, Zhou Z F, Yang X H, et al. Antibacterial sorbicillin and diketopiperazines from the endogenous fungus Penicillium sp. GD6 associated chinese mangrove Bruguiera gymnorrhiza[J]. Chin J of Nat Medicines, 2018, 16(5): 358-365.
Zhu X, Wu Z, Liang F, et al. A new L-alanine derivative from the mangrove fungus Penicillium chrysogenum V11[J]. Chem Nat Compd, 2018, 54(3): 520-522.
Cui H, Liu Y, Li T, et al. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus. versicolor SYSU-SKS025[J]. Fitoterapia, 2018, 124: 177-181.
Wang P, Yu J H, Zhu K, et al. Phenolic bisabolane sesquiterpenoids from a Thai mangrove endophytic fungus, Aspergillus sp. xy02[J]. Fitoterapia, 2018, 127: 322-327.
Wu Y, Chen Y, Huang X, et al. α-Glucosidase Inhibitors: Diphenyl ethers and phenolic bisabolane sesquiterpenoids from the mangrove endophytic fungus Aspergillus flavus QQSG-3[J]. Mar Drugs, 2018, 16(9): 307.
Cui H, Liu Y, Li J, et al. Diaporindenes A-D: Four unusual 2, 3-dihydro1Hindene analogues with anti-inflammatory activities from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3[J]. J Org Chem, 2018,? 83(19): 11804-11813.
Cai R, Jiang H, Zang Z, et al. New benzofuranoids and phenylpropanoids from the mangrove endophytic fungus Aspergillus sp. ZJ-68 [J]. Mar Drugs, 2019, 17(8): 478.
Qiu P, Liu Z, Chen Y, et al. Secondary metabolites with α-glucosidase inhibitory activity from the mangrove fungus Mycosphaerella sp. SYSU-DZG01[J]. Mar Drugs, 2019, 17(8): 483.
Elissawy A M, Ebada S S, Ashour M L, et al. New secondary metabolites from the mangrove-derived fungus Aspergillus sp. AV-2[J]. Phytochem Lett, 2019, 29: 1-5.
Yan Z, Wen S, Ding M, et al. The purification, characterization, and biological activity of new polyketides from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002[J]. Mar Drugs, 2019, 17(7): 414.
Wen S, Fan W, Guo H, et al. Two new secondary metabolites from the mangrove endophytic fungus Pleosporales sp. SK7[J]. Nat Prod Res, 2020, 83(19): 11804-11813.
Zhang F Z, Li X M, Yang S Q, et al. Thiocladospolides A-D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3[J]. J Nat Prod, 2019, 82(6): 1535-1541.
Supratman U, Suzuki T, Nakamura T, et al. New metabolites produced by endophyte Clonostachys rosea B52[J]. Nat Prod Res, 2021, 35(9): 1525-1531.
Bai M, Huang G L, Mei R Q, et al. Bioactive lactones from the mangrove-derived fungus Penicillium sp. TGM112[J]. Mar Drugs, 2019, 17(8): 433.
Fan Y, Zhu G, Wang Y, et al. α-Pyronoids with quorum sensing inhibitory activity from the mangrove fungus Penicillium camemberti OUCMDZ-1492[J]. Chinese J Org Chem, 2018, 38(10): 2798-2813.
Guo W, Wang S, Li N, et al. Saroclides A and B, cyclic depsipeptides from the mangrove-derived fungus Sarocladium kiliense HDN11-112[J]. J Nat Prod, 2018, 81(4): 1050-1054.
Wang P, Cui Y, Cai C H, et al. A new cytochalasin derivative from the mangrove-derived endophytic fungus Xylaria sp. HNWSW-2[J]. J Asian Nat Prod Res, 2018, 20 (10): 1002-1007.
Lin X, Ai W, Li M, et al. Colletoindole A from the mangrove plant endophytic fungus Colletotrichum tropicale SCSIO 41022[J]. Chem Biodivers, 2019, 17(2): e1900040.
Zhang L, Niaz S, Wang Z, et al. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307[J]. Nat Prod Res, 2018, 32(24): 2887-2892.
Liu Y, Kurtan T, Mandi A, et al. A novel 10-membered macrocyclic lactone from the mangrove-derived endophytic fungus Annulohypoxylon sp[J]. Tetrahedron Lett, 2018, 59(7): 632-636.
Zhou G, Qiao L, Zhang X, et al. Fusaricates H-K and fusolanones A-B from a mangrove endophytic fungus Fusarium solani HDN15-410[J]. Phytochemistry, 2019, 158: 13-19.
Peng X, Wang Y, Zhu G, et al. Fatty acid derivatives from the halotolerant fungus Cladosporium cladosporioides[J]. Magn Reson in Chem, 2018, 56(1): 18-24.
Luo X, Lin X, Tao H, et al. Isochromophilones A-F, Cytotoxic chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011[J]. J Nat Prod, 2018, 81(4): 934-941.
Liu S, Zhao Y, Heering C, et al. Sesquiterpenoids from the endophytic fungus Rhinocladiella similis[J]. J Nat Prod, 2019, 82(5): 1055-1062.
Qiu L, Wang P, Liao G, et al. New eudesmane-type sesquiterpenoids from the mangrove-derived endophytic fungus Penicillium sp. J-54[J]. Mar Drugs, 2018, 16(4): 108.
Chen H, Qiu L, Wang P, et al. Three new eudesmane-type sesquiterpenoids from the mangrove-derived endophytic fungus Penicillium sp. J-54[J]. Phytochem Lett, 2019, 33: 36-38.
Deng Q, Li G, Sun M, et al. A new antimicrobial sesquiterpene isolated from endophytic fungus Cytospora sp. from the Chinese mangrove plant Ceriops tagal[J]. Nat Prod Res, 2020, 34(10): 1404-1408.
Luo X W, Chen C M, Li K L, et al. Sesquiterpenoids and meroterpenoids from a mangrove derived fungus Diaporthe sp. SCSIO 41011 [J]. Nat Prod Res, 2021, 35(2): 282-288.
Zhu T, Lu Z, Fan J, et al. Ophiobolins from the mangrove fungus Aspergillus ustus[J]. J Nat Prod, 2018, 81(1): 2-9.
Cai R, Jiang H, Mo Y, et al. Ophiobolin-type sesterterpenoids from the mangrove endophytic fungus Aspergillus sp. ZJ-68[J]. J Nat Prod, 2019, 82(8): 2268-2278.
Li H L, Xu R, Li X M, et al. Simpterpenoid A, a meroterpenoid with a highly functionalized cyclohexadiene moiety featuring gem-propane-1, 2-dione and methylformate groups, from the mangrove-derived Penicillium simplicissimum MA-332[J]. Org Lett, 2018, 20(5): 1465-1468.
Chen S, Ding M, Liu W, et al. Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1[J]. Phytochemistry, 2018, 146: 8-15.
Xu Z, Xiong B, Xu J, et al. Chemical investigation of secondary metabolites produced by mangrove endophytic fungus Phyllosticta Capitalensis[J]. Nat Prod Res, 2021, 35(9): 1561-1565.
Liu Z, Liu H, Chen Y, et al. A new anti-inflammatory meroterpenoid from the fungus Aspergillus terreus H010[J]. Nat Prod Res, 2018, 32(22): 2652-2656.
Zhou X M, Zheng C J, Song X M, et al. Bioactive acetaminophen derivatives from Penicillum herquei JX4[J]. Fitoterapia, 2019, 139: 104400.
Li F, Zhang Z, Zhang G, et al. Determination of taichunamide H and structural revision of taichunamide A[J]. Org Lett, 2018, 20(4): 1138-1141.
Zheng C J, Bai M, Zhou X M, et al. Penicilindoles A-C, cytotoxic indole diterpenes from the mangrove-derived fungus Eupenicillium sp. HJ002[J]. J Nat Prod, 2018, 81(4): 1045-1049.
Chang F R, Wang S W, Li C Y, et al. Natural products from Diaporthe arecae with anti‐angiogenic activity[J]. Israel J Chem, 2019, 59(5): 439-445.
Chen Y, Liu Z, Huang Y, et al. Ascomylactams A-C, Cytotoxic 12- or 13-membered-ring macrocyclic alkaloids isolated from the mangrove endophytic fungus Didymella sp. CYSK-4, and structure revisions of Phomapyrrolidones A and C [J]. J Nat Prod, 2019, 82(7): 1752-1758.
Yang L J, Liao H X, Bai M, et al. One new cytochalasin metabolite isolated from a mangrove-derived fungus Daldinia eschscholtzii HJ001[J]. Nat Prod Res, 2018, 32(2): 208-213.
Cai R, Jiang H, Xiao Z, et al. (?)- and (+)-Asperginulin A, a pair of indole diketopiperazine alkaloid dimers with a 6/5/4/5/6 pentacyclic skeleton from the mangrove endophytic fungus Aspergillus sp. SK-28[J]. Org Lett, 2019, 21(23): 9633-9636.
Zhu X, Zhong Y, Xie Z, et al. Fusarihexins A and B: Novel cyclic hexadepsipeptides from the mangrove endophytic fungus Fusarium sp. R5 with antifungal activities[J]. Planta Med, 2018, 84(18): 1355-1362.
Chen H, Huang M, Li X, et al. Phochrodines A-D, first naturally occurring new chromenopyridines from mangrove entophytic fungus Phomopsis sp. 33#[J]. Fitoterapia, 2018, 124: 103-107.