李都岳 吳延軍
DOI:10.13925/j.cnki.gsxb.20230114
摘? ? 要:【目的】探究不同補光處理對櫻桃果實的影響,篩選設(shè)施栽培櫻桃最佳人工補光方案。【方法】以設(shè)施栽培的中國櫻桃諸暨短柄與黑珍珠為材料,從果實硬核期到采收期間,分別使用不同功率的LED燈光源、白熾燈光源、商品補光燈光源進行補光,以自然光照作為對照,對果實內(nèi)源激素、相關(guān)酶活性與基因表達進行測定?!窘Y(jié)果】發(fā)現(xiàn)采用紅藍光比例6∶1的LED光源補光顯著促進了果實成熟進程,能夠使果實成熟過程中內(nèi)源激素動態(tài)變化趨勢較對照組提早出現(xiàn),并且顯著提高了成熟軟化與糖合成基因的表達,使果實蔗糖合成酶活性比同期對照組提高18.75%以上?!窘Y(jié)論】功率36 W的LED補光處理效果最好,顯著促進了果實成熟進程,提高櫻桃糖分積累量,值得在櫻桃生產(chǎn)中應(yīng)用和推廣。
關(guān)鍵詞:櫻桃;補光;LED;成熟;糖分積累
中圖分類號:S662.5 文獻標(biāo)志碼:A 文章編號:1009-9980(2023)10-2183-12
Effects of supplementary light on ripening and sugar accumulation of cherry under protected cultivation
LI Duyue, WU Yanjun*
(Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou 310021, Zhejiang, China)
Abstract: 【Objective】 Because of the subtropical monsoon climate in most areas of southern China, the protected cultivation is widely applied in cherry production to reduce the impact of the large precipitation in spring. There are still problems such as weak light intensity, short light duration and uneven light distribution in protected cultivation environment. Therefore, improving the light environment of facility cultivation through artificial light supplement technology has important practical significance for regulating the growth and development and improving yield and quality of cherry. In this study, different supplementary light measures were compared and the best scheme for protected cultivation of cherry was selected. 【Methods】 The Chinese cherry cultivars Zhujiduanbing and Heizhenzhu were used as materials in this study. Four different types of light sources were used: LED lamp (36 W, RB 6︰1), LED lamp (50 W, RB 6︰1), commodity plant growth lamp (12 W, RB 2︰1, G101) and incandescent lamp (36 W), with no artificial light as the control (CK). All the groups were treated with mulching the ground with reflective film. The distance between the lights was 3 m, and the height from the top of the tree was 50 cm. Time of light supplement was set to 05:00—10:00, 16:00—19:30 on sunny days and 5:00—19:30 on rainy days. The contents of endogenous hormones GAS, IAA and ABA, the percentage of soluble solids, and the enzyme activities of peroxidase (POD), sucrose synthase (SS) and sucrose phosphate synthase (SPS) in cherry flesh were measured from the color transition stage to the harvest stage. The expression levels of genes related to ripening, softening, and sugar synthesis in fruits were also measured in the harvest stage. 【Results】 Each supplementary light treatment caused the dynamic change of endogenous hormones in the fruit earlier than control, and promoted the fruit development and maturation process of the two varieties. The comprehensive effect of LED light treatment was the best, resulting in the changing process of endogenous hormones GAS and ABA in the fruit earlier than control. Supplementary light treatments also increased the TSS contents of two cherry cultivars at harvest time. LED light treatments had the most significant effect on improving TSS content, which made the TSS of Zhujiduanbing fruit reach 17.63%, and made the TSS of Heizhenzhu fruit reach 14.67%. The increase of sucrose synthase activity in the fruit of each supplementary light treatment was earlier than control, thus promoting the accumulation of sugar in the fruit. Among them, LED supplementary light treatments had the most obvious promotion effect. LED 36 W treatment made the sucrose synthase vitality of Zhujiduanbing fruit reach a peak 3 days before harvest, which was 69.17% higher than the control during the same period, and increased the sucrose synthase activity of Heizhenzhu fruit by 18.75% compared to control during harvest. Overall, LED 36 W treatment had the best effect, and gene expression levels were measured for this treatment. It was found that the expression of the ABA synthase gene NCED1 was significantly higher with LED 36 W treatment than that with control, which regulated the levels of endogenous hormones related to fruit ripening at the molecular level. The relative expression levels of polygalacturonase gene PG1 and xylanase gene XYL1, which can regulate cell wall degradation, were also significantly higher with this treatment than those with the control, indicating that this treatment could promote fruit softening by positively regulating the process of cell wall degradation. The determination of anthocyanin synthesis pathway genes PAL, CHS, ANS and transcription factor MYB10 in the pericarp during harvest showed that the expression levels of CHS, ANS and MYB10 in Zhujiduanbing pericarp treated with LED 36 W were significantly higher than the control. And in Heizhenzhu pericarp, the expression levels of all four genes with LED 36 W treatment were significantly higher than those with the control. LED 36 W treatment activated the synthesis of anthocyanins in cherry pericarp by activating high-level expression of synthesis pathway genes and transcription factors at the molecular level, thereby promoting the coloring of cherry pericarp. The relative expression levels of sucrose synthase genes SS1, SS6 and sucrose phosphate synthase gene SPSA1 in fruit during harvest were also analyzed. The results showed that with the two cherry cultivars, LED 36 W treatment significantly increased the expression level of SS1 gene in fruit compared to the control, indicating that SS1 played a major role in responding to supplementary light treatment. LED 36 W treatment positively regulated the synthesis of sucrose synthase by activating the expression of SS1, thereby promoting sugar accumulation in cherry fruits through sucrose synthase. 【Conclusion】 All supplementary light treatments promoted the dynamic changes of endogenous hormones during cherry fruit ripening, and increased the level of soluble solids content in the fruit. Among them, LED (36 W, RB 6∶1) supplementary light treatment could advance the endogenous hormone change process of two Chinese cherry cultivars by 3 to 9 days, increase the activity of sucrose synthase in the fruit by more than 18.75% compared to the control during the same period, and significantly improve the expression of genes related to fruit ripening and softening, sugar synthesis, and anthocyanin synthesis at the molecular level, which had the best effect on promoting cherry ripening and improving fruit quality. It is worthy of application and promotion in cherry practical production.
Key words: Cherry; Supplemental light; LED; Ripeness; Sugar accumulation
中國櫻桃(Prunus pseudocerasus L.)是薔薇科李亞科李屬植物,起源于中國,是世界四大櫻桃栽培種之一[1],果實富含多種維生素和礦質(zhì)元素[2],深受消費者的喜愛。在浙江省等中國南方地區(qū)櫻桃生產(chǎn)中,廣泛采用設(shè)施栽培以減輕高溫多雨環(huán)境對櫻桃生長的影響[3]。傳統(tǒng)設(shè)施栽培可以調(diào)控環(huán)境因子,但相對于自然條件還存在設(shè)施環(huán)境下光照度弱、光照時間短、光照分布不均[4]等問題。光照條件不足會導(dǎo)致作物營養(yǎng)生長受限[5]、果實發(fā)育緩慢[6]。因此,通過人工補光技術(shù)改善設(shè)施栽培的光照條件,對于調(diào)節(jié)作物的生長發(fā)育、提高產(chǎn)量、改善果實品質(zhì)等具有重要的實踐意義[7-9]。目前關(guān)于中國櫻桃設(shè)施栽培中的補光技術(shù)研究尚未見報道。
研究表明,光照條件是影響植物的生長發(fā)育過程的重要環(huán)境因子[10],光照不僅為光合作用提供能量以促進植物營養(yǎng)生長,還影響植物生殖生長的整個階段,參與調(diào)控作物品質(zhì)形成等諸多方面[11-13]。目前,在蔬菜和柑橘等果樹的設(shè)施栽培中,傳統(tǒng)光源和LED新型光源的補光技術(shù)對有效延長光照時間、調(diào)控光質(zhì)具有積極作用,能夠促進果實的發(fā)育成熟,并提升其產(chǎn)量和品質(zhì)[14-16]。此外,LED補光光源還能夠影響作物的內(nèi)源激素含量,顯著提高葡萄、水稻等作物的產(chǎn)量和抗逆性[17-18]。光照環(huán)境差是影響浙江省櫻桃生產(chǎn)的關(guān)鍵問題,當(dāng)?shù)卮杭久酚昙竟?jié)降水量大,連續(xù)陰雨天氣和避雨栽培所使用的薄膜等材料對設(shè)施透光率的影響,導(dǎo)致櫻桃果實發(fā)育過程中自然光照條件不足,果實品質(zhì)與產(chǎn)量受到影響。因此,開發(fā)合適的人工補光技術(shù)改善光照環(huán)境是櫻桃生產(chǎn)中的迫切需求,該技術(shù)能有效提高設(shè)施內(nèi)光照度,有利于促進果實發(fā)育成熟,增產(chǎn)增收。
諸暨短柄與黑珍珠是浙江省中國櫻桃主栽品種[19],筆者在本研究中以諸暨短柄與黑珍珠為試驗材料,選擇傳統(tǒng)白熾燈、商品補光燈“G101型激光植物生長燈”與紅藍光LED燈作為補光處理手段,探究不同的補光處理對果實成熟和糖分積累的影響,以期為開發(fā)設(shè)施栽培櫻桃補光技術(shù)提供理論參考依據(jù)。
1 材料和方法
1.1 供試材料
試驗于2022年4月在浙江省杭州市桐廬縣櫻桃園進行。供試品種為設(shè)施栽培的中國櫻桃諸暨短柄和黑珍珠。諸暨短柄櫻桃是由浙江省農(nóng)業(yè)科學(xué)院等單位從中國櫻桃地方品種中選育出的優(yōu)株,1992年通過品種審定。黑珍珠櫻桃是中國櫻桃的芽變優(yōu)株,1993年由重慶南方果樹研究所選出。
1.2 試驗設(shè)計
補光光源采用4種不同的補光燈類型:LED燈(36 W,RB 6∶1)、LED燈(50 W,RB 6∶1)、G101型激光植物生長燈(12 W,RB 2∶1)和白熾燈(36W),以不補光為對照(CK)。補光燈間距3 m,距離樹頂高度50 cm,地表鋪設(shè)反光膜。補光時間設(shè)置為晴天每天05:00—10:00、16:00—19:30,陰雨天每天05:00—19:30。
1.3 測定方法
于2022年4月13—21日兩種供試材料果實轉(zhuǎn)色期至采收期,間隔3~6 d取樣,每次取樣隨機選取各處理3株植株共9個果實,用高效液相色譜法測定果肉GAS、IAA、ABA含量,3次重復(fù),取平均值。用手持糖度計測定可溶性固形物含量。POD、SS、SPS酶活性的測定參照Solarbio公司的試劑盒說明書進行。
櫻桃果皮與果實總RNA的提取采用優(yōu)化的CTAB-LiCl法,合成cDNA第一鏈參照Beyotime公司的反轉(zhuǎn)錄試劑盒說明書進行。根據(jù)NCBI上查找到的同源性較高的櫻桃的NCED1、PG1、XYL1、PAL、CHS、DFR、ANS、UFGT、MYB10、Riant、SS1、SS6與SPSA1,利用Primer 5.0軟件設(shè)計特異引物(表1),使用實時熒光定量RT-PCR測定櫻桃在采收期各基因的表達量。
1.4 數(shù)據(jù)統(tǒng)計分析
采用Excel 2013進行數(shù)據(jù)初步處理,采用SPSS 18.0進行差異顯著性分析(p<0.05)。
2 結(jié)果與分析
2.1 補光處理對果實成熟進程的影響
2.1.1? ? 補光處理對單果質(zhì)量變化的影響? ? 補光處理對櫻桃的果實單果質(zhì)量增加具有促進作用(表2)。其中LED 36 W補光處理效果最好,使兩個品種中國櫻桃果實單果質(zhì)量上升幅度大、采收期單果質(zhì)量高。該處理下諸暨短柄單果質(zhì)量在采收期達到2.91 g,比對照組高18.29%,黑珍珠單果質(zhì)量在采收期達到2.48 g,比對照組高23.38%。
2.1.2? ? 補光處理對果實內(nèi)源激素含量的影響? ? 內(nèi)源激素含量是標(biāo)志成熟進程的重要指標(biāo),研究中發(fā)現(xiàn)兩個櫻桃品種果實發(fā)育后期,果實內(nèi)源激素GAS/IAA/ABA總體呈現(xiàn)上升趨勢,補光處理對兩個品種櫻桃的內(nèi)源激素含量動態(tài)變化進程具有不同程度的促進作用(圖1)。在諸暨短柄果實中,內(nèi)源GAs與ABA含量在采收前持續(xù)上升,兩種LED補光燈與G101型激光植物生長燈處理的果實中GAS與ABA含量在采收前9 d內(nèi)持續(xù)高于對照組。而LED補光處理的果實IAA含量上升在采收前9 d達到最高點,隨后波動,比對照組和其他補光處理提前6 d左右。在黑珍珠果實中,LED補光燈與G101型激光植物生長燈處理的3種內(nèi)源激素含量上升也均提前于對照組,其中GAS含量在采收前3 d達到高點并波動,比對照組早3 d以上。整體上,各補光處理使果實內(nèi)源激素動態(tài)變化趨勢提早于對照組,促進了兩個品種的果實發(fā)育成熟進程,其中LED補光處理綜合效果較好。
2.1.3? ? 補光處理對櫻桃成熟軟化相關(guān)基因的影響? ? 根據(jù)內(nèi)源激素動態(tài),選擇促進果實成熟進程效果最明顯、兩個櫻桃品種均具有的LED 36 W補光處理組,進行成熟軟化相關(guān)基因檢測,與對照組進行比較,發(fā)現(xiàn)LED 36 W補光處理在基因水平上促進了兩個品種果實的成熟和軟化(圖2)。采收期果實中ABA合成酶基因NCED1在LED 36 W補光處理后表達量顯著高于自然光照對照組,在分子層面調(diào)控果實成熟相關(guān)的內(nèi)源激素水平。而調(diào)控細胞壁降解的多聚半乳糖醛酸酶基因PG1、木聚糖酶基因XYL1在該處理下相對表達量也顯著高于對照,表明補光處理能夠通過正向調(diào)控細胞壁降解進程促進果實的軟化。
2.1.4? ? 補光處理對果皮花青素合成的影響? ? 果皮著色也是櫻桃果實成熟過程的重要指標(biāo),LED 36 W補光燈處理對兩種櫻桃果皮花青素合成均具有明顯促進效果,對果皮著色起積極影響(圖3)。通過檢測采收期果皮中花青素合成與轉(zhuǎn)運途徑基因PAL、CHS、DFR、ANS、UFGT、Riant與轉(zhuǎn)錄因子MYB10,發(fā)現(xiàn)在諸暨短柄果皮中,LED 36 W補光處理使CHS、ANS、Riant與MYB10表達量顯著高于對照組。而在黑珍珠果皮中,該處理使PAL、CHS、ANS、Riant與MYB10表達量均顯著高于對照組。LED 36 W補光處理通過在分子層面激活合成途徑基因和轉(zhuǎn)錄因子的高水平表達,啟動果皮中花青素的合成,進而促進櫻桃果皮的著色。
2.1.5? ? 補光處理對果實過氧化物酶活性的影響? ? 過氧化物酶POD作為活性氧清除劑在果實成熟過程中發(fā)揮協(xié)調(diào)作用,與細胞內(nèi)的活性氧生成之間保持著平衡,筆者在本研究中發(fā)現(xiàn)POD活性在兩個品種櫻桃果實發(fā)育后期呈現(xiàn)下降趨勢,黑珍珠POD活性整體高于諸暨短柄(表3)。各補光處理下果實POD活性的下降不同程度地提早于對照組,兩種功率LED補光燈處理的POD活性下降最早,在采收前9 d內(nèi)持續(xù)低于同時期對照組。在諸暨短柄果實中,其他補光處理果實的POD活性下降到兩種LED補光處理的水平在時間上滯后9 d左右,而在黑珍珠果實中,G101處理POD活性下降在前期比LED 36 W處理滯后6 d左右,在采收前3 d則加速下降,在采收期達到與LED 36 W處理相同的水平。這在酶活性動態(tài)變化層面體現(xiàn)出果實發(fā)育成熟的進程被補光處理所促進,其中兩種功率LED補光處理的促進效果最明顯。
2.2 補光處理對果實糖分積累的影響
2.2.1? ? 補光處理對果實可溶性固形物(TSS)含量的影響? ? 各補光處理不同程度地提高了兩個品種櫻桃果實采收期TSS含量,以紅藍光比例6∶1的LED補光光源效果最好(圖4)。LED 50 W補光燈處理對諸暨短柄果實TSS含量的提高效果最明顯,使果實采收期TSS含量達到17.63%,顯著高于對照組的15.30%。而LED 36 W補光燈處理對黑珍珠果實TSS含量的提高效果最明顯,使果實采收期TSS含量達到14.67%,顯著高于對照組的12.03%。
2.2.2? ? 補光處理對蔗糖合成酶(SS)活性的影響? ? 果實糖分合成與蔗糖合成相關(guān)酶密切相關(guān),SS活性在櫻桃果實發(fā)育后期上升,并在采收前到達高點。各補光處理組果實SS活性在采收前3 d內(nèi)均顯著高于同時期對照組,促進了果實糖分積累(表4)。其中LED補光處理的促進效果最明顯,LED 36 W補光處理使諸暨短柄果實SS活性上升較早,在采收前9 d開始高于對照組與其他補光處理,并快速升高,在采收前3 d達到高點,比同時期對照組高69.17%。而LED 50 W補光處理SS活性達到高點較晚,在采收期SS活性最高,比同時期對照組高21.14%。黑珍珠果實發(fā)育后期SS活性整體水平稍高于諸暨短柄,但到達高點較晚,在采收前整體保持上升。LED 36 W補光處理使黑珍珠果實SS活性上升較快,在采收期比對照組提高18.75%。
2.2.3? ? 補光處理對蔗糖磷酸合成酶(SPS)活性的影響? ? 在兩個櫻桃品種果實發(fā)育后期,SPS活性均沒有表現(xiàn)出明顯的變化規(guī)律,黑珍珠SPS活性整體高于諸暨短柄(表5)。LED 36W補光處理使黑珍珠果實SPS活性在采收前9 d內(nèi)持續(xù)高于同時期對照組與其他補光處理,采收期SPS活性比對照組高35.79%。而在諸暨短柄果實中,各處理組在果實發(fā)育后期SPS活性均普遍保持較低水平。
2.2.4? ? 對蔗糖合成相關(guān)基因的影響? ? 根據(jù)果實TSS與蔗糖合成相關(guān)酶活性,選擇促進果實糖分積累效果最明顯、兩個櫻桃品種均具有的LED 36 W補光處理組,進行蔗糖合成相關(guān)基因檢測,發(fā)現(xiàn)LED 36 W補光處理在基因水平上促進了兩個品種的果實糖分積累(圖5)。分析采收期果實中與糖合成相關(guān)的蔗糖合成酶基因SS1、SS6與蔗糖磷酸合成酶基因SPSA1的相對表達量,結(jié)果表明,在兩個品種中,LED 36 W補光處理使果實中SS1基因表達量顯著高于對照組,而SS6與SPSA1表達量在不同處理之間無明顯差異,表明SS1在響應(yīng)補光處理這一過程中起主要作用。此結(jié)果與前文對SS與SPS的研究結(jié)果相符,即補光處理主要通過激活SS1的表達正向調(diào)控SS的合成,進而通過SS促進櫻桃果實的糖分積累。
3 討 論
人工補光處理可以縮短園藝作物果實發(fā)育期,促進產(chǎn)品提早成熟上市,提高設(shè)施園藝生產(chǎn)經(jīng)濟效益[20]。在影響果實的生長發(fā)育與成熟進程的諸多因素中,內(nèi)源激素起著重要的調(diào)控作用,赤霉素和生長素在果實品質(zhì)形成過程中,促進了果肉細胞的生長和體積增大,脫落酸則對果實的成熟軟化具有重要的調(diào)控作用。內(nèi)源激素對果實發(fā)育的影響,在葡萄[21]、梨[22]等果樹上已有研究,甜櫻桃果實發(fā)育成熟過程中內(nèi)源激素動態(tài)變化也有報道[23-24]。筆者在本研究中發(fā)現(xiàn),兩種中國櫻桃果實發(fā)育后期內(nèi)源激素動態(tài)變化趨勢與前人在甜櫻桃中的研究成果基本一致,GAS、IAA、ABA含量總體呈現(xiàn)上升趨勢,并在采收前達到高點。補光處理對兩個品種櫻桃的內(nèi)源激素動態(tài)變化進程具有不同程度的促進作用,使激素達到高點的時間提前于對照組,表明補光促進了櫻桃果實成熟進程。在前人對補光調(diào)控果實內(nèi)源激素的研究中,發(fā)現(xiàn)夜間補光在提高葡萄果實IAA和GA3含量的同時,還能降低ABA含量[25]。而本研究中細化了內(nèi)源激素測定時間點,以呈現(xiàn)激素水平的動態(tài)變化,在單一時間節(jié)點中補光處理對內(nèi)源激素水平的影響與前人研究不完全一致。其原因可能包含了不同物種果實內(nèi)源激素調(diào)控的差異以及取樣測定時間節(jié)點不同等因素,有待進一步探究。
果實的成熟軟化過程在基因?qū)用媸艿椒肿泳W(wǎng)絡(luò)的調(diào)控,研究主要圍繞調(diào)控軟化過程的植物激素ABA的合成途徑基因,以及細胞壁降解相關(guān)酶類合成基因。NCED是ABA合成途徑中的限速酶,對于果實的成熟具有重要的作用[26]。在番茄中沉默SlNCED1會延緩果實成熟進程[27],桃的NCED2/3基因也正向調(diào)控果實成熟[28]。筆者在本研究中發(fā)現(xiàn),兩個中國櫻桃品種采收期果實中NCED1相對表達量在LED 36W補光處理后均顯著高于自然光照對照組,表明其在分子層面調(diào)控了果實內(nèi)源激素水平,促進了果實成熟進程。多聚半乳糖醛酸酶基因PG是可合成分解果膠或果膠酸酶類基因中的一種,而木聚糖酶基因XYL是合成降解半纖維素的木聚糖酶的主要酶類,二者通過促進細胞壁的降解直接調(diào)控果實軟化過程[29]。在本研究中,兩個品種中國櫻桃果實采收期的PG1、XYL1相對表達量在LED 36W補光處理后均顯著高于對照組,表明補光處理在基因調(diào)控層面還能通過調(diào)節(jié)細胞壁的降解促進櫻桃果實的軟化,與前人研究結(jié)果一致[29]。
花青素的生物合成也會受到光照環(huán)境的影響,補光處理會顯著提高蘋果等多種果樹果實果皮中的花青素含量[30-31]。PAL、CHS、DFR、ANS、UFGT與MYB10是果皮花青素合成途徑的關(guān)鍵基因和轉(zhuǎn)錄因子[32-34],調(diào)控谷胱甘肽S-轉(zhuǎn)移酶(GST)合成的Riant基因則在花青素從內(nèi)質(zhì)網(wǎng)至液泡的轉(zhuǎn)運過程發(fā)揮作用[35]。筆者在本研究中發(fā)現(xiàn),這些花青素合成與轉(zhuǎn)運途徑基因不同程度地被LED 36 W補光處理激活高水平表達,與前人研究成果基本一致。糖積累也在果實發(fā)育和品質(zhì)形成過程中起著重要的作用,SS與SPS是參與蔗糖合成的關(guān)鍵酶,在甜櫻桃中也被證實參與糖分合成[36]。在本研究中,LED 36 W補光處理均顯著地提高了果實SS活性和SPS活性。而對基因?qū)用娴难芯縿t發(fā)現(xiàn),調(diào)控SS合成的SS1基因在補光促進兩種中國櫻桃果實糖分積累這一過程中起主要作用,與在甜櫻桃中對SS基因家族的研究結(jié)果基本一致。
筆者在本研究中發(fā)現(xiàn),促進果實發(fā)育整體效果最好的處理是LED 36 W補光處理,該方法使櫻桃果實成熟進程整體提早于對照組,并提高了果實糖分積累相關(guān)指標(biāo)。同時,由于諸暨短柄果實成熟期稍早于黑珍珠,因而在內(nèi)源激素和酶活性動態(tài)變化的過程中,同期兩個品種存在差異,如何針對具體品種適配補光措施尚需進一步研究。
開發(fā)與設(shè)施栽培相配套的補光處理技術(shù)能夠促進櫻桃果實成熟與糖分積累,提升果實品質(zhì),值得進行深入研究并推廣應(yīng)用。
4 結(jié) 論
人工補光處理對設(shè)施栽培櫻桃果實成熟與糖分積累具有促進作用。LED補光燈(36 W,RB 6∶1)處理能夠促進果實內(nèi)源激素變化進程,并在基因?qū)用娲龠M果實軟化、果皮著色并提高果實糖分合成能力。該方案能夠通過改善設(shè)施栽培中的光照環(huán)境有效提高果實綜合品質(zhì),值得進行深入研究并推進其在浙江省櫻桃產(chǎn)業(yè)中的應(yīng)用。
參考文獻References:
[1] 何文,張靜,黃智林,陳清,湯浩茹,湯福義,王小蓉. 基于ITS序列對栽培中國櫻桃遺傳多樣性及其群體遺傳結(jié)構(gòu)的分析[J]. 西北植物學(xué)報,2014,34(3):463-472.
HE Wen,ZHANG Jing,HUANG Zhilin,CHEN Qing,TANG Haoru,TANG Fuyi,WANG Xiaorong. Genetic diversity and population genetic structure among local Chinese cherry varieties [Cerasus pseudocerasus (Lindl.) G. Don] based on ITS sequence[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34(3):463-472.
[2] 賈?;?,張小燕,陳學(xué)森,陳曉流,趙春芝. 甜櫻桃和中國櫻桃果實性狀的比較[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2007,38(2):193-195.
JIA Haihui,ZHANG Xiaoyan,CHEN Xuesen,CHEN Xiaoliu,ZHAO Chunzhi. Survey of partial physiological index of cherry different cultivars[J]. Journal of Shandong Agricultural University (Natural Science Edition),2007,38(2):193-195.
[3] 洪莉,龐一波,何玲玲,陳令會,江景勇,王嬌陽. 南方矮化甜櫻桃優(yōu)選品種比較試驗初報[J]. 浙江農(nóng)業(yè)科學(xué),2015,56(12):1972-1975.
HONG Li,PANG Yibo,HE Lingling,CHEN Linghui,JIANG Jingyong,WANG Jiaoyang. Preliminary report on the comparative test of the selected varieties of dwarf sweet cherry in South China[J]. Journal of Zhejiang Agricultural Sciences,2015,56(12):1972-1975.
[4] 王孝娣,王瑩瑩,鄭曉翠,宋楊,張震東,王海波. 人工補光對設(shè)施園藝作物生長發(fā)育影響的研究進展[J]. 北方園藝,2019(20):117-124.
WANG Xiaodi,WANG Yingying,ZHENG Xiaocui,SONG Yang,ZHANG Zhendong,WANG Haibo. Research progress on the effect of artificial supplementary light on the growth and development of facility horticultural crops[J]. Northern Horticulture,2019(20):117-124.
[5] 彭佃亮,遲文娟,信國琛,唐玉海,張敬敏. 不同時段補光對日光溫室早春茬馬鈴薯光合特性、產(chǎn)量和品質(zhì)的影響[J]. 中國瓜菜,2022,35(1):65-69.
PENG Dianliang,CHI Wenjuan,XIN Guochen,TANG Yuhai,ZHANG Jingmin. Effect of supplemental illumination in different periods on photosynthetic characteristics,yield and quality of potato in solar greenhouse[J]. China Cucurbits and Vegetables,2022,35(1):65-69.
[6] 王舒亞,徐威,唐中祺,王鵬,景濤,劉琪,馬正宇,呂劍,郁繼華. 不同補光時長對日光溫室西葫蘆生長、品質(zhì)及產(chǎn)量的影響[J]. 中國瓜菜,2020,33(4):23-27.
WANG Shuya,XU Wei,TANG Zhongqi,WANG Peng,JING Tao,LIU Qi,MA Zhengyu,L? Jian,YU Jihua. Effects of different duration of light supplementation on growth,quality and yield of Cucurbita pepo in greenhouse[J]. China Cucurbits and Vegetables,2020,33(4):23-27.
[7] 陳善飛,陳暉,陳善忠,王正良. 大棚栽培草莓高壓鈉燈補光效果試驗[J]. 中國果樹,2015(3):49-51.
CHEN Shanfei,CHEN Hui,CHEN Shanzhong,WANG Zhengliang. Experiment on the effect of supplementing light with high-pressure sodium lamp for strawberry cultivation in greenhouse[J]. China Fruits,2015(3):49-51.
[8] 趙海亮,趙文東,孫凌俊,高圣華,馬麗. 補光對延遲栽培‘巨峰葡萄生長發(fā)育及光合熒光特性的研究[J]. 中國農(nóng)學(xué)通報,2015,31(1):99-103.
ZHAO Hailiang,ZHAO Wendong,SUN Lingjun,GAO Shenghua,MA Li. Study on supplemental lighting on the growing development and photosynthetic fluorescence characteristics of‘Kyoho grape under delayed cultivation[J]. Chinese Agricultural Science Bulletin,2015,31(1):99-103.
[9] 李洪艷,文仁德,張?zhí)m,李節(jié)法,劉金標(biāo),曹幕明,陳國品,韓佳宇,盤豐平,謝蜀豫,白先進. 補光處理對設(shè)施栽培巨峰葡萄冬季果生長的影響[J]. 中國南方果樹,2016,45(5):93-94.
LI Hongyan,WEN Rende,ZHANG Lan,LI Jiefa,LIU Jinbiao,CAO Muming,CHEN Guopin,HAN Jiayu,PAN Fengping,XIE Shuyu,BAI Xianjin. Effect of supplementary light treatment on winter fruit growth of Kyoho grape under protected cultivation[J]. South China Fruits,2016,45(5):93-94.
[10] HERN?NDEZ R,KUBOTA C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs[J]. Environmental and Experimental Botany,2016,121:66-74.
[11] 張善平,馮海娟,馬存金,李耕,劉鵬,董樹亭,趙斌,張吉旺,楊今勝. 光質(zhì)對玉米葉片光合及光系統(tǒng)性能的影響[J]. 中國農(nóng)業(yè)科學(xué),2014,47(20):3973-3981.
ZHANG Shanping,F(xiàn)ENG Haijuan,MA Cunjin,LI Geng,LIU Peng,DONG Shuting,ZHAO Bin,ZHANG Jiwang,YANG Jinsheng. Effect of light quality on photosynthesis and photosystem of maize (Zea mays L.) leaves[J]. Scientia Agricultura Sinica,2014,47(20):3973-3981.
[12] 沈紅香,沈漫,程繼鴻,李娜娜,張婧. 不同光質(zhì)補光處理對郁金香生長和開花的影響[J]. 北京農(nóng)學(xué)院學(xué)報,2007,22(1):16-18.
SHEN Hongxiang,SHEN Man,CHENG Jihong,LI Nana,ZHANG Jing. Effect of supplemental lighting with different light quality on growth and bloom of tulip[J]. Journal of Beijing University of Agriculture,2007,22(1):16-18.
[13] 姜仲書,張光倫,江國良,劉偉,張微慧. 金冠蘋果樹冠內(nèi)光質(zhì)構(gòu)成及其與果實品質(zhì)的相關(guān)性[J]. 果樹學(xué)報,2008,25(5):625-629.
JIANG Zhongshu,ZHANG Guanglun,JIANG Guoliang,LIU Wei,ZHANG Weihui. Study on light component and its correlation with fruit quality in canopy of Golden Delicious apple tree[J]. Journal of Fruit Science,2008,25(5):625-629.
[14] KANG S,ZHANG Y T,ZHANG Y Q,ZOU J E,YANG Q C,LI T. Ultraviolet-a radiation stimulates growth of indoor cultivated tomato (Solanum lycopersicum) seedlings[J]. HortScience,2018,53(10):1429-1433.
[15] 蘇娜娜,鄔奇,崔瑾. LED光質(zhì)補光對黃瓜幼苗生長和光合特性的影響[J]. 中國蔬菜,2012(24):48-54.
SU Nana,WU Qi,CUI Jin. Effects of supplemental lighting with LED light quality on growth and photosynthetic characteristics of cucumber seedlings[J]. China Vegetables,2012(24):48-54.
[16] ZHANG L C,MA G,YAMAWAKI K,IKOMA Y,MATSUMOTO H,YOSHIOKA T,OHTA S,KATO M. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs[J]. Plant Science,2015,233:134-142.
[17] 劉萍,張粟,蔣世翠,黃丹丹,李成宇,張士秀. LED補光對水稻秧苗素質(zhì)及其生理特征和產(chǎn)量的影響[J]. 土壤與作物,2021,10(1):67-78.
LIU Ping,ZHANG Su,JIANG Shicui,HUANG Dandan,LI Chengyu,ZHANG Shixiu. Effects of light-emitting diodes on the seedling quality,physiological characteristics and grain yield of rice[J]. Soils and Crops,2021,10(1):67-78.
[18] BARTUCCA M L,GUIDUCCI M,F(xiàn)ALCINELLI B,DEL BUONO D,BENINCASA P. Blue:red LED light proportion affects vegetative parameters,pigment content,and oxidative status of einkorn (Triticum monococcum L. ssp. monococcum) wheatgrass[J]. Journal of Agricultural and Food Chemistry,2020,68(33):8757-8763.
[19] 吳延軍. 浙江省櫻桃產(chǎn)業(yè)發(fā)展現(xiàn)狀及建議[J]. 落葉果樹,2021,53(3):6-9.
WU Yanjun. Development status and suggestions of cherry industry in Zhejiang Province[J]. Deciduous Fruits,2021,53(3):6-9.
[20] 張紅艷. 植物生長燈在溫室番茄生產(chǎn)中應(yīng)用效果初探[J]. 遼寧農(nóng)業(yè)科學(xué),2013(1):72-73.
ZHANG Hongyan. Preliminary study on effects of plant-growth lamp on tomato in greenhouse[J]. Liaoning Agricultural Sciences,2013(1):72-73.
[21] 高江曼,孟瑩,劉慶,王童孟,劉美迎,李汶冰,惠竹梅,張振文. 赤霞珠葡萄生長發(fā)育過程中內(nèi)源激素的變化及其與果實成熟的關(guān)系[J]. 食品科學(xué),2017,38(7):167-175.
GAO Jiangman,MENG Ying,LIU Qing,WANG Tongmeng,LIU Meiying,LI Wenbing,XI Zhumei,ZHANG Zhenwen. Changes in endogenous hormones during the development of Vitis vinifera L. cv. Cabernet Sauvignon and their relationship with berry ripening[J]. Food Science,2017,38(7):167-175.
[22] 齊開杰,趙碧英,張虎平,郭成寶,孫永平,張紹鈴. 兩個梨品種果實發(fā)育過程中果肉及種子內(nèi)源激素的變化[J]. 中國南方果樹,2016,45(1):18-22.
QI Kaijie,ZHAO Biying,ZHANG Huping,GUO Chengbao,SUN Yongping,ZHANG Shaoling. Changes of endogenous hormones in sarcocarp and seeds during fruit growth and development of Niitaka and Yali[J]. South China Fruits,2016,45(1):18-22.
[23] 劉仁道,何瑞生,范理璋. 內(nèi)源激素與甜櫻桃營養(yǎng)生長的關(guān)系[J]. 北方園藝,2001(6):20-21.
LIU Rendao,HE Ruisheng,F(xiàn)AN Lizhang. Relationship between endogenous hormones and nutritive growth of sweet cherry[J]. Northern Horticulture,2001(6):20-21.
[24] 劉丙花,姜遠茂,彭福田,隋靜,趙鳳霞,王海云. 甜櫻桃果實發(fā)育過程中激素含量的變化[J]. 園藝學(xué)報,2007,34(6):1535-1538.
LIU Binghua,JIANG Yuanmao,PENG Futian,SUI Jing,ZHAO Fengxia,WANG Haiyun. The dynamic changes of endogenous hormones in sweet cherry (Prunus avium L.) pulp[J]. Acta Horticulturae Sinica,2007,34(6):1535-1538.
[25] 時曉芳,曹雄軍,林玲,郭榮榮,周思泓,韓佳宇,成果,張瑛,謝太理,王博,馬廣仁,白先進. 陽光玫瑰葡萄冬果膨大期補光對內(nèi)源激素和果實品質(zhì)的影響[J]. 中國南方果樹,2021,50(2):122-127.
SHI Xiaofang,CAO Xiongjun,LIN Ling,GUO Rongrong,ZHOU Sihong,HAN Jiayu,CHENG Guo,ZHANG Ying,XIE Taili,WANG Bo,MA Guangren,BAI Xianjin. Effects of light supplement on endogenous hormones and fruit quality of Sunshine Rose grape during winter fruit expansion[J]. South China Fruits,2021,50(2):122-127.
[26] IUCHI S,KOBAYASHI M,TAJI T,NARAMOTO M,SEKI M,KATO T,TABATA S,KAKUBARI Y,YAMAGUCHI-SHINOZAKI K,SHINOZAKI K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal,2001,27(4):325-333.
[27] JI K,KAI W B,ZHAO B,SUN Y F,YUAN B,DAI S J,LI Q,CHEN P,WANG Y,PEI Y L,WANG H Q,GUO Y D,LENG P. SlNCED1 and SlCYP707A2:Key genes involved in ABA metabolism during tomato fruit ripening[J]. Journal of Experimental Botany,2014,65(18):5243-5255.
[28] WANG X B,ZENG W F,DING Y F,WANG Y,NIU L,YAO J L,PAN L,LU Z H,CUI G C,LI G H,WANG Z Q. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening[J]. Plant Science,2019,283:116-126.
[29] 陳麗萍,韓明麗,趙根,李艷冬. 植物多聚半乳糖醛酸酶研究進展[J]. 上海蔬菜,2013(2):11-13.
CHEN Liping,HAN Mingli,ZHAO Gen,LI Yandong. Research progress of plant polygalacturonase[J]. Shanghai Vegetables,2013(2):11-13.
[30] TAKOS A M,JAFF? F W,JACOB S R,BOGS J,ROBINSON S P,WALKER A R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J]. Plant Physiology,2006,142(3):1216-1232.
[31] ZHAO Y,DONG W Q,WANG K,ZHANG B,ALLAN A C,WANG K L,CHEN K S,XU C J. Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars[J]. Frontiers in Plant Science,2017,8:1552.
[32] 王碩,鄭秀文,王琪,馮慧智,劉冠,張萌萌. 果樹中花青素合成及其分子調(diào)控機制研究進展[J/OL]. 分子植物育種,2022:1-10. [2022-07-29]. https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1710.014.html.
WANG Shuo,ZHENG Xiuwen,WANG Qi,F(xiàn)ENG Huizhi,LIU Guan,ZHANG Mengmeng. Research progress on anthocyanin synthesis and its molecular regulation mechanism in fruit trees[J/OL]. Molecular Plant Breeding,2022:1-10. [2022-07-29]. https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1710.014.html.
[33] 魏海蓉,譚鉞,宗曉娟,朱東姿,陳新,徐麗,王甲威,劉慶忠. 不同色澤甜櫻桃果實花色苷積累與其相關(guān)酶活性之間的關(guān)系[J]. 植物生理學(xué)報,2017,53(3):429-436.
WEI Hairong,TAN Yue,ZONG Xiaojuan,ZHU Dongzi,CHEN Xin,XU Li,WANG Jiawei,LIU Qingzhong. Relationship between anthocyanin accumulation and the activities of anthocyanin biosynthesis enzymes in different color of sweet cherry fruits[J]. Plant Physiology Journal,2017,53(3):429-436.
[34] HE F,MU L,YAN G L,LIANG N N,PAN Q H,WANG J,REEVES M J,DUAN C Q. Biosynthesis of anthocyanins and their regulation in colored grapes[J]. Molecules,2010,15(12):9057-9091.
[35] 李麗仙,王爍,陳瑩,鄔瀅濤,王雅倩,房月,陳學(xué)森,田長平,馮守千. 甜櫻桃PavMYB10.1促進PavRiant表達和花青苷積累[J]. 園藝學(xué)報,2022,49(5):1023-1030.
LI Lixian,WANG Shuo,CHEN Ying,WU Yingtao,WANG Yaqian,F(xiàn)ANG Yue,CHEN Xuesen,TIAN Changping,F(xiàn)ENG Shouqian. PavMYB10.1 promotes anthocyanin accumulation by positively regulating PavRiant in sweet cherry[J]. Acta Horticulturae Sinica,2022,49(5):1023-1030.
[36] 齊希梁,劉聰利,宋露露,李明. 蔗糖合成酶PavSS1調(diào)控甜櫻桃果實成熟的功能分析[J]. 果樹學(xué)報,2021,38(2):168-178.
QI Xiliang,LIU Congli,SONG Lulu,LI Ming. Functional analysis of sucrose synthase PavSS1 regulating sweet cherry fruit ripening[J]. Journal of Fruit Science,2021,38(2):168-178.
收稿日期:2023-03-31 接受日期:2023-07-30
基金項目:浙江省農(nóng)業(yè)新品種選育重大科技專項(2021C02066-9)
作者簡介:李都岳,女,助理研究員,博士,從事櫻桃新品種選育與栽培技術(shù)研究。Tel:18810518803,E-mail:mlea@qq.com
通信作者Author for correspondence. Tel:0571-86058831,E-mail:wyjwjht@163.com