馬成 裴子琦 白雪 張騰國(guó)
摘要:褪黑素是一種重要的植物生長(zhǎng)調(diào)節(jié)劑,在植物中具有多種功效。鑒于褪黑素在植物中的多種功能作用,為了給褪黑素在農(nóng)業(yè)生產(chǎn)中的應(yīng)用提供理論依據(jù),通過(guò)查閱并梳理相關(guān)文獻(xiàn),闡述了植物中褪黑素的合成及代謝途徑,褪黑素對(duì)植物生長(zhǎng)發(fā)育的調(diào)控及對(duì)植物響應(yīng)逆境脅迫的影響和褪黑素誘導(dǎo)作用的機(jī)制。褪黑素不僅參與植物種子萌發(fā)、根系發(fā)育、開(kāi)花結(jié)果等生長(zhǎng)發(fā)育過(guò)程,還能充當(dāng)脅迫緩解劑,調(diào)節(jié)植物對(duì)多種生物脅迫/非生物脅迫的響應(yīng),且用外源褪黑素處理能夠有效地緩解低溫、干旱、鹽堿以及病蟲(chóng)害等對(duì)植物的損傷程度,今后的研究應(yīng)將盆栽試驗(yàn)與田間試驗(yàn)結(jié)合起來(lái),以加速褪黑素在農(nóng)業(yè)中的廣泛應(yīng)用。
關(guān)鍵詞:褪黑素;植物;生長(zhǎng)發(fā)育;脅迫響應(yīng);抗逆;信號(hào)通路
中圖分類(lèi)號(hào):S482.8? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A? ? ? ? ? ? ? 文章編號(hào):2097-2172(2023)10-0883-06
doi:10.3969/j.issn.2097-2172.2023.10.001
Advances in Functions and Action Mechanisms of Phytomelatonin
MA Cheng, PEI Ziqi, BAI Xue, ZHANG Tengguo
(College of Life Sciences, Northwest Normal University, Lanzhou Gansu 730070, China)
Abstract: As a master plant growth regulator, melatonin possesses multiple functions in plants. Given the multiple functional roles of melatonin in plants, the synthesis and metabolic pathways of phytomelatonin, the regulation of plant growth and development, the effects on plant response to adversity stress by melatonin and the mechanism of melatonin-induced effects are elaborated through literature review to provide theoretical bases for melatonin's application in agricultural production. Melatonin is not only involved in the growth and development stages such as seed germination, root development, flowering, and fruiting, but also acts as stress mitigator to regulate the response of plants to a wide range of biotic/abiotic stresses, and the treatment with exogenous melatonin could effectively alleviate the damage of plants caused by low temperatures, droughts, salinity, as well as diseases and pests. Future research should link pot trials with field trials to accelerate the extensive use of melatonin in agriculture.
Key words: Melatonin; Plant; Growth and development; Stress response; Stress resistance; Signaling pathway
褪黑素(Melatonin)又名N-乙?;?5-甲氧基色胺,是一種吲哚胺類(lèi)物質(zhì)。最初發(fā)現(xiàn)于牛的松果體中,因其能引起蝌蚪膚色由黑到白的變化而得名。此后的研究表明這種物質(zhì)廣泛分布于動(dòng)植物體中[1 ]。在動(dòng)物中,它具有調(diào)節(jié)晝夜節(jié)律、增強(qiáng)免疫力、抑制衰老等多種功效[2 ]。在植物中,褪黑素扮演著生長(zhǎng)促進(jìn)劑和抗氧化劑的角色,參與植物各種各樣的生長(zhǎng)發(fā)育和生理生化代謝過(guò)程,能促進(jìn)種子萌發(fā)、調(diào)控根系形態(tài)建成、調(diào)節(jié)氣孔的開(kāi)度、調(diào)節(jié)碳同化和ATP積累等[3 - 5 ]?;谕屎谒鼐哂凶杂苫宄涂寡趸裙δ埽屎谒卦谥参镯憫?yīng)生物或非生物脅迫過(guò)程中同樣發(fā)揮著重要的作用,并且外源褪黑素處理能夠有效地緩解低溫、干旱、鹽堿以及病蟲(chóng)害等脅迫對(duì)植物的損傷程度[6 ]。目前對(duì)于褪黑素生物學(xué)功能及其作用機(jī)制的研究較受關(guān)注,褪黑素已逐漸成為植物生長(zhǎng)調(diào)節(jié)劑和激素研究的新熱點(diǎn)。隨著生命科學(xué)領(lǐng)域研究技術(shù)的不斷進(jìn)步和突破,研究人員已對(duì)植物褪黑素的合成和代謝、不同物種和組織中褪黑素的含量和分布及植物褪黑素的生物學(xué)功能進(jìn)行了全方位、深層次的闡述;鑒于褪黑素在植物響應(yīng)逆境脅迫中的卓越貢獻(xiàn),研究人員也已分別從表型、生理和分子等不同層面揭示了褪黑素對(duì)逆境脅迫下植物的影響并對(duì)其具體作用機(jī)制進(jìn)行了逐一解析。現(xiàn)從植物褪黑素的合成和代謝途徑、褪黑素對(duì)植物生長(zhǎng)發(fā)育的調(diào)控、褪黑素對(duì)植物響應(yīng)逆境脅迫的影響以及褪黑素誘抗作用的機(jī)制四個(gè)方面進(jìn)行了綜述,以期為褪黑素的研究及其在農(nóng)業(yè)生產(chǎn)中的應(yīng)用提供參考。
1? ?褪黑素在植物體內(nèi)的合成及代謝
在動(dòng)物體內(nèi)褪黑素的生物合成途徑已被廣泛研究,其以色氨酸為底物通過(guò)4個(gè)連續(xù)的步驟合成[7 ]。然而,研究發(fā)現(xiàn)植物中褪黑素的合成途徑與動(dòng)物的明顯不同。植物中褪黑素合成的主要部位在葉綠體和線粒體中,這些細(xì)胞器根據(jù)共內(nèi)生假說(shuō)從他們的藍(lán)藻和α-變形菌祖先那里繼承了褪黑素生物合成能力[8 ];在植物中,色氨酸首先在色氨酸脫羧酶(TDC)作用下脫羧生成色胺,隨后色胺被色胺5-羥化酶(T5H)羥化生成5-羥色胺[9 ]。此后有兩個(gè)獨(dú)立的途徑合成褪黑素(圖1),第一個(gè)途徑與動(dòng)物中的后兩步途徑類(lèi)似:5-羥色胺被5-羥色胺-N-乙?;D(zhuǎn)移酶(SNAT)乙?;癁镹-乙酰-5-羥色胺,最后在5-羥色胺-N-乙?;D(zhuǎn)移酶(ASMT)/咖啡酸-O-甲基轉(zhuǎn)移酶(COMT)作用下生成褪黑素。另外一個(gè)替代途徑,它的褪黑素合成順序剛好與動(dòng)物中的順序相反:5-羥色胺首先在ASMT/COMT作用下生成5-甲氧基色胺,后被SNAT乙?;癁橥屎谒兀?0 ]。值得注意的是在植物中,雖然這兩條途徑是平行存在的,但是在正常條件下前者是褪黑素合成的主要途徑,而在脅迫條件下,后者是褪黑素合成的主要途徑[7 ]。
在動(dòng)物中褪黑素能夠通過(guò)酶促反應(yīng)、假酶促反應(yīng)以及非酶促反應(yīng)分解產(chǎn)生多種代謝物,表明褪黑素在動(dòng)物中的代謝是高度復(fù)雜的[11 ]。在植物中對(duì)于褪黑素代謝的研究相對(duì)滯后,研究發(fā)現(xiàn),植物褪黑素能夠通過(guò)酶和非酶促反應(yīng)降解;N1-乙酰基-N2-甲?;?5-甲氧基犬尿酰胺(AFMK)是第一個(gè)在植物中被發(fā)現(xiàn)的褪黑素代謝物,它是由細(xì)胞色素P450、吲哚胺2,3-雙加氧酶等通過(guò)催化褪黑素產(chǎn)生的[12 ]。此外,在植物中還發(fā)現(xiàn)了另一種代謝物—羥基化褪黑素,其包括2-羥褪黑素(2-OHM)、4-羥褪黑素(4-OHM)、6-羥褪黑素(6-OHM)以及環(huán)-3-羥褪黑素(C3-OHM),2-OHM代謝途徑被認(rèn)為是植物褪黑素分解的主要途徑,褪黑素2-羥基酶(M2H)催化褪黑素分解形成2-OHM[2 ]。最后,研究表明褪黑素催化效率要遠(yuǎn)遠(yuǎn)高于其合成速率,褪黑素的代謝速率在植物體始終維持在較高水平,說(shuō)明褪黑素的生理活性與其分解代謝物密切相關(guān)[13 ]。
2? ?褪黑素在植物生長(zhǎng)發(fā)育過(guò)程中的作用
自從1995年Dubbels等[14 ]在幾種植物中鑒定出褪黑素后,越來(lái)越多的研究開(kāi)始關(guān)注褪黑素在植物中的作用。在目前看來(lái),植物褪黑素具有多種作用,參與調(diào)控植物體內(nèi)多種生理生化代謝過(guò)程[15 ]。研究表明,褪黑素可以自由穿透種皮,通過(guò)改變糖異生途徑為種子萌發(fā)提供能量,提高種子活力和萌發(fā)率[16 ]。此外,褪黑素也能整合ABA、赤霉素以及生長(zhǎng)素信號(hào)調(diào)控種子的萌發(fā)[17 ],在植物根系形態(tài)建成過(guò)程中褪黑素同樣發(fā)揮著重要的作用,可在側(cè)根誘導(dǎo)階段能夠通過(guò)誘導(dǎo)IAA水平和上調(diào)MdWOX11促進(jìn)蘋(píng)果不定根的形成[18 ],并且外源褪黑素以生長(zhǎng)素信號(hào)通路依賴(lài)的方式顯著促進(jìn)了水稻側(cè)根形成和發(fā)育[19 ]。10-9~ 10-6 M 的褪黑素能夠如同IAA一樣促進(jìn)擬南芥野生型及pin-formed(pin)單突變體和雙突變體的初生根生長(zhǎng),然而,在高濃度的生長(zhǎng)素生物合成抑制劑或極性轉(zhuǎn)運(yùn)抑制劑存在下,褪黑激素處理對(duì)初生根生長(zhǎng)幾乎沒(méi)有影響[20 ]。Yang等[21 ]發(fā)現(xiàn),當(dāng)褪黑素的濃度超過(guò)1 000 μM時(shí),會(huì)抑制擬南芥初生根的生長(zhǎng),促進(jìn)其側(cè)根的發(fā)育。在調(diào)控植物生長(zhǎng)發(fā)育方面,褪黑素也是植物激素中的佼佼者;Teng等[5 ]發(fā)現(xiàn),外源褪黑素處理促進(jìn)了油菜幼苗莖和根的生長(zhǎng),同時(shí)提高了PSI中的循環(huán)電子傳輸速率、熒光量子產(chǎn)率與PSII和PSI之間的電子傳輸效率,并且通過(guò)引起由廣泛基因表達(dá)譜的協(xié)調(diào)變化引發(fā)的代謝調(diào)整來(lái)促進(jìn)油菜生長(zhǎng)。在培養(yǎng)基中添加較低濃度褪黑素(20 μM)能夠促進(jìn)甜菊種子萌發(fā),提高甜葉菊植株的鮮重、莖長(zhǎng)以及葉片的數(shù)量[22 ]。在另外一項(xiàng)研究中,Mir等[23 ]發(fā)現(xiàn)40 μM的褪黑素能夠引起大多數(shù)指標(biāo)(如生長(zhǎng)、光合作用、養(yǎng)分和酶活性等)以濃度依賴(lài)性的方式增加,并且通過(guò)增強(qiáng)抗氧化酶活性來(lái)減少芥菜中活性氧(ROS)的積累。150 μM褪黑素處理通過(guò)增加葡萄幼苗的生物量和促進(jìn)葉片的光合性能促進(jìn)了葡萄幼苗的發(fā)育和生長(zhǎng);光合作用水平的提高則引起光合產(chǎn)物——蔗糖含量的增加。褪黑素處理同樣提高了蔗糖代謝相關(guān)酶的活性,使大量蔗糖水解為葡萄糖和果糖,滿足葡萄幼苗快速生長(zhǎng)的需要,導(dǎo)致葡萄幼苗的抵抗力和對(duì)環(huán)境變化的適應(yīng)能力更強(qiáng)[24 ]。在玉米中,50 μM褪黑素浸種顯著增加了玉米單粒重及優(yōu)質(zhì)、中等和劣質(zhì)種子的種子灌漿率,且褪黑素的應(yīng)用顯著增加了玉米素+玉米素核苷(Z+ZR)、吲哚-3-乙酸(IAA)和赤霉酸(GA)的含量[25 ]。外源應(yīng)用褪黑激素(10、100、1000 μM)顯著增加了玉米幼苗根長(zhǎng)、株高、葉表面積以及蛋白質(zhì)、碳水化合物和葉綠素含量,對(duì)參與氮同化過(guò)程的酶的活性和基因表達(dá)產(chǎn)生了強(qiáng)烈的誘導(dǎo)作用。此外,也顯著誘導(dǎo)了檸檬酸合成酶和細(xì)胞色素氧化酶的基因表達(dá)、提高了Rubisco活性和Rubisco活化酶的基因表達(dá)水平[26 ]。木質(zhì)素含量的變化在植物生長(zhǎng)發(fā)育中起著重要作用。褪黑激素處理在茶葉中的第8天和第16天觸發(fā)了木質(zhì)化,提高了參與木質(zhì)素形成的POD的活性[27 ]。另外,Liu等[28 ]的研究發(fā)現(xiàn)褪黑素通過(guò)提高梨果實(shí)發(fā)育后期的凈光合速率和光系統(tǒng)II光化學(xué)的最大量子效率增加了梨果實(shí)的大小,并且褪黑激素通過(guò)調(diào)節(jié)vAINV、NINV、SUSY和SPS的活性,使可溶性糖和還原糖含量增加,進(jìn)而引起蔗糖和山梨糖醇含量的升高。調(diào)控花發(fā)育方面,褪黑素通過(guò)保護(hù)花器官和參與光周期誘導(dǎo)的花轉(zhuǎn)變,直接或間接地調(diào)節(jié)花的節(jié)律和數(shù)量[1 ]。褪黑素作為一種強(qiáng)大的抗氧化劑,能有效清除冗余的ROS,抑制衰老相關(guān)基因的表達(dá)[29 ];褪黑素也能夠通過(guò)調(diào)控黃酮類(lèi)化合物的合成來(lái)緩解葉片的衰老[30 ]。
3? ?褪黑素在植物響應(yīng)逆境脅迫中的作用
隨著對(duì)褪黑素研究的不斷深入,越來(lái)越多的研究揭示了它在植物響應(yīng)逆境脅迫中的作用。研究發(fā)現(xiàn)褪黑素能夠緩解滲透脅迫、極端溫度脅迫、鹽堿脅迫、營(yíng)養(yǎng)元素匱乏脅迫以及重金屬離子脅迫等非生物脅迫和病蟲(chóng)害等生物脅迫對(duì)植物的損傷,增強(qiáng)植物自身脅迫耐受性[31 ]。通過(guò)激活I(lǐng)CE-CBF-COR途徑,褪黑素能夠緩解低溫對(duì)植物造成的損傷,提高植物對(duì)低溫脅迫的耐受性[32 ]。過(guò)表達(dá)SNAT(5-羥色胺-N-乙?;D(zhuǎn)移酶)的水稻同樣表現(xiàn)出更強(qiáng)的耐寒性[33 ]。此外,研究發(fā)現(xiàn)褪黑素也能通過(guò)清除過(guò)量的ROS和維持氧化還原穩(wěn)態(tài)來(lái)降低極端溫度脅迫對(duì)植物的損傷[34 ]。對(duì)于鹽脅迫而言,褪黑素可以緩解鹽脅迫對(duì)植物光合機(jī)構(gòu)的氧化損傷,提高光合作用的效率[35 ];并且外源褪黑素的應(yīng)用也能夠激活抗氧化酶系統(tǒng)、增加滲透調(diào)節(jié)物質(zhì)含量以及誘導(dǎo)脅迫響應(yīng)基因表達(dá),減少ROS的過(guò)量積累[36 ]。干旱脅迫嚴(yán)重制約著農(nóng)作物的產(chǎn)量,研究發(fā)現(xiàn)褪黑素通過(guò)調(diào)控滲透調(diào)節(jié)物質(zhì)含量、糖代謝和ABA穩(wěn)態(tài)以及抗氧化酶系統(tǒng)有效緩解了干旱脅迫誘導(dǎo)的馬鈴薯氧化應(yīng)激[37 ]。鎘、鉛和鋅等重金屬對(duì)植物有較強(qiáng)的生長(zhǎng)抑制作用,褪黑素可以控制植物對(duì)金屬離子的吸收和螯合,進(jìn)而調(diào)控植物對(duì)重金屬脅迫的耐受性[38 ]。此外,褪黑素也能夠通過(guò)協(xié)同信號(hào)分子或激活信號(hào)轉(zhuǎn)導(dǎo)途徑,提高植物對(duì)眾多生物脅迫的抗性。過(guò)表達(dá) N-乙酰血清素甲基轉(zhuǎn)移酶(ASMT)或血清素N-乙酰轉(zhuǎn)移酶(SNAT)的擬南芥株系表現(xiàn)出抗性基因PR1和PR5、轉(zhuǎn)錄因子基因 WRKY33和茉莉酸(JA)防御途徑標(biāo)記基因PDF1.2的表達(dá)上調(diào),從而減輕了植物病害癥狀,減少了葉片中灰霉病的病斑大?。?9 ]。炭疽病是最具破壞性的辣椒病害之一,研究表明,褪黑素能夠有效調(diào)控幾丁質(zhì)酶基因(CaChiIII2)和其他致病相關(guān)基因的表達(dá),維持細(xì)胞內(nèi)H2O2濃度的穩(wěn)定,并增強(qiáng)抗氧化酶的活性,最終提高辣椒對(duì)炭疽病的抗性[40 ]。
4? ?褪黑素誘抗作用機(jī)制的探究
研究表明,褪黑素主要從以下幾個(gè)方面增強(qiáng)植物對(duì)逆境脅迫的抗性(圖2)。第一,褪黑素本身作為一種多功能的自由基清除劑和抗氧化劑,能夠參與清除植物體內(nèi)過(guò)量積累的ROS,維持氧化還原穩(wěn)態(tài)[41 ]。褪黑素能夠有效降低ROS的積累水平,緩解低溫、干旱等脅迫引起的氧化應(yīng)激損傷[36 ]。外源褪黑素處理后,很多抗氧化酶的活性和抗氧化劑的水平都會(huì)出現(xiàn)不同程度的提高,抗氧化酶編碼基因的表達(dá)水平同樣會(huì)被上調(diào),由此提高植物對(duì)脅迫的耐受性[6 ]。此外,研究證實(shí)褪黑素代謝物也具有抗氧化特性。相比褪黑素,3-OHM具有更強(qiáng)的抗氧化性,能夠有效清除·OH和·OOH[42 ]。第二,褪黑素在逆境脅迫中可以作為光合作用的增強(qiáng)劑或保護(hù)劑。研究發(fā)現(xiàn)褪黑素能夠?qū)μ谴x和糖異生途徑產(chǎn)生影響,從而控制植物的光合碳循環(huán);也有研究發(fā)現(xiàn),褪黑素能夠調(diào)控光系統(tǒng)基因的表達(dá)水平,調(diào)節(jié)葉綠素的合成和降解以及促進(jìn)葉黃素循環(huán),減輕外界環(huán)境脅迫引起的光合抑制[43 ]。第三,褪黑素能夠參與調(diào)控抗逆相關(guān)基因的表達(dá),提高植物脅迫耐受性。響應(yīng)低溫脅迫的CBF、響應(yīng)鹽脅迫的SOS、響應(yīng)熱脅迫的HSP、響應(yīng)干旱脅迫的NAC等脅迫響應(yīng)基因的表達(dá)都會(huì)受到褪黑素不同程度的調(diào)節(jié)[15, 31 ]。此外,褪黑素也通過(guò)參與調(diào)控激素分解代謝基因和合成基因的表達(dá)來(lái)提高植物的抗逆性[44 ]。第四,褪黑素可直接與其他信號(hào)分子/途徑或植物激素信號(hào)相互作用,從而增強(qiáng)植物對(duì)逆境脅迫的抗性[31 ]。已有的研究表明,褪黑素賦予植物脅迫耐受性的過(guò)程與ROS或活性氮(RNS)信號(hào)以及植物激素信號(hào)之間存在著密切的關(guān)系[45 ]。褪黑素誘導(dǎo)西瓜幼苗CBF反應(yīng)途徑和耐寒性的過(guò)程依賴(lài)于H2O2信號(hào)[32 ]。NO清除劑與褪黑素的復(fù)合處理顯著抑制了外源褪黑素對(duì)鹽漬脅迫下黃瓜幼苗氧化還原穩(wěn)態(tài)和光合效率的調(diào)控作用[46 ]。褪黑素通過(guò)調(diào)節(jié)ABA信號(hào)和JA的積累促進(jìn)了低溫脅迫下黃瓜種子的萌發(fā)和嫁接西瓜幼苗的耐寒性[47 - 48 ]。此外,鈣信號(hào)在褪黑素行使其生物學(xué)功能的過(guò)程中同樣發(fā)揮著重要的作用。褪黑素拮抗ABA信號(hào)促進(jìn)甜瓜種子萌發(fā)的過(guò)程依賴(lài)于液泡H+/Ca2+反轉(zhuǎn)運(yùn)體3(CAX3)介導(dǎo)的Ca2+外排[49 ]。RNA-seq分析同樣表明褪黑素提高棉花耐鹽性的過(guò)程需要鈣信號(hào)的參與[50 ]。由此可見(jiàn),褪黑素介導(dǎo)植物對(duì)逆境脅迫的誘抗效應(yīng)需要多種信號(hào)分子/途徑或激素的參與。
5? ?展望
作為一種多功能的植物生長(zhǎng)調(diào)節(jié)劑,褪黑素已成為近些年來(lái)國(guó)內(nèi)外研究的熱點(diǎn)。研究發(fā)現(xiàn)植物自身也能夠合成這種吲哚類(lèi)物質(zhì),并且在植物整個(gè)生命進(jìn)程中發(fā)揮著不可替代的作用。隨著對(duì)植物褪黑素研究的不斷深入,研究人員已分別從表型、生理和分子等不同層面揭示了褪黑素對(duì)逆境脅迫下植物的影響。然而,目前對(duì)于褪黑素作用機(jī)制的研究仍處于起始階段,一些參與褪黑素發(fā)揮功能的關(guān)鍵信號(hào)分子以及信號(hào)通路仍沒(méi)有被完全解析。因此使用多組學(xué)整合分析和CRISPR- Cas9技術(shù)來(lái)全面揭示褪黑素具體作用分子機(jī)制具有十分重要的意義。此外,CAND2/PMTR1是第一個(gè)被鑒定的植物褪黑素受體,是褪黑素誘導(dǎo)擬南芥氣孔關(guān)閉所必需的[51 ];研究發(fā)現(xiàn)與野生型Col-0相比,褪黑素介導(dǎo)的絲裂原活化蛋白激酶(MAPK)激活在cand2突變系中沒(méi)有被消除[52 ],因此對(duì)于植物褪黑素受體的研究仍然是需要的。最后,目前關(guān)于褪黑素在植物上的應(yīng)用主要集中在實(shí)驗(yàn)室可控環(huán)境下的盆栽試驗(yàn)研究,今后的研究應(yīng)該更多的將盆栽試驗(yàn)與田間試驗(yàn)結(jié)合起來(lái),推廣褪黑素在農(nóng)業(yè)生產(chǎn)上的應(yīng)用。
參考文獻(xiàn):
[1] WANG K, XING Q, AHAMMED G J, et al. Functions and prospects of melatonin in plant growth, yield, and quality[J].? Journal of Experimental Botany, 2022, 73(17): 5928-5946.
[2] ZENG W, MOSTAFA S, LU Z, et al. Melatonin-mediated abiotic stress tolerance in plants[J].? Frontiers in Plant Science, 2022, 13: 847175.
[3] PAN Y, XU X, LI L, et al. Melatonin-mediated development and abiotic stress tolerance in plants[J].? Frontiers in Plant Science, 2023, 14: 1100827.
[4] HU D, ZHANG X, XUE P, et al.? Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation[J]. Plant Physiology and Biochemistry, 2023, 198: 107698.
[5] TENG Z, ZHENG W, JIANG S, et al. Role of melatonin in promoting plant growth by regulating carbon assimilation and ATP accumulation[J].? Plant Science, 2022, 319: 111276.
[6] KHANNA K, BHARDWAJ R, ALAM P, et al. Phytomelatonin: A master regulator for plant oxidative stress management[J].? Plant Physiology and Biochemistry, 2023, 196: 260-269.
[7] TAN D X, REITER R J. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants[J].? Journal of Experimental Botany, 2020, 71(16): 4677-4689.
[8] KHAN M S S, AHMED S, IKRAM A U L, et al. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses[J].? Redox Biology, 2023, 64: 102805.
[9] LIU G, HU Q, ZHANG X, et al.? Melatonin biosynthesis and signal transduction in plants in response to environmental conditions[J].? Journal of Experimental Botany, 2022, 73(17): 5818-5827.
[10] COLOMBAGE R, SINGH M B, BHALLA P L.? Melatonin and abiotic stress tolerance in crop plants[J].? International Journal of Molecular Sciences, 2023, 24(8): 7447.
[11] TAN D X, HARDELAND R, MANCHESTER L C, et al. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness[J].? Biological Reviews, 2009,85(3): 607-623.
[12] BACK K.? Melatonin metabolism, signaling and possible roles in plants[J].? The Plant Journal, 2021, 105(2): 376-391.
[13] BYEON Y, TAN D X, REITER R J, et al.? Predominance of 2-hydroxymelatonin over melatonin in plants[J].? Journal of Pineal Research, 2015, 59(4): 448-454.
[14] DUBBELS R, REITER R J, KLENKE E, et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry[J].? Journal of Pineal Research, 1995, 18(1): 28-31.
[15]ZHANG T, WANG J, SUN Y, et al. Versatile roles of melatonin in growth and stress tolerance in plants[J].? Journal of Plant Growth Regulation, 2021, 41: 507-523.
[16] KOBYLI?譵SKA A, BOREK S, POSMYK M M. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells[J].? Journal of Pineal Research, 2018, 64(4): e12466.
[17] LV Y, PAN J, WANG H, et al.? Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis[J].? Journal of Pineal Research, 2021, 70(4):e12736.
[18] MAO J, NIU C, LI K, et al.? Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11[J].? BMC Plant Biology, 2020, 20(1): 536.
[19] LIANG C, LI A, YU H, et al.? Melatonin regulates root architecture by modulating auxin response in rice[J].? Frontiers in Plant Science, 2017, 8: 134.
[20] YANG L, YOU J, LI J, et al.? Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner[J].? Journal of Experimental Botany, 2021, 72(15): 5599-5611.
[21] YANG L, SUN Q, WANG Y, et al.? Global transcriptomic network of melatonin regulated root growth in Arabidopsis[J].? Gene, 2021, 764: 145082.
[22] SIMLAT M, PTAK A, SKRZYPEK E, et al. Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni[J].? PeerJ, 2018, 6: e5009.
[23] MIR A R, SIDDIQUI H, ALAM P, et al. Melatonin modulates photosynthesis, redox status, and elemental composition to promote growth of Brassica juncea—a dose-dependent effect[J].? Protoplasma, 2020, 257(6): 1685-1700.
[24] ZHONG L, LIN L, YANG L, et al.? Exogenous melatonin promotes growth and sucrose metabolism of grape seedlings[J].? PLOS ONE, 2020, 15(4): e0232033.
[25] AHMAD S, KAMRAN M, ZHOU X, et al.? Melatonin improves the seed filling rate and endogenous hormonal mechanism in grains of summer maize[J].? Physiologia Plantarum, 2021, 172(2): 1059-1072.
[26] ERDAL S.? Melatonin promotes plant growth by maintaining integration and coordination between carbon and nitrogen metabolisms[J].? Plant Cell Reports, 2019, 38(8): 1001-1012.
[27] HAN M HUA, YANG N, WAN Q WEN, et al.? Exogenous melatonin positively regulates lignin biosynthesis in Camellia sinensis[J].? International Journal of Biological Macromolecules, 2021, 179: 485-499.
[28] LIU J, YUE R, SI M, ET al.? Effects of Exogenous application of melatonin on quality and sugar metabolism in ‘zaosu pear fruit[J].? Journal of Plant Growth Regulation, 2019, 38(3): 1161-1169.
[29] JAHAN M S, SHU S, WANG Y, et al.? Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways[J].? Frontiers in Plant Science, 2021, 12:650955.
[30] LIANG D, SHEN Y, NI Z, et al.? Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids[J].? Frontiers in Plant Science, 2018, 9: 426.
[31] WANG Y, REITER R J, CHAN Z. Phytomelatonin: a universal abiotic stress regulator[J].? Journal of Experimental Botany, 2018, 69(5): 963-974.
[32]CHANG J, GUO Y, LI J, et al. Positive interaction between H2O2 and Ca2+ mediates melatonin-induced CBF pathway and cold tolerance in watermelon (Citrullus lanatus L.)[J].? Antioxidants, 2021, 10(9): 1457.
[33] KANG K, LEE K, PARK S, et al. Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings[J].? Journal of Pineal Research, 2010, 49(2): 176-182.
[34] QARI S H, HASSAN M U, CHATTHA M U, et al.? Melatonin induced cold tolerance in plants: physiological and molecular responses[J].? Frontiers in Plant Science, 2022, 13: 843071.
[35] YAN F, ZHANG J, LI W, et al.? Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings[J].? Plant Physiology and Biochemistry, 2021, 163: 367-375.
[36]KHAN M, ALI S, MANGHWAR H, et al. Melatonin function and crosstalk with other phytohormones under normal and stressful conditions[J].? Genes, 2022, 13(10): 1699.
[37] EL-YAZIED A A, IBRAHIM M F M, IBRAHIM M A R, et al.? Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, ABA homeostasis and antioxidant enzymes[J].? Plants, 2022, 11(9): 1151.
[38] ALTAF M A, SHARMA N, SRIVASTAVA D, et al. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants[J].? Planta, 2023, 257(6): 115.
[39] ZHU Y, GUO M J, SONG J B, et al. Roles of endogenous melatonin in resistance to Botrytis cinerea infection in an Arabidopsis model[J].? Frontiers in Plant Science, 2021, 12: 683228.
[40] ALI M, TUMBEH LAMIN-SAMU A, MUHAMMAD I, et al. Melatonin mitigates the infection of Colletotrichum gloeosporioides via modulation of the chitinase gene and antioxidant activity in Capsicum annuum L.[J].? Antioxidants, 2020, 10(1): 7.
[41]PARDO-HERN?魣NDEZ M, L?譫PEZ-DELACALLE M, RIVERO R M. ROS and NO regulation by melatonin under abiotic stress in plants[J]. Antioxidants, 2020, 9(11): 1078.
[42] ZHANG H M, ZHANG Y.? Melatonin: a well-documented antioxidant with conditional pro-oxidant actions[J].? Journal of Pineal Research, 2014, 57(2): 131-146.
[43] YANG S, ZHAO Y, QIN X, et al.? New insights into the role of melatonin in photosynthesis[J].? Journal of Experimental Botany, 2022, 73(17): 5918-5927.
[44]ARNAO M B, HERN?魣NDEZ-RUIZ J. Melatonin as a regulatory hub of plant hormone levels and action in stress situations[J]. Plant Biology, 2021, 23(S1): 7-19.
[45] ARNAO M B, HERN?魣NDEZ-RUIZ J.? Melatonin: A new plant hormone and/or a plant master regulator?[J].? Trends in Plant Science, 2019, 24(1): 38-48.
[46] SUN Y, MA C, KANG X, et al. Hydrogen sulfide and nitric oxide are involved in melatonin-induced salt tolerance in cucumber[J].? Plant Physiology and Biochemistry, 2021, 167: 101-112.
[47] ZHANG H, QIU Y, JI Y, et al.? Melatonin promotes seed germination via regulation of ABA signaling under low temperature stress in cucumber[J].? Journal of Plant Growth Regulation, 2023, 42(4): 2232-2245.
[48] LI H, GUO Y, LAN Z, et al. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants[J].? Horticulture Research, 2021, 8(1): 57.
[49] LI H, GUO Y, LAN Z, et al.? Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation[J].? Plant Science, 2021, 303: 110761.
[50] ZHANG Y, FAN Y, RUI C, et al.? Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca2+ signal transduction[J].? Frontiers in Plant Science, 2021, 12: 693690.
[51] WEI J, LI D X, ZHANG J R, et al.? Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana[J].? Journal of Pineal Research, 2018, 65(2): e12500.
[52] LEE H Y, BACK K. The phytomelatonin receptor(PMRT1) Arabidopsis Cand2 is not a bona fide G protein-coupled melatonin receptor[J]. Melatonin Research, 2020, 3(2): 177-186.
收稿日期:2023 - 09 - 08
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32060711)。
作者簡(jiǎn)介:馬? ?成(1997 — ),男,青海西寧人,博士在讀,主要從事褪黑素等激素及生長(zhǎng)調(diào)節(jié)物對(duì)植物逆境脅迫的緩解作用及分子機(jī)制研究工作。Email: 799134494@qq.com。
通信作者:張騰國(guó)(1971 — ),男,甘肅會(huì)寧人,教授,博士生導(dǎo)師,研究方向?yàn)橹参锟鼓嫔砼c分子生物學(xué)。Email:zhangtengguo@163.com。