田維坤,胡 峰,喻 瀟,彭海龍,蔣東榮
(1.云南華電金沙江中游水電開發(fā)有限公司阿海發(fā)電分公司 云南 麗江 674100;2.江蘇芯農(nóng)微電子科技有限公司 江蘇 南通 226361;3.重慶理工大學電氣與電子工程學院,重慶 400045)
水力發(fā)電是我國實現(xiàn)雙碳目標的重要抓手,是建設(shè)“清潔低碳、安全可控、靈活高效”新型電力系統(tǒng)的基石。水輪機組是水力發(fā)電站的核心裝置,一旦發(fā)生故障,輕則造成機組停機,影響電力系統(tǒng)正常運行,重則造成機組結(jié)構(gòu)損傷,引發(fā)機組爆炸等重大事故[1]。研究結(jié)果顯示,國內(nèi)外普遍認為水輪機組發(fā)生故障時,約80%的故障特征都會通過振動信號顯現(xiàn)[2]。水輪機組運行時會產(chǎn)生大量非平穩(wěn)、非線性的振動信號,其中包含用于判斷水輪機運轉(zhuǎn)狀況的有用信號,以及機組運行時產(chǎn)生的電磁干擾、強噪聲等干擾信號。干擾信號會使采集到的信號失真,進而對水輪機組振動信號的特征提取產(chǎn)生嚴重影響。因此,對監(jiān)測到的水輪機組振動信號進行降噪處理,對于后續(xù)水輪機組的故障診斷有積極作用。
針對非平穩(wěn)、非線性信號的降噪處理,主要有小波閾值降噪法、經(jīng)驗?zāi)B(tài)分解(EMD)降噪法,以及在它們的基礎(chǔ)上引申出的改進方法[3]。小波閾值降噪法可以根據(jù)不同頻率的子信號選擇合適的閾值函數(shù)和小波分解個數(shù),實現(xiàn)自適應(yīng)降噪,提高降噪效果。但閾值函數(shù)的選取對降噪效果有很大影響,如選擇軟、硬閾值函數(shù)分解信號,將分解后的信號再進行重組,會產(chǎn)生不可避免的誤差。EMD降噪法可將待處理的信號分解為若干個本征模態(tài)函數(shù)(IMF),不需要輸入相應(yīng)參數(shù)就能實現(xiàn)自適應(yīng)分解;但EMD分解會出現(xiàn)模態(tài)混疊現(xiàn)象,即分解后的IMF之間相互包含或重疊,導致分解結(jié)果有誤差,進而影響信號重組的準確性[4]。
劉慶強等[5]將小波閾值引入語音信號降噪處理,該方法可改善信號降噪比與均方誤差。文獻[6]針對軸承故障診斷問題,提出一種基于EMD降噪與譜峭度的診斷方法,能夠較好地檢測出軸承故障。劉忠等[7]將EMD引入水輪機空化聲發(fā)射信號閾值降噪,該方法較小波閾值降噪與傳統(tǒng)EMD降噪方法更具優(yōu)勢,但未考慮EMD模態(tài)混疊問題。文獻[8]將變分模態(tài)分解(VMD)和能量熵用于從含噪微震監(jiān)測數(shù)據(jù)中提取有效的微震信號,結(jié)果表明該方法能較好保留原始信號特征。
綜上,本文建立一種聯(lián)合VMD-改進小波閾值函數(shù)降噪法,使用該降噪法對水輪機組實測振動信號與仿真信號進行處理,并將該處理結(jié)果同傳統(tǒng)閾值函數(shù)與改進小波閾值函數(shù)降噪方法的處理對照,以評估上述方法的降噪效果。
小波閾值降噪法是一種普遍使用的信號處理方法,可用于降低信號中的噪聲及提高信號的質(zhì)量。該降噪法是將原始信號通過小波變換解構(gòu)為多個頻率的子帶,并利用原始信號與噪聲信號不同頻率特性,設(shè)置相應(yīng)閾值函數(shù)將高頻噪聲子帶去除、保留低頻子帶,進而降低含噪信號中噪聲的干擾。
小波閾值降噪中有2種傳統(tǒng)函數(shù),分別是軟閾值函數(shù)和硬閾值函數(shù)[9]。
硬閾值函數(shù)為
(1)
軟閾值函數(shù)為
(2)
硬閾值處理法是將原始信號解構(gòu)后的小波系數(shù)與設(shè)定的閾值比較,絕對值小于閾值的小波系數(shù)令其為0,絕對值大于閾值的小波系數(shù)則保持不變。而軟閾值處理法是,絕對值小于或等于閾值的小波系數(shù)令其為0,絕對值大于閾值的小波系數(shù),則減去該閾值后再取絕對值[10]。
當涉及信號降噪時,小波閾值函數(shù)的選取是至關(guān)重要的,需根據(jù)具體的信號特征進行選擇,以達到最佳的降噪效果。硬閾值函數(shù)能將噪聲從信號中準確地去除,經(jīng)該方法處理后的信號有較高的信噪比,可保留信號中的特征信息。但硬閾值函數(shù)的數(shù)學特性會導致小波系數(shù)在閾值-λ與+λ處非連續(xù),使重組信號產(chǎn)生突變[11]。軟閾值函數(shù)是將小波系數(shù)絕對值大于閾值λ的值減去固定的閾值,使重構(gòu)函數(shù)有較好的平滑度,有利于后續(xù)提取信號的特征量。但在處理小波系數(shù)過程中,軟閾值函數(shù)會恒定降低小波系數(shù)值,導致經(jīng)過降噪后的信號與原信號間存在一個恒定誤差。因此,使用軟、硬閾值函數(shù)對原始信號進行信號濾噪,會使原始信號中的信息細節(jié)缺失,該缺陷會對水輪機組后續(xù)的在線監(jiān)測產(chǎn)生干擾。
(3)
上述改進小波閾值函數(shù)在閾值點是連續(xù)的,可避免硬閾值函數(shù)在閾值點非連續(xù)的問題。但改進小波閾值函數(shù)的降噪性能依賴于所選的閾值函數(shù)形式和參數(shù),如果選擇不當會導致降噪效果不佳。當振動信號中存在較強的隨機噪聲時,改進小波閾值函數(shù)可能會將信號中的部分信息誤判為噪聲而過濾掉。軟、硬閾值函數(shù)及改進小波閾值函數(shù)對比圖如圖1所示。
圖1 閾值函數(shù)對比
VMD分解法是根據(jù)信號中子信號的中心頻率將非平穩(wěn)、非線性信號分解為多個IMF分量[13]。VMD可以將不同的信號分解為一系列不同頻帶寬度和數(shù)量的子信號,以適應(yīng)更多不同特征,進而獲得更精確的信號分解結(jié)果。在使用VMD解構(gòu)信號時,可通過設(shè)置解構(gòu)個數(shù)K及懲罰因子α獲得保留原始信號特征的分量,如此可避免EMD解構(gòu)信號時出現(xiàn)抽樣混疊現(xiàn)象,利于后續(xù)對各IMF分量進行改進小波閾值降噪。
b)令迭代次數(shù)n′=n+1。
(4)
(5)
d)更新λ如式(6):
(6)
e)給定判定精度e>0,若滿足判定表達式(7):
(7)
則終止更迭,否則重返步驟b繼續(xù)更迭。
a)選擇適當小波基函數(shù)進行小波變換,將待處理信號分解為K個不同時間位置和頻率的小波分量,小波基函數(shù)為
(8)
b)通過分析小波分量特性設(shè)置小波閾值函數(shù),對K個小波分量中的高頻子帶進行閾值篩選。
c)將未濾除的低頻小波分量進行重構(gòu),得到降噪后的信號,重構(gòu)函數(shù)為
(9)
綜合考慮VMD分解法與改進小波閾值函數(shù)的優(yōu)缺點后,本文提出了一種聯(lián)合VMD-改進小波閾值的水輪機組振動降噪法。通過上述改進降噪法將振動信號分解為K個分量,觀察其頻譜特征,設(shè)置適當閾值,將低于閾值的IMF分量通過改進小波閾值函數(shù)繼續(xù)降噪。具體降噪流程如下:獲取振動信號,初始化VMD參數(shù),根據(jù)信號波形特征選取合適的分解個數(shù)K,設(shè)置懲罰因子α為2 000[15]。
a)將待處理信號按不同中心頻率解構(gòu)為K個IMF分量。
b)將各IMF分量中頻譜幅值<1的分量通過改進小波閾值再次降噪。
c)將降噪后的IMF分量及閾值>1的分量重組得到最終降噪后的信號。
綜上,本文提出的聯(lián)合VMD-改進小波閾值的水輪機組振動信號降噪方法流程圖如圖2所示。
圖2 聯(lián)合降噪法流程圖
在實際工況中,水輪機組振動傳感器收集的是非平穩(wěn)、非線性的信號,其中包含具有低頻性、平穩(wěn)性的有用信號及高頻、固定頻率的干擾噪聲信號。為使仿真信號更接近水輪機組實際運行產(chǎn)生的振動信號,設(shè)仿真信號由一個頻率為0.8 Hz和0.05 Hz的正弦波與一個高斯白噪聲疊加而成。其中,信號長度為3 997,f1為0.8 Hz,f2為0.05 Hz,采樣頻率為100 Hz。未疊加高斯白噪聲的原始信號波形及疊加高斯白噪聲的模擬信號波形如圖3所示。
(a)未加入白噪聲信號
仿真信號為
y=2sin[2π×f1×t+cos(2π×f2×t)]+
0.9×randn[length(t),1]
(10)
分別應(yīng)用軟、硬閾值函數(shù)及改進小波閾值函數(shù)對上述仿真信號進行降噪處理,并對其降噪效果做量化評估。設(shè)小波波形為db3,小波分解個數(shù)為5,閾值規(guī)則采取visushrink算法。各降噪法對仿真信號降噪波形圖如圖4所示。圖4(a)為使用改進小波閾值函數(shù)降噪后的效果圖,圖4(b)、圖4(c)分別為使用軟、硬閾值函數(shù)降噪后的效果圖。
(a)改進小波閾值
將上述仿真信號分解為4個IMF分量,懲罰因子α設(shè)置為1 800,IMF分量波形圖如圖5所示。分析圖5中各分量幅值,設(shè)置IMF幅值閾值為1,則將IMF2~IMF4分量經(jīng)改進小波閾值函數(shù)再次降噪。圖6所示為3個IMF分量通過改進小波閾值降噪后的波形,以及聯(lián)合VMD-改進小波閾值函數(shù)降噪法降噪后的波形。
(a)IMF2降噪后信號
為評價各降噪方法的降噪效果,引入了信噪比(SNR)、均方誤差(MSE)及波形相似參數(shù)(NCC)進行對比分析,4種方法的降噪評價指標數(shù)據(jù)如表1所示。
表1 4種閾值函數(shù)降噪效果比較
通過表1的對比分析可以直觀地發(fā)現(xiàn),改進小波閾值降噪法在信噪比及波形相似參數(shù)指標上均高于軟、硬閾值函數(shù),而在均方誤差上均低于軟、硬閾值函數(shù)。聯(lián)合VMD-改進小波閾值降噪法在各個降噪評價指標上均顯著高于其余3種閾值函數(shù)。由此可知,與軟、硬閾值函數(shù)相比,改進小波閾值函數(shù)與VMD-改進小波閾值可明顯提高信號降噪效果,且聯(lián)合VMD-改進小波閾值降噪效果顯著高于改進小波閾值函數(shù)。
以國內(nèi)某水電站的水輪機組為研究對象。該水輪機組轉(zhuǎn)速為136 r/min,旋轉(zhuǎn)頻率為2.27 Hz,傳感器采樣頻率為250 Hz,根據(jù)該電站收集到的實際數(shù)據(jù)得到水輪機組的振動信號及其波形圖,如圖7所示。圖8為將振動信號分別經(jīng)過軟閾值函數(shù)、硬閾值函數(shù)、改進小波閾值函數(shù)和聯(lián)合VMD-改進小波閾值降噪的波形。
圖7 水輪機組振動信號波形
(a)軟閾值降噪后信號
由于無法測得水輪機組運行時不含噪聲的原始信號,因此無法使用上述降噪評價指標來評估4種閾值函數(shù)的降噪效果。水輪機組故障時產(chǎn)生的振動信號,其頻率主要分布在一倍頻、二倍頻及三倍頻[7]。因此,可對降噪后的信號進行快速傅里葉變換(FFT)變換及頻譜分析,以獲取振動信號的頻率分布及其在不同頻率下的頻譜幅值,最后通過比較3種特征頻率下的頻譜幅值大小來評估降噪效果。
本文對降噪后的信號與原始信號進行頻譜分析,將原始信號與經(jīng)過4種閾值函數(shù)降噪后的信號在一倍頻、二倍頻及三倍頻的頻譜幅值進行對比,來評估4種閾值函數(shù)的降噪效果。經(jīng)4種閾值函數(shù)降噪后的信號與原始信號的頻譜對比分析如表2所示。
表2 頻譜幅值對比分析
通過表2分析可知,4種降噪閾值函數(shù)在3種特征頻率下的幅值均低于原始信號,且聯(lián)合VMD-改進小波閾值降噪頻譜幅值遠低于軟、硬閾值函數(shù)及改進小波閾值函數(shù)。由此可知,與軟、硬閾值函數(shù)及改進小波閾值函數(shù)相比,聯(lián)合VMD-改進小波閾值降噪法的降噪效果有顯著提升,驗證了本文提出的降噪方法的可行性與有效性。
本文主要對水輪機組振動信號降噪方法進行研究,提出了一種聯(lián)合VMD-改進小波閾值降噪法。運用該方法對水輪機組模擬振動仿真信號與實測振動信號進行降噪分析,并評價各降噪方法的降噪效果。本文所提降噪方法能濾除振動信號中的大部分干擾噪聲,與軟、硬閾值函數(shù)及改進小波閾值函數(shù)相比,其降噪效果有明顯提升,驗證了所提降噪方法的可行性與有效性。VMD在信號分解時,懲罰因子α和IMF分解個數(shù)K的選擇對最終降噪效果會產(chǎn)生不確定性影響。因此,后續(xù)還可以利用機器學習法來進行VMD分解,以獲取更優(yōu)降噪效果。