国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

紫菀酮對(duì)小鼠脊髓損傷后神經(jīng)元凋亡的影響

2023-11-13 21:55許軼博孫洋肖林雨朱國(guó)慶宋雪胡建國(guó)齊琦
關(guān)鍵詞:紫菀靶點(diǎn)脊髓

許軼博 孫洋 肖林雨 朱國(guó)慶 宋雪 胡建國(guó) 齊琦

基金項(xiàng)目:國(guó)家自然科學(xué)基金(82071360)、安徽省高校自然科學(xué)研究重點(diǎn)項(xiàng)目(KJ2020A0587)和蚌埠醫(yī)學(xué)院科研創(chuàng)新計(jì)劃(Byycx22010、Byycx22031)

摘要:目的? 探討紫菀酮(SHI)對(duì)脊髓損傷(SCI)小鼠運(yùn)動(dòng)功能的影響及可能的分子機(jī)制。方法? 采用C57BL/6小鼠構(gòu)建SCI模型,分為模型組(SCI組)和SHI藥物治療組(SCI+SHI組),假手術(shù)小鼠為對(duì)照組。采用Basso小鼠量表(BMS)評(píng)分評(píng)估SCI小鼠運(yùn)動(dòng)功能恢復(fù)情況,采用HE染色和Nissl染色觀察SCI小鼠脊髓組織纖維化和神經(jīng)元的形態(tài)學(xué)變化,采用免疫熒光染色分析脊髓組織中神經(jīng)元凋亡情況。體外培養(yǎng)小鼠海馬神經(jīng)元HT22細(xì)胞,分為腫瘤壞死因子α(TNF-α)誘導(dǎo)組和SHI藥物治療組,采用Western blot檢測(cè)各組細(xì)胞凋亡相關(guān)蛋白的表達(dá)。利用網(wǎng)絡(luò)藥理學(xué)、基因本體和京都基因與基因組百科全書(shū)富集分析預(yù)測(cè)SHI促進(jìn)SCI功能恢復(fù)的可能分子靶點(diǎn)和信號(hào)通路,并通過(guò)體內(nèi)外實(shí)驗(yàn)對(duì)其分子機(jī)制進(jìn)行驗(yàn)證。結(jié)果? 與SCI組比較,SCI+SHI組小鼠BMS評(píng)分在第21、28、35、42天顯著升高(P=0.003、P=0.004、P=0.023、P=0.007),脊髓組織纖維化面積顯著降低(P=0.021),神經(jīng)元存活數(shù)量顯著增加(P=0.001),活化的半胱氨酸天冬氨酸蛋白酶3(cleaved-Caspase3)表達(dá)顯著降低(P=0.017)。與TNF-α組比較,SHI組cleaved-Caspase3、Bax蛋白表達(dá)水平顯著降低(P=0.010、P=0.001),而B(niǎo)cl-2蛋白表達(dá)水平顯著升高(P=0.001)。生物信息學(xué)分析結(jié)果顯示SHI改善SCI小鼠運(yùn)動(dòng)功能可能與磷脂酰肌醇3-激酶(PI3K)/蛋白激酶 B(Akt)信號(hào)通路相關(guān)。體內(nèi)和體外實(shí)驗(yàn)檢測(cè)結(jié)果顯示,SHI可抑制SCI小鼠或TNF-α誘導(dǎo)的HT22細(xì)胞中PI3K和Akt的磷酸化水平(P均<0.05),而胰島素樣生長(zhǎng)因子-1干預(yù)后HT22細(xì)胞凋亡數(shù)量顯著高于SHI組(P=0.003)。結(jié)論? SHI可能通過(guò)PI3K/Akt信號(hào)通路抑制神經(jīng)元凋亡,從而促進(jìn)SCI小鼠運(yùn)動(dòng)功能恢復(fù)。

關(guān)鍵詞:脊髓損傷;紫菀酮;神經(jīng)元;凋亡;磷脂酰肌醇3-激酶/蛋白激酶 B

中圖分類號(hào): R285.5? 文獻(xiàn)標(biāo)志碼: A? 文章編號(hào):1000-503X(2023)05-0703-10

DOI:10.3881/j.issn.1000-503X.15586

Effect of Shionone on Neuron Apoptosis After Spinal Cord Injury in Mice

XU Yibo1,2,SUN Yang2,3,XIAO Linyu2,3,ZHU Guoqing2,4,SONG Xue2,5,HU Jianguo2,4,QI Qi1

1Department of Histology and Embryology,College of Basic Medical Sciences,Bengbu Medical College,Bengbu,Anhui 233030,China

2Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases,3Department of Rehabilitation,4Clinical Laboratory,5Central Laboratory,The First Affiliated Hospital of Bengbu Medical College,Bengbu,Anhui 233000,China

Corresponding author:QI Qi? Tel:0552-3175282,E-mail:qq233003@163.com

ABSTRACT:Objective? To explore the effect of shionone(SHI)on motor function in the mouse model of spinal cord injury(SCI)and probe into the underlying molecular mechanism.Methods? C57BL/6 mice were treated to induce the SCI model and then assigned into a model group(SCI group),a SCI+SHI group,and a sham surgery(control)group.The Basso mouse scale(BMS)score was determined to evaluate the recovery of motor function in SCI mice.Hematoxylin-eosin(HE)staining,Nissl staining,and immunofluorescence staining were employed to examine the fibrosis,morphological changes of neurons,and neuron apoptosis in the spinal cord tissue of SCI mice,respectively.The mouse hippocampal neuronal cell line HT22 was cultured in vitro and then classified into tumor necrosis factor α(TNF-α)induction and SHI groups.Western blotting was employed to determine the expression of apoptosis-associated proteins.Network pharmacology,gene ontology annotation,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were employed to predict the possible molecular targets and signaling pathways of SHI in promoting functional recovery from SCI.Furthermore,the prediction results were verified by in vitro and in vivo experiments.Results? Compared with the SCI group,the SCI+SHI group showed increased BMS score on days 21,28,35,and 42(P=0.003,P=0.004,P=0.023,and P=0.007,respectively),reduced area of spinal cord fibrosis(P=0.021),increased neurons survived(P=0.001),and down-regulated expression of cleaved cysteine aspastic acid-specific protease 3(cleaved Caspase-3)(P=0.017).Compared with the TNF-α group,the SHI group presented down-regulated expression levels of cleaved Caspase-3 and Bax(P=0.010,P=0.001)and up-regulated expression level of Bcl-2(P=0.001).The results of bioinformatics analysis showed that SHI might improve the motor function of SCI mice via the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)signaling pathway.The results of in vivo and in vitro experiments showed that SHI inhibited the phosphorylation of PI3K and Akt in SCI mice or HT22 cells exposed to TNF-α(all P<0.05).The number of apoptotic HT22 cells after treatment with insulin-like growth factor 1 was higher than that in the SHI group(P=0.003).Conclusion? SHI may inhibit neuron apoptosis via the PI3K/Akt signaling pathway,thereby promoting the recovery of motor function in SCI mice.

Key words:spinal cord injury;shionone;neuron;apoptosis;phosphatidylinositol 3-kinase/protein kinase B

Acta Acad Med Sin,2023,45(5):703-712

脊髓損傷(spinal cord injury,SCI)會(huì)導(dǎo)致長(zhǎng)期或永久性的神經(jīng)功能缺損,造成運(yùn)動(dòng)和感覺(jué)功能障礙,影響患者生活質(zhì)量,同時(shí)也給社會(huì)和家庭帶來(lái)巨大的經(jīng)濟(jì)負(fù)擔(dān)[1-2]。原發(fā)性損傷后的一系列繼發(fā)性損傷可導(dǎo)致神經(jīng)元凋亡,是造成運(yùn)動(dòng)功能障礙的重要原因,早期干預(yù)減少神經(jīng)元凋亡是促進(jìn)SCI后運(yùn)動(dòng)功能恢復(fù)的關(guān)鍵[3]。然而,目前尚無(wú)有效藥物可以抑制SCI神經(jīng)元凋亡,因此急需尋找和開(kāi)發(fā)新的治療藥物,以促進(jìn)SCI患者的康復(fù)。天然植物化合物以其生物學(xué)作用多樣且安全的特點(diǎn)受到關(guān)注,越來(lái)越多的學(xué)者嘗試從中草藥中提純有效成分用于SCI的治療[4]。紫菀為菊科紫菀屬草本植物,以干燥根莖入藥[5]。據(jù)報(bào)道紫菀具有抗視網(wǎng)膜血管細(xì)胞凋亡的特性,而作為紫菀的主要活性成分紫菀酮(shionone,SHI)調(diào)控細(xì)胞凋亡及在SCI中的作用相關(guān)報(bào)道較少[6-7]。本研究以SCI小鼠模型為研究對(duì)象,觀察SHI對(duì)SCI小鼠運(yùn)動(dòng)功能恢復(fù)的作用效果;并結(jié)合體內(nèi)和體外實(shí)驗(yàn),分析SHI調(diào)控神經(jīng)元細(xì)胞凋亡在SCI中的作用及可能的分子機(jī)制,以期為臨床藥物治療提供參考。

材料和方法

材料? SHI購(gòu)自上海源葉生物科技有限公司,小鼠海馬神經(jīng)元HT22細(xì)胞購(gòu)自武漢普諾賽生命科技有限公司,胎牛血清購(gòu)自美國(guó)Gibco公司,胰島素樣生長(zhǎng)因子-1(insulin-like growth factor 1,IGF-1)購(gòu)自美國(guó)MedChemExpress公司,HE染色液購(gòu)自珠海貝索細(xì)胞科學(xué)技術(shù)有限公司,Bcl-2、Bax、活化的半胱氨酸天冬氨酸蛋白酶3(cleaved-cysteine asparate protease 3,cleaved-Caspase3)、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)、蛋白激酶B(protein kinase B,Akt)、磷酸化PI3K(phosphorylation PI3K,p-PI3K)、磷酸化Akt(phosphorylation Akt,p-Akt)、β-actin抗體均購(gòu)自英國(guó)Abcam公司,神經(jīng)元特異性核蛋白(neuron specific nuclear protein,NeuN)購(gòu)自武漢三鷹生物技術(shù)公司,腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)購(gòu)自美國(guó)Sigma公司。

實(shí)驗(yàn)動(dòng)物? 6~8周齡野生型C57BL/6雌性小鼠購(gòu)自江蘇集萃藥康生物科技股份有限公司,生產(chǎn)許可證號(hào)SCXK(蘇)2018-0008,飼養(yǎng)于SPF級(jí)環(huán)境中。本研究經(jīng)蚌埠醫(yī)學(xué)院動(dòng)物研究倫理委員會(huì)批準(zhǔn)(倫理審批編號(hào):倫動(dòng)科批字〔2020〕第044號(hào))。

SCI小鼠模型建立? 采用美國(guó)PSI公司脊髓打擊器IH-0400建立小鼠SCI模型[8]。采用1%戊巴比妥鈉(60 mg/kg)腹腔注射麻醉,切除第9胸椎椎板,充分暴露脊髓,穩(wěn)定脊柱后使用具有50 kdyn的脊髓打擊器(直徑1.3 mm)垂直擊打脊髓建立SCI模型,打擊后小鼠出現(xiàn)尾部痙攣搖擺,雙下肢癱瘓,表明造模成功。假手術(shù)組只切除椎板不損傷脊髓。建模后小鼠每日皮下注射0.5 ml 8000 U青霉素預(yù)防感染,每日3次手動(dòng)排空膀胱,直至小鼠自主排尿。

動(dòng)物分組? 將48只C57BL/6小鼠(體重20~25 g)隨機(jī)分為3組:假手術(shù)組(對(duì)照組)、模型組(SCI組)和治療組(SCI+SHI組),每組16只。SCI+SHI組小鼠每日給予20 mg/kg SHI灌胃治療,連續(xù)給藥7 d;對(duì)照組和SCI組每日給予等體積生理鹽水進(jìn)行灌胃。于造模后第7天和第6周處死小鼠,分離脊髓組織[9]。

Basso小鼠量表評(píng)分? 每組隨機(jī)抽取6只小鼠,于術(shù)前和術(shù)后第1、3、7、14、21、28、35、42天采用Basso小鼠量表(Basso mouse scale,BMS)評(píng)分標(biāo)準(zhǔn)對(duì)小鼠后肢進(jìn)行連續(xù)運(yùn)動(dòng)功能狀態(tài)評(píng)估[10]。將小鼠置于空曠平坦的場(chǎng)地中,自由活動(dòng)3 min,采用雙盲法進(jìn)行評(píng)分,觀察指標(biāo)包括小鼠后肢踝關(guān)節(jié)活動(dòng)度、協(xié)調(diào)性、腳爪姿態(tài)和軀干穩(wěn)定性等,評(píng)分分為10個(gè)等級(jí),0分:完全觀察不到踝關(guān)節(jié)運(yùn)動(dòng);1分:踝關(guān)節(jié)輕度活動(dòng),關(guān)節(jié)活動(dòng)范圍≤50%;2分:踝關(guān)節(jié)大幅運(yùn)動(dòng),關(guān)節(jié)活動(dòng)范圍>50%;3分:爪子主動(dòng)放置在地面上,拇指和小指都觸地,可以負(fù)重或不負(fù)重,或者偶爾/頻繁/持續(xù)以足背負(fù)重行走,無(wú)足底負(fù)重行走;4分:偶見(jiàn)(≤50%)足底負(fù)重行走;5分:頻繁(51%~94%)到持續(xù)(95%~100%)足底負(fù)重行走,但無(wú)前、后肢協(xié)調(diào);6分:頻繁到持續(xù)足底負(fù)重行走,有少量前、后肢協(xié)調(diào),并且后爪在剛觸地時(shí)平行;7分:頻繁到持續(xù)足底負(fù)重行走,有大量前、后肢協(xié)調(diào),并且后爪在剛觸地和抬起時(shí)平行,但軀體嚴(yán)重不穩(wěn);8分:頻繁到持續(xù)足底負(fù)重行走,有大量前、后肢協(xié)調(diào),并且后爪在剛觸地和抬起時(shí)均平行,有輕度軀體不穩(wěn)表現(xiàn);9分:足底可以負(fù)重行走,前后肢協(xié)調(diào),軀干穩(wěn)定。由兩名經(jīng)過(guò)培訓(xùn)并熟練掌握評(píng)分細(xì)則的BMS評(píng)分員,在未知小鼠分組的情況下,獨(dú)立觀察小鼠3~5 min,統(tǒng)計(jì)兩名評(píng)分者的平均評(píng)分。

組織病理學(xué)觀察? 各組小鼠隨機(jī)選取6只于造模后第42天麻醉處死,4%多聚甲醛行左心室—主動(dòng)脈灌注后,分離以損傷點(diǎn)為中心上下共1 cm的脊髓組織,常規(guī)包埋后制作冰凍切片。采用HE染色、Nissl染色評(píng)估脊髓組織纖維化面積及神經(jīng)元凋亡情況[11]。

細(xì)胞培養(yǎng)及分組? HT22細(xì)胞采用含10%胎牛血清的DMEM完全培養(yǎng)基培養(yǎng),待細(xì)胞生長(zhǎng)至對(duì)數(shù)期,以2×105個(gè)/孔的密度接種于6孔板中,分為對(duì)照組(單純DMEM完全培養(yǎng)基)、TNF-α組(100 ng/ml TNF-α誘導(dǎo)12 h)、SHI組(100 ng/ml TNF-α誘導(dǎo)12 h加20 μmol/L SHI治療1 d)。此外,采用100 ng/ml PI3K/Akt信號(hào)通路激動(dòng)劑IGF-1處理HT22細(xì)胞24 h,觀察該信號(hào)通路關(guān)鍵蛋白的變化情況[12-13]。

Western blot檢測(cè)? 各組脊髓組織和細(xì)胞經(jīng)PBS洗滌后,采用RIPA裂解液裂解并提取總蛋白,BCA法檢測(cè)蛋白濃度。取50 μg蛋白進(jìn)行SDS-PAGE電泳,將分離的蛋白轉(zhuǎn)移至PVDF膜上,5%脫脂奶粉封閉,分別加入Bcl-2(1∶1000)、Bax(1∶1000)、cleaved-Caspase3(1∶1000)、PI3K(1∶1000)、Akt(1∶1000)、p-PI3K(1∶1000)、 p-Akt(1∶1000)、β-actin(1∶1000)和辣根過(guò)氧化物酶標(biāo)記的山羊抗兔/小鼠IgG(1∶3000),使用ECL發(fā)光液曝光后采集圖片,并采用Image-J軟件分析灰度值。

免疫熒光染色? 脊髓組織冰凍切片經(jīng)PBS洗滌、固定和封閉后,加入NeuN(1∶200)和cleaved-Caspase3(1∶200)4 ℃孵育過(guò)夜,PBS洗滌后加入FITC標(biāo)記的山羊抗小鼠IgG(H+L)(1∶500)和Alexa Fluor555標(biāo)記的山羊抗兔IgG(H+L)(1∶1000)室溫孵育1 h,經(jīng)2 μg/ml DAPI復(fù)染細(xì)胞核和封片后,置于激光掃描共聚焦顯微鏡下采集圖片。HT22細(xì)胞爬片固定后,0.2% Triton-100破膜20 min,封閉1 h,加入一抗cleaved-Caspase3(1∶200)、Bcl-2(1∶200)4 ℃孵育過(guò)夜,二抗室溫孵育1 h,封片后于激光掃描共聚焦顯微鏡下觀察。

SHI與SCI交集靶點(diǎn)篩選? 從Pubchem數(shù)據(jù)庫(kù)獲得SHI結(jié)構(gòu)式,并將其SMILES結(jié)構(gòu)導(dǎo)入Swiss Target Predictio數(shù)據(jù)庫(kù)和PharmMapper數(shù)據(jù)庫(kù),以可能性>0為限制條件進(jìn)行篩選,預(yù)測(cè)SHI潛在作用靶點(diǎn)。利用Genecards數(shù)據(jù)庫(kù)檢索SCI相關(guān)靶點(diǎn)并剔除非人源基因。將SHI潛在作用靶點(diǎn)和SCI相關(guān)靶點(diǎn)導(dǎo)入Venny 2.1.0在線工具,繪制韋恩圖。

蛋白質(zhì)互作網(wǎng)絡(luò)分析? 將SHI與SCI的交集靶點(diǎn)基因輸入STRING數(shù)據(jù)庫(kù),獲得蛋白質(zhì)互作網(wǎng)絡(luò)(protein-protein interaction networks,PPI)的數(shù)據(jù)文件。將蛋白質(zhì)相互作用關(guān)系文件導(dǎo)入Cytoscape 3.7.2軟件,建立SHI與SCI靶點(diǎn)蛋白PPI網(wǎng)絡(luò)圖。根據(jù)PPI網(wǎng)絡(luò)圖中各靶點(diǎn)的點(diǎn)度中心性參數(shù)篩選出關(guān)鍵靶點(diǎn)基因。

基因本體和京都基因與基因組百科全書(shū)富集分析? 將篩選的關(guān)鍵靶點(diǎn)基因輸入DAVID數(shù)據(jù)庫(kù),進(jìn)行京都基因與基因組百科全書(shū)(Kyoto encyclopedia of genes and genomes,KEGG)信號(hào)通路富集和基因本體(gene ontology,GO)功能分析。

統(tǒng)計(jì)學(xué)處理? 采用SPSS 26.0軟件,符合正態(tài)分布和方差齊性的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,兩組間均數(shù)比較采用t檢驗(yàn),多組間均數(shù)比較采用單因素方差分析;不符合正態(tài)分布和方差齊性的計(jì)量資料采用非參數(shù)檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。所有實(shí)驗(yàn)均獨(dú)立重復(fù)3次。

結(jié)? 果

BMS評(píng)分比較? 與SCI組比較,SCI+SHI組BMS評(píng)分在第21、28、35、42天顯著升高(P=0.003、P=0.004、P=0.023、P=0.007)。

組織病理學(xué)變化? HE染色結(jié)果顯示,SHI顯著減少SCI后脊髓組織的纖維化面積(P=0.021)(圖1A)。Nissl染色結(jié)果顯示,SCI+SHI組在距離損傷中心0.5 mm處殘余的前角運(yùn)動(dòng)神經(jīng)元的數(shù)量顯著多于SCI組(P=0.001)(圖1B)。

SHI對(duì)SCI小鼠脊髓神經(jīng)元細(xì)胞凋亡的影響? 免疫熒光染色結(jié)果顯示,與SCI組比較,SCI+SHI組小鼠脊髓組織中NeuN和cleaved-Caspase3表達(dá)陽(yáng)性的細(xì)胞數(shù)顯著減少(P=0.017)(圖2)。

SHI對(duì)TNF-α誘導(dǎo)的HT22細(xì)胞凋亡的影響? Western blot檢測(cè)結(jié)果顯示,與TNF-α組比較,SHI組HT22細(xì)胞Bax(2.08±0.24比4.82±0.42;t=7.940,P=0.001)和cleaved-Caspase3蛋白(5.24±0.13比8.90±1.13;t=4.557,P=0.010)表達(dá)水平顯著降低,而B(niǎo)cl-2蛋白表達(dá)水平顯著增加(0.72±0.04比0.39±0.03;t=10.010,P=0.001)(圖3)。

PPI網(wǎng)絡(luò)分析? 韋恩圖發(fā)現(xiàn)106個(gè)SHI和SCI的交集靶點(diǎn)(圖4A),并構(gòu)建PPI網(wǎng)絡(luò)圖(圖4B),拓?fù)浞治龅贸銮?位的交集靶點(diǎn)分別為SRC、HSP90AA1、MAPK1、PIK3R1、EGFR和IGF1,點(diǎn)度中心性值依次為66、60、54、54、54、48。

GO功能注釋分析? 對(duì)106個(gè)交集靶點(diǎn)進(jìn)行GO功能注釋分析結(jié)果顯示,SHI的調(diào)控功能可能與抗凋亡和PI3K信號(hào)通路的調(diào)節(jié)有關(guān)(圖5)。

KEGG富集分析? 對(duì)106個(gè)交集靶點(diǎn)進(jìn)行KEGG通路富集分析結(jié)果顯示,SHI的抗凋亡作用可能與PI3K/Akt信號(hào)通路有關(guān)(圖6)。

SHI對(duì)SCI小鼠脊髓組織PI3K/Akt通路蛋白表達(dá)的影響? Western blot檢測(cè)結(jié)果顯示,與SCI組比較,SCI+SHI組p-PI3K(2.64±0.15比4.56±0.92;t=2.919,P=0.043)和p-Akt表達(dá)(1.85±0.19比3.03±0.25;t=5.276,P=0.006)顯著降低(圖7)。

SHI抑制PI3K/Akt通路對(duì)神經(jīng)元凋亡的影響? Western blot檢測(cè)結(jié)果顯示,與TNF-α組比較,SHI組p-PI3K(4.25±0.23比8.66±0.31;t=16.130,P<0.001)和p-Akt表達(dá)(2.38±0.36比9.37±0.48;t=16.470,P<0.001)顯著降低,PI3K/Akt通路激動(dòng)劑IGF-1干預(yù)后p-PI3K(6.21±0.48比4.25±0.23;t=5.161,P=0.007)和p-Akt表達(dá)(3.61±0.44比2.38±0.36;t=3.044,P=0.038)顯著升高(圖8A)。免疫熒光染色結(jié)果顯示,與TNF-α組比較,SHI組cleaved-Caspase3陽(yáng)性細(xì)胞數(shù)顯著降低(P=0.001),而B(niǎo)cl-2陽(yáng)性細(xì)胞數(shù)顯著升高(P=0.004);IGF-1干預(yù)后cleaved-Caspase3陽(yáng)性細(xì)胞數(shù)顯著增多(P=0.003),Bcl-2陽(yáng)性細(xì)胞數(shù)顯著減少(P=0.002)(圖8B)。

討論

SCI治療是一個(gè)世界性難題,通過(guò)藥物干預(yù)抑制神經(jīng)元凋亡等病理?yè)p傷是減緩SCI神經(jīng)功能障礙的有效方法之一[14]。本研究發(fā)現(xiàn)菊科植物紫菀的活性單體SHI具有改善SCI小鼠運(yùn)動(dòng)功能的作用,可能與其靶向抑制PI3K/Akt信號(hào)通路,進(jìn)而拮抗神經(jīng)元凋亡有關(guān)。

本研究發(fā)現(xiàn)SHI可改善SCI小鼠運(yùn)動(dòng)功能,表現(xiàn)為SHI干預(yù)后SCI小鼠的BMS評(píng)分顯著升高、脊髓組織纖維化面積明顯減少以及殘留的前角運(yùn)動(dòng)神經(jīng)元數(shù)量增多。隨著中醫(yī)藥的興起,越來(lái)越多的中國(guó)學(xué)者嘗試從中草藥中提純有效成分用于治療無(wú)特效藥物的疾病,包括炎癥性腸病、自身免疫性疾病及SCI等[15-16]。中藥單體具有分子量小,易吸收,可通過(guò)血脊髓屏障等優(yōu)點(diǎn),受到SCI治療藥物研發(fā)者的青睞。目前,已有多種中藥單體被證明可以改善SCI損傷,包括白術(shù)內(nèi)酯Ⅲ[17]、槲皮素[18]及莫諾苷[19]等。本研究結(jié)果為SCI治療藥物選擇提供了新的方向,同時(shí)也證明了SHI的藥用價(jià)值及適用疾病范圍。

中藥單體化合物生物活性多樣,具有抗炎、調(diào)控細(xì)胞增殖和凋亡等作用[20]。據(jù)報(bào)道SHI具有抗視網(wǎng)膜血管細(xì)胞凋亡的作用,而抑制細(xì)胞凋亡是治療SCI的關(guān)鍵環(huán)節(jié)[21]。本研究結(jié)果證實(shí)SHI可通過(guò)抑制損傷脊髓組織中的神經(jīng)細(xì)胞凋亡發(fā)揮神經(jīng)元保護(hù)作用,從而促進(jìn)SCI后運(yùn)動(dòng)功能恢復(fù)。在眾多的凋亡調(diào)控基因中Caspase家族和Bcl-2蛋白家族最受關(guān)注[22]。Caspase是凋亡程序的重要執(zhí)行者,其中Caspase3是哺乳動(dòng)物細(xì)胞凋亡通路中的關(guān)鍵死亡蛋白酶,在細(xì)胞凋亡中起著不可替代的作用。本研究通過(guò)神經(jīng)元特異性標(biāo)志物NeuN和cleaved-Caspase3對(duì)SCI小鼠的脊髓組織進(jìn)行免疫熒光雙染,結(jié)果表明SHI治療后cleaved-Caspase3表達(dá)數(shù)量顯著減少,說(shuō)明SHI可以抑制SCI小鼠的神經(jīng)元凋亡。Bcl-2是抗凋亡蛋白,Bax是Bcl-2家族中促凋亡蛋白,凋亡程度通常由Bcl-2/Bax的比值決定[24]。本研究結(jié)果顯示,SHI可以促進(jìn)TNF-α誘導(dǎo)的HT22細(xì)胞中Bcl-2的表達(dá),抑制Bax的表達(dá),提示SHI的神經(jīng)保護(hù)作用可能與Bcl-2家族的抗凋亡作用有關(guān)。

中藥單體作為小分子化合物,調(diào)控細(xì)胞生物學(xué)功能的分子機(jī)制復(fù)雜,常可直接結(jié)合靶蛋白調(diào)控下游信號(hào)通路。本研究通過(guò)網(wǎng)絡(luò)藥理學(xué)方法分析獲得106個(gè)SHI和SCI的交集靶點(diǎn),經(jīng)PPI網(wǎng)絡(luò)分析篩選出SRC、HSP90AA1、MAPK1、PIK3R1、EGFR、IGF1可能為SHI發(fā)揮作用的關(guān)鍵靶蛋白。既往研究報(bào)道,SRC、HSP90AA1、PIK3R1、EGFR和IGF1蛋白均可通過(guò)PI3K/Akt信號(hào)通路調(diào)控細(xì)胞凋亡等多種生物學(xué)過(guò)程[25-29]。此外,KEGG富集分析也顯示SHI對(duì)SCI的保護(hù)作用可能與PI3K信號(hào)通路有關(guān)。研究發(fā)現(xiàn)PI3K/Akt/哺乳動(dòng)物雷帕霉素靶蛋白信號(hào)通路是SCI后的一條經(jīng)典途徑,其調(diào)控神經(jīng)元凋亡、軸突脫髓鞘和炎癥反應(yīng)等過(guò)程,拮抗其激活有助于SCI早期神經(jīng)功能恢復(fù)[30-31]。本研究采用Western blot和免疫熒光染色等方法,從體內(nèi)外實(shí)驗(yàn)驗(yàn)證SHI抑制神經(jīng)元凋亡可能與其抑制PI3K/Akt信號(hào)通路有關(guān)。

本研究存在以下不足:首先,SCI神經(jīng)元凋亡的調(diào)控十分復(fù)雜,受多種因素影響,SHI除抑制神經(jīng)元凋亡外,是否還參與SCI其他病理過(guò)程有待進(jìn)一步探究;其次,本研究采用的SHI用藥劑量是通過(guò)預(yù)實(shí)驗(yàn)確定的,有關(guān)SHI的最佳注射劑量仍然需要進(jìn)一步研究,為本研究成果的臨床轉(zhuǎn)化提供參考。

綜上,本研究結(jié)果表明,SHI可能通過(guò)抑制PI3K/Akt信號(hào)通路發(fā)揮抗神經(jīng)元凋亡作用,從而促進(jìn)SCI小鼠運(yùn)動(dòng)功能恢復(fù)。

參考文獻(xiàn)

[1]Kiyotake EA,Martin MD,Detamore MS.Regenerative rehabilitation with conductive biomaterials for spinal cord injury[J].Acta Biomater,2022,139:43-64.DOI:10.1016/j.actbio.2020.12.021.

[2]Eftekharpour E,Karimi-Abdolrezaee S,F(xiàn)ehlings MG.Current status of experimental cell replacement approaches to spinal cord injury[J].Neurosurg Focus,2008,24(3-4):E19.DOI:10.3171/FOC/2008/24/3-4/E18.

[3]McKay CA,Pomrenke RD,McLane JS,et al.An injectable,calcium responsive composite hydrogel for the treatment of acute spinal cord injury[J].ACS Appl Mater Interfaces,2014,6(3):1424-1438.DOI:10.1021/am4027423.

[4]Tu Y.Artemisinin-a gift from traditional Chinese medicine to the world(nobel lecture)[J].Angew Chem Int Ed Engl,2016,55(35):10210-10226.DOI:10.1002/anie.201601967.

[5]張笑玲,孟義江,賈凱旋,等.紫菀中有效成分紫菀酮含量的時(shí)空變化規(guī)律[J].江蘇農(nóng)業(yè)科學(xué),2021,49(16):174-179.DOI:10.15889/j.issn.1002-1302.2021.16.032.

[6]Zhang Y,Wang Q,Wang T,et al.Inhibition of human gastric carcinoma cell growth in vitro by a polysaccharide from aster tataricus[J].Int J Biol Macromol,2012,51(4):509-513.DOI:10.1016/j.ijbiomac.2012.06.019.

[7]Kim J,Jo K,Lee IS,et al.The extract of aster koraiensis prevents retinal pericyte apoptosis in diabetic rats and its active compound,chlorogenic ccid inhibits age formation and AGE/RAGE interaction[J].Nutrients,2016,8(9):585.DOI:10.3390/nu8090585.

[8]陳月娟,石玲玲,謝秀梅,等.大鼠PSI-IH脊髓撞擊損傷模型的制備[J].華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2016,45(4):420-423.DOI:10.3870/j.issn.1672-0741.2016.04.014.

[9]Chung KS,Cheon SY,Roh SS,et al.Chemopreventive effect of aster glehni on inflammation-induced colorectal carcinogenesis in mice[J].Nutrients,2018,10(2):202.DOI:10.3390/nu10020202.

[10]Ge MH,Tian H,Mao L,et al.Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J].CNS Neurosci Ther,2021,27(9):1023-1040.DOI:10.1111/cns.13657.

[11]Espanol MT,Litt L,Chang LH,et al.Adult rat brain-slice preparation for nuclear magnetic resonance spectroscopy studies of hypoxia[J].Anesthesiology,1996,84(1):201-210.DOI:10.1097/00000542-199601000-00022.

[12]Zhu L,Shen H,Gu PQ,et al.Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation[J].Exp Ther Med,2020,20(1):581-590.DOI:10.3892/etm.2020.8718.

[13]Song Y,Wu Q,Jiang H,et al.The effect of shionone on sepsis-induced acute lung injury by the ECM1/STAT5/NF-κB pathway[J].Front Pharmacol,2022,12:764247.DOI:10.3389/fphar.2021.764247.

[14]Stokes S,Drozda M,Lee C.The past,present,and future of traumatic spinal cord injury therapies:a review[J].Bone Jt Open,2022,3(5):348-358.DOI:10.1302/2633-1462.35.BJO-2021-0177.R1.

[15]Zhao Y,Yang Y,Zhang J,et al.Lactoferrin-mediated macrophage targeting delivery and patchouli alcohol-based therapeutic strategy for inflammatory bowel diseases[J].Acta Pharm Sin B,2020,10(10):1966-1976.DOI:10.1016/j.apsb.2020.07.019.

[16]Luo W,Lin K,Hua J,et al.Schisandrin b attenuates diabetic cardiomyopathy by targeting MyD88 and Inhibiting MyD88-dependent inflammation[J].Adv Sci(Weinh),2022,9(31):e2202590.DOI:10.1002/advs.202202590.

[17]Xue MT,Sheng WJ,Song X,et al.Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization[J].CNS Neurosci Ther,2022,28(7):1059-1071.DOI:10.1111/cns.13839.

[18]Fan H,Tang HB,Shan LQ,et al.Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats[J].J Neuroinflammation,2019,16(1):206.DOI:10.1186/s12974-019-1613-2.

[19]Duan FX,Shi YJ,Chen J,et al.The neuroprotective role of morroniside against spinal cord injury in female rats[J].Neurochem Int,2021,148:105105.DOI:10.1016/j.neuint.2021.105105.

[20]Han X,Xu T,F(xiàn)ang Q,et al.Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy[J].Redox Biol,2021,44:102010.DOI:10.1016/j.redox.2021.102010.

[21]Bhimani AD,Kheirkhah P,Arnone GD,et al.Functional gait analysis in a spinal contusion rat model[J].Neurosci Biobehav Rev,2017,83:540-546.DOI:10.1016/j.neubiorev.2017.09.007.

[22]Krueger A,Baumann S,Krammer PH,et al.FLICE-inhibitory proteins:regulators of death receptor-mediated apoptosis[J].Mol Cell Biol,2001,21(24):8247-8254.DOI:10.1128/MCB.21.24.8247-8254.2001.

[23]Chang HY,Yang X.Proteases for cell suicide:functions and regulation of caspases[J].Microbiol Mol Biol Rev,2000,64(4):821-846.DOI:10.1128/MMBR.64.4.821-846.2000.

[24]Tuli HS,Joshi R,Aggarwal D,et al.Molecular mechanisms underlying chemopreventive potential of butein:current trends and future perspectives[J].Chem Biol Interact,2021,350:109699.DOI:10.1016/j.cbi.2021.109699.

[25]Quan XJ,Liang CL,Sun MZ,et al.Overexpression of steroid receptor coactivators alleviates hyperglycemia-induced endothelial cell injury in rats through activating the PI3K/Akt pathway[J].Acta Pharmacol Sin,2019,40(5):648-657.DOI:10.1038/s41401-018-0109-4.

[26]Hu B,Zhang Y,Jia L,et al.Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-mTOR pathway[J].Autophagy,2015,11(3):503-515.DOI:10.1080/15548627.2015.1017184.

[27]Dyment DA,Smith AC,Alcantara D,et al.Mutations in PIK3R1 cause short syndrome[J].Am J Hum Genet,2013,93(1):158-166.DOI:10.1016/j.ajhg.2013.06.005.

[28]Zaryouh H,De Pauw I,Baysal H,et al.Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma[J].Med Res Rev,2022,42(1):112-155.DOI:10.1002/med.21806.

[29]Nanji M,Hopper NA,Gems D.LET-60 ras modulates effects of insulin/IGF-1 signaling on development and aging in caenorhabditis elegans[J].Aging Cell,2005,4(5):235-245.DOI:10.1111/j.1474-9726.2005.00166.x.

[30]Bi X,Liu J,Yao Y,et al.Deregulation of the phosphatidylinositol-3 kinase signaling cascade is associated with neurodegeneration in Npc1-/-mouse brain[J].Am J Pathol,2005,167(4):1081-1092.DOI:10.1016/S0002-9440(10)61197-2.

[31]張鵬.蕓香苷抑制脊髓損傷大鼠炎癥反應(yīng)及相關(guān)機(jī)制的實(shí)驗(yàn)研究[D].太原:山西醫(yī)科大學(xué),2017.

(收稿日期:2023-03-20)

猜你喜歡
紫菀靶點(diǎn)脊髓
人工3D脊髓能幫助癱瘓者重新行走?
萎軟紫菀中化學(xué)成分的研究
維生素D受體或是糖尿病治療的新靶點(diǎn)
潤(rùn)肺、通二便的紫菀
腫瘤免疫治療發(fā)現(xiàn)新潛在靶點(diǎn)
止咳通便話紫菀
姜黃素對(duì)脊髓損傷修復(fù)的研究進(jìn)展
菊科紫菀屬3種植物的核型分析
心力衰竭的分子重構(gòu)機(jī)制及其潛在的治療靶點(diǎn)
氯胺酮依賴腦內(nèi)作用靶點(diǎn)的可視化研究