摘要:目的 探討尿酸(UA)對果蠅幼蟲生長發(fā)育的影響及其機制。方法 收集剛孵化的野生型黑腹果蠅(W1118)1齡幼蟲1350只,采用高嘌呤飲食構(gòu)建高尿酸血癥果蠅模型,分為對照組(標(biāo)準玉米粉培養(yǎng)基)、低濃度干預(yù)組(含0.05%腺嘌呤的玉米粉培養(yǎng)基)和高濃度干預(yù)組(含0.10%腺嘌呤的玉米粉培養(yǎng)基),每組150只,另設(shè)2個平行實驗組,觀察各組幼蟲的生長發(fā)育情況,測定果蠅體內(nèi)UA和激素水平,以及生長發(fā)育相關(guān)基因的表達情況。結(jié)果 與對照組比較,低濃度干預(yù)組和高濃度干預(yù)組果蠅體內(nèi)UA水平均顯著增高(P均lt;0.001)、果蠅幼蟲發(fā)育時間顯著延長(P=0.024,Plt;0.001),高濃度干預(yù)組果蠅幼蟲的生存率、蛹化率、羽化率均顯著降低(P均lt;0.001),而果蠅幼蟲體內(nèi)保幼激素(JH)、20-羥基蛻皮甾酮(20E)水平均顯著升高(P均lt;0.001)。PCR結(jié)果顯示,與對照組比較,高濃度干預(yù)組果蠅幼蟲體內(nèi)活性氧(ROS)、叉頭框O亞型(FOXO)、哺乳動物雷帕霉素靶蛋白(mTOR)mRNA的表達水平顯著增高,應(yīng)激誘導(dǎo)蛋白Sestrin、mTOR復(fù)合物1(mTORC1)、AMP活化的蛋白激酶mRNA的表達水平顯著降低(P均lt;0.001)。結(jié)論 高濃度UA可能通過調(diào)節(jié)果蠅體內(nèi)JH、20E的表達,促進ROS/FOXO/mTORC1/mTOR信號通路的表達水平,從而抑制果蠅幼蟲的生長發(fā)育。
關(guān)鍵詞:尿酸;果蠅;活性氧;叉頭框轉(zhuǎn)錄因子;哺乳動物雷帕霉素靶蛋白復(fù)合物1
中圖分類號: R589.7" 文獻標(biāo)識碼: A" 文章編號:1000-503X(2024)05-0653-06
DOI:10.3881/j.issn.1000-503X.16013
Effect and Mechanism of Uric Acid in Regulating Larval Growth and Development of Drosophila Melanogaster
ZHANG Ruidi QIU Hongbin ,WANG Jingtao GUAN Baosheng ,BAI Xue4,YIN Xianglin
1School of Public Health,2Heilongjiang Province Key Laboratory of Gout Research,3
Department of Anatomy and Histoembryology,School of Basic Medicine Sciences,Jiamusi University,Jiamusi,Heilongjiang 154007,China
4Department of Pharmacy,The Second Affiliated Hospital of Harbin Medical University,Harbin 150086,China
Corresponding authors:YIN Xianglin Tel:13836655277,E-mail:yinxianglin@jmsu.edu.cn;
BAI Xue Tel:13803660659,E-mail:gbs@jmsu.edu.cn
ABSTRACT:Objective To explore the effect and mechanism of uric acid (UA) in regulating the larval growth and development of Drosophila melanogaster.Methods A total of 1350 newly hatched first-instar larvae of wild-type Drosophila melanogaster (W1118) were collected,and the Drosophila melanogaster model of hyperuricemia was constructed with a high purine diet.The larvae were assigned into three groups (n=150):control (standard corn meal medium),low-dose adenine (corn meal medium containing 0.05% adenine),and high-dose adenine (corn meal medium containing 0.10% adenine),and two parallel groups were set up.The growth and development of larvae in each group was observed,and the UA and hormone levels were measured.In addition,the expression levels of genes involved in growth and development were determined.Results Compared with the control group,the low- and high-dose adenine groups showed elevated UA levels (both Plt;0.001) and prolonged developmental period (P=0.024,Plt;0.001).The high-dose adenine group showed decreased survival rate,pupation rate,and eclosion rate and elevated levels of juvenile hormone (JH) and 20-hydroxyecdysone (20E) (all Plt;0.001).The PCR results showed that compared with the control group,high-dose adenine upregulated the mRNA levels of reactive oxygen species (ROS),forkhead box O (FOXO),and mammalian target of rapamycin (mTOR) while downregulating the mRNA levels of Sestrin,mTOR complex 1(mTORC1),and AMP-activated protein kinase (all Plt;0.001).Conclusion High concentrations of UA may promote the expression of ROS/FOXO/mTORC1/mTOR signaling pathway by regulating the levels of JH and 20E,thereby inhibiting the larval growth and development of Drosophila melanogaster.
Key words:uric acid;Drosophila melanogaster;reactive oxygen species;forkhead box transcription factor;mammalian target of rapamycin complex 1
Acta Acad Med Sin,2024,46(5):653-658
尿酸(uric acid,UA)是人體嘌呤代謝的終產(chǎn)物,當(dāng)嘌呤代謝紊亂時可導(dǎo)致血液中UA水平的異常升高,進而可能誘發(fā)高尿酸血癥,甚至痛風(fēng)的形成。我國高尿酸血癥患病率呈上升趨勢[1-2]。有研究顯示,攝入過多富含嘌呤的食物可以促進胰島素樣生長因子1的表達,進而改善特發(fā)性矮小癥患兒的生長發(fā)育[3],提示UA影響生長發(fā)育可能與胰島素/胰島素樣生長因子1信號通路有關(guān),后者通過激活其下游轉(zhuǎn)錄因子叉頭框O亞型(forkhead box O,F(xiàn)OXO)[4],上調(diào)應(yīng)激誘導(dǎo)蛋白Sestrin的轉(zhuǎn)錄水平,間接激活A(yù)MP活化的蛋白激酶(AMP-activated protein kinase,AMPK),進而抑制哺乳動物雷帕霉素靶蛋白復(fù)合物1(mammalian target of rapamycin complex "mTORC1)的活性,從而減緩衰老過程[5-8]。此外,2型糖尿病合并高尿酸血癥的患者血清中也可觀察到FOXO3a表達量明顯增加[9]。研究發(fā)現(xiàn)血UA增高能夠誘發(fā)代謝紊亂和阻礙胰島素信號傳導(dǎo),進一步激活巨噬細胞中AMPK/mTORC1通路[10]。但目前關(guān)于UA影響生長發(fā)育的具體機制尚不清楚。果蠅一直是動物發(fā)育和遺傳學(xué)以及人類疾病研究的關(guān)鍵模式生物,越來越多的證據(jù)表明,黑腹果蠅能夠被應(yīng)用于研究進化保守的基本細胞機制以及復(fù)雜的人類疾?。?1-12]。因此,本研究通過構(gòu)建高尿酸血癥果蠅模型,觀察UA對果蠅生長發(fā)育以及生長激素含量的影響,進一步探索UA影響生長發(fā)育的具體機制,為高尿酸血癥及相關(guān)疾病的治療和預(yù)防提供理論依據(jù)。
1 材料和方法
1.1 果蠅品系及飼養(yǎng)條件
野生型黑腹果蠅(W1118)由佳木斯大學(xué)公共衛(wèi)生學(xué)院尿酸生理功能研究團隊提供。果蠅均采用標(biāo)準玉米粉培養(yǎng)基飼養(yǎng)。在溫度(25.0±0.5)℃、濕度(40.0±0.5)%、光照周期12 h的培養(yǎng)箱中培養(yǎng)。
1.2 高尿酸血癥果蠅模型的構(gòu)建及分組
將羽化后8 h內(nèi)未交配的野生型雌雄黑腹果蠅轉(zhuǎn)入產(chǎn)卵培養(yǎng)基(瓊脂培養(yǎng)基)上培養(yǎng),收集1350只1齡幼蟲用于后續(xù)實驗。采用高嘌呤飲食構(gòu)建高尿酸血癥果蠅模型,并分為對照組(標(biāo)準玉米粉培養(yǎng)基)、低濃度干預(yù)組(含0.05%腺嘌呤的玉米粉培養(yǎng)基)和高濃度干預(yù)組(含0.10%腺嘌呤的玉米粉培養(yǎng)基),每組150只,另設(shè)2個平行實驗組。本研究通過佳木斯大學(xué)動物倫理委員會批準(倫理審批編號:JMSU-2023120601)。
1.3 果蠅幼蟲發(fā)育情況的測定
每組取100只果蠅卵,觀察果蠅從卵發(fā)育至成蟲所需的時間,每天同一時間記錄各組果蠅的蛹化和羽化情況,并計算蛹化率和羽化率。
1.4 ELISA法檢測果蠅幼蟲UA以及生長發(fā)育激素水平
每組取果蠅3齡幼蟲25只,每1 g幼蟲與9 mL PBS溶液混合,放入玻璃勻漿器中制成組織勻漿,離心后取上清液,采用ELISA試劑盒檢測各組果蠅幼蟲體內(nèi)UA、保幼激素(juvenile hormone,JH)、20-羥基蛻皮甾酮(20-hydroxyecdysone,20E)的水平。
1.5 果蠅幼蟲發(fā)育相關(guān)基因mRNA的檢測
每組取果蠅3齡幼蟲25只,采用Trizol法提取總RNA,將總RNA逆轉(zhuǎn)錄為cDNA進行PCR擴增,測定果蠅幼蟲FOXO、Sestrin、AMPK、mTORC1、活性氧(reactive oxygen species,ROS)、mTOR mRNA的表達水平,以rp49作為內(nèi)參基因,表達水平以目的基因和內(nèi)參基因的光密度比值表示。PCR引物序列見表1。
1.6 統(tǒng)計學(xué)處理
采用SPSS 29.0軟件,符合正態(tài)分布的計量資料以均數(shù)±標(biāo)準差表示,組間比較采用單因素方差分析,兩兩比較采用SNK-q檢驗。計數(shù)資料以率表示,組間比較采用卡方檢驗或卡方連續(xù)校正檢驗。P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 UA表達水平比較
低濃度干預(yù)組和高濃度干預(yù)組果蠅體內(nèi)UA水平顯著高于對照組[(235.71±4.29)μmol/L比(190.19±3.67)μmol/L,Plt;0.001和(247.12±2.04)μmol/L比(190.19±3.67)μmol/L,Plt;0.001],且高濃度干預(yù)組果蠅體內(nèi)UA水平顯著高于低濃度干預(yù)組(P=0.007)。
2.2 UA對果蠅幼蟲發(fā)育情況的影響
與對照組比較,高濃度干預(yù)組果蠅幼蟲的生存率顯著下降(Plt;0.001),而低濃度干預(yù)組與對照組生存率差異無統(tǒng)計學(xué)意義(P=0.981)。低濃度干預(yù)組和高濃度干預(yù)組果蠅幼蟲發(fā)育時間顯著長于對照組[(10.61±1.01)d比(10.21±1.06)d,P=0.024和(14.71±1.86)d比(10.21±1.06)d,Plt;0.001]。與對照組比較,高濃度干預(yù)組果蠅幼蟲的蛹化率及羽化率均顯著降低(P均lt;0.001),而低濃度干預(yù)組與對照組的蛹化率及羽化率差異無統(tǒng)計學(xué)意義(P=0.11 P=0.293)。
2.3 UA對果蠅幼蟲發(fā)育激素水平的影響
與對照組比較,低濃度干預(yù)組和高濃度干預(yù)組果蠅幼蟲體內(nèi)的JH水平顯著增高(P=0.005,Plt;0.001),而低濃度干預(yù)組20E水平顯著降低(Plt;0.001),高濃度干預(yù)組20E水平顯著增高(Plt;0.001)(圖1)。
2.4 UA對果蠅幼蟲發(fā)育相關(guān)基因表達水平的影響
低濃度干預(yù)組果蠅幼蟲體內(nèi)ROS、 FOXO、mTOR mRNA表達量顯著高于對照組(Plt;0.00 Plt;0.00 P=0.022),應(yīng)激誘導(dǎo)蛋白Sestrin、mTORC1 mRNA表達量顯著低于對照組(P均lt;0.001),AMPK mRNA表達量與對照組比較差異無統(tǒng)計學(xué)意義(P=0.136)。高濃度干預(yù)組果蠅幼蟲體內(nèi)ROS、 FOXO、mTOR mRNA表達量顯著高于對照組(P均lt;0.001),應(yīng)激誘導(dǎo)蛋白Sestrin、AMPK、mTORC1 mRNA表達量顯著低于對照組(P均lt;0.001)(圖2)。
3 討論
如何延緩衰老一直是人類積極探索的問題,現(xiàn)有研究顯示,ROS信號傳導(dǎo)途徑調(diào)節(jié)年齡依賴性細胞損傷,引起細胞老化[13-14]。UA本身在化學(xué)上被表征為抗氧化劑,在生理濃度下,UA能夠抑制ROS的累積。同時,UA能夠激活NADPH氧化酶并產(chǎn)生ROS,高濃度UA能夠?qū)е戮€粒體損傷和ROS的增加[15-16]。因此,探究UA與衰老之間的內(nèi)在聯(lián)系及其潛在的分子機制對于進一步理解UA與生長發(fā)育的關(guān)系至關(guān)重要。
UA在果蠅生長發(fā)育過程中起到重要的作用。蘭榕榆等[17]研究顯示UA能明顯誘導(dǎo)果蠅體內(nèi)氧化-抗氧化系統(tǒng)失衡,其可能是通過誘發(fā)氧化應(yīng)激進而影響果蠅的生長發(fā)育。氧化應(yīng)激是體內(nèi)自由基產(chǎn)生的一種負面作用,ROS已被證實可以誘導(dǎo)不同類型的細胞衰老[18-19],但其潛在機制尚不清楚。本研究通過構(gòu)建高尿酸血癥果蠅模型,發(fā)現(xiàn)高濃度UA能夠明顯抑制果蠅幼蟲的生長發(fā)育,降低其蛹化率和羽化率,并顯著升高20E和JH水平,提示UA可能通過影響果蠅體內(nèi)兩種主要親脂性激素JH與20E的相互作用調(diào)控幼蟲的生長發(fā)育[20-22]。進一步研究顯示UA能夠明顯上調(diào)ROS、FOXO、mTOR和下調(diào)mTORC1的表達。UA通過調(diào)節(jié)ROS的表達水平,影響轉(zhuǎn)錄因子及相關(guān)激酶,誘導(dǎo)細胞周期進入停滯狀態(tài)[23-25]。而ROS可以調(diào)節(jié)衰老過程關(guān)鍵因子FOXO的活性,并通過Sestrin間接抑制mTORC1表達[26-28],進而延長果蠅幼蟲發(fā)育至成蟲的時間。有研究報道,F(xiàn)OXO能夠誘導(dǎo)Sestrin表達升高,提高AMPK活性,從而抑制mTORC1信號傳導(dǎo)的能力[10,29-31]。但本研究結(jié)果顯示,Sestrin和AMPK均與FOXO的表達量成反比,與mTORC1的表達量成正比。在果糖干預(yù)下,UA能夠抑制AMPK活性,導(dǎo)致核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體3炎癥小體的激活和白細胞介素1β的產(chǎn)生,在加入別嘌呤醇后AMPK被重新激活[32-34]。但UA也可能通過誘導(dǎo)ROS產(chǎn)生激活A(yù)MPK[35-36]。
綜上,本研究結(jié)果表明,高濃度UA能夠促進果蠅體內(nèi)JH、20E的表達,通過激活ROS上調(diào)FOXO表達,從而對mTORC1和mTOR等基因表達產(chǎn)生影響,最終導(dǎo)致果蠅幼蟲的發(fā)育延遲。本研究為臨床治療高尿酸血癥提供一定的理論支撐,但UA調(diào)控AMPK參與代謝過程中的具體機制還需更加深入的研究。
利益沖突 所有作者聲明無利益沖突
作者貢獻聲明 張睿迪:研究設(shè)計、實施實驗、論文撰寫;邱洪斌:實驗評估、實施實驗;王景濤:數(shù)據(jù)收集、數(shù)據(jù)處理;關(guān)寶生:研究選題、論文修改;白雪、尹相林:研究設(shè)計、論文定稿
參 考 文 獻
[1]Liu R,Han C,Wu D,et al.Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014:a systematic review and meta-analysis[J].Biomed Res Int,2015,2015:762820.DOI:10.1155/2015/762820.
[2]Li Y,Shen Z,Zhu B,et al.Demographic,regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019:a systematic review and mela-analysis[J].Clob Health Action,202 14(1):1874652.DOI:10.1080/16549716.2021.1874652.
[3]Panpan W,Baolan J,Qian S,et al.Association between insulin-like growth factor-1 and uric acid in Chinese children and adolescents with idiopathic short stature:a cross-sectional study[J].BioMed Res Int,2018,2018:4259098.DOI:10.1155/2018/4259098.
[4]Wan QL,F(xiàn)u X,Dai W,et al.Uric acid induces stress resistance and extends the life span through activating the stress response factor DAF-16/FOXO and SKN-1/NRF2[J].Aging (Albany NY),2020,12(3):2840-2856.DOI:10.18632/aging.102781.
[5]Lee JH,Budanov AV,Park EJ,et al.Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies[J].Science,2010,327(5970):1223-1228.DOI:10.1126/science.1182228.
[6]Peeters H,Debeer P,Bairoch A,et al.PA26 is a candidate gene for heterotaxia in humans:identification of a novel PA26-related gene family in human and mouse[J].Hum Genet,200 112(5-6):573-580.DOI:10.1007/s00439-003-0917-5.
[7]Budanov AV,Sablina AA,F(xiàn)einstein E,et al.Regeneration of peroxiredoxins by p53-regulated sestrins,homologs of bacterial AhpD[J].Science,2004,304(5670):596-600.DOI:10.1126/science.1095569.
[8]Budanov AV,Karin M.p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J].Cell,2008,134:451-460.DOI:10.1016/j.cell.2008.06.028.
[9]桑艷紅,饒小娟,焦培林.血清FOXO3a和IGF-1R表達水平與2型糖尿病并發(fā)高尿酸血癥的相關(guān)性[J].熱帶醫(yī)學(xué)雜志,202 22(5):652-655.DOI:10.3969/j.issn.1672-3619.2022.05.012.
[10]Zhao H,Lu J,He F,et al.Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway via IRS2-proteasome degradation[J].Front Immunol,202 13:931087.DOI:10.3389/fimmu.2022.931087.
[11]Arora S,Ligoxygakis P.Beyond host defense:deregulation of drosophila immunity and age-dependent neurodegeneration[J].Front Immunol,2020,11:1574.DOI:10.3389/fimmu.2020.01574.
[12]Vesala L,Hultmark D,Valanne S.Editorial:recent advance in drosophila cellular and humoral innate immunity[J].Front Immunol,2020,11:598618.DOI:10.3389/fimmu.2020.598618.
[13]Bouzid MA,F(xiàn)ilaire E,McCall A,et al.Radical oxygen species,exercise and aging:an update[J].Sports Med,2015,45(9):1245-1261.DOI:10.1007/s40279-015-0348-1.
[14]Kwon MJ,Lee KY,Lee HW,et al.SOD3 variant,R213G,altered SOD3 function,leading to ROS-mediated inflammation and damage in multiple organs of premature aging mice[J].Antioxid Redox Signal,2015,23(12):985-999.DOI:10.1089/ars.2014.6035.
[15]Sautin YY,Nakagawa T,Zharikov S,et al.Adverse effects of the classic antioxidant uric acid in adipocytes:NADPH oxidase-mediated oxidative/nitrosative stress[J].Am J Physiol Cell Physiol,2007,293(2):C584-C596.DOI:10.1152/ajpcell.00600.2006.
[16]Sánchez-Lozada LG,Lanaspa MA,Cristóbal-García M,et al.Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations[J].Nephron Exp Nephrol,201 121(3-4):e71-e78.DOI:10.1159/000345509.
[17]蘭榕榆,白雪,王景濤,等.尿酸對果蠅生長發(fā)育及壽命等的影響及機制[J].中國病理生理雜志,202 38(11):2038-2045.DOI:10.3969/j.issn.1000-4718.2022.11.015.
[18]Li Y,Lu J,Cao X,et al.A newly synthesized rhamnoside derivative alleviates alzheimer’s amyloid-beta-induced oxidative stress,mitochondrial dysfunction,and cell senescence through upregulating SIRT3[J].Oxid Med Cell Longev,2020,2020:7698560.DOI:10.1155/2020/7698560.
[19]Wang J,Zheng B,Yang S,et al.Olmesartan prevents oligomerized amyloid beta (abeta)-induced cellular senescence in neuronal cells[J].ACS Chem Neurosci,202 12(7):1162-1169.DOI:10.1021/acschemneuro.0c00775.
[20]Kozlova T,Thummel CS.Spatial patterns of ecdysteroid receptor activation during the onset of drosophila metamorphosis[J].Development,200 129(7):1739-1750.DOI:10.1242/dev.129.7.1739.
[21]Jindra M,Palli SR,Riddiford LM.The juvenile hormone signaling pathway in insect development[J].Annu Rev Entomol,201 58:181-204.DOI:10.1146/annurev-ento-120811-153700.
[22]Mitchell NC,Lin JI,Zaytseva O,et al.The ecdysone receptor constrains wingless expression to pattern cell cycle across the drosophila wing margin in a cyclin B-dependent manner[J].BMC Dev Biol,201 13:28.DOI:10.1186/1471-213X-13-28.
[23]Lim JM,Lee KS,Woo HA,et al.Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression[J].J Cell Biol,2015,210(1):23-33.DOI:10.1083/jcb.201412068.
[24]Fong CS,Temple MD,Alic N,et al.Oxidant-induced cell-cycle delay in saccharomyces cerevisiae:the involvement of the SWI6 transcription factor[J].FEMS Yeast Res,2008,8(3):386-399.DOI:10.1111/j.1567-1364.2007.00349.x.
[25]Owusu-Ansah E,Yavari A,Mandal S,et al.Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint[J].Nat Genet,2008,40(3):356-361.DOI:10.1038/ng.2007.50.
[26]Ding R,Wang X,Chen W,et al.WX20120108,a novel IAP antagonist,induces tumor cell autophagy via activating ROS-FOXO pathway[J].Acta Pharmacol Sin,2019,40(11):1466-1479.DOI:10.1038/s41401-019-0253-5.
[27]Toshniwal AG,Gupta S,Mandal L,et al.ROS Inhibits cell growth by regulating 4EBP and S6K,independent of TOR,during development[J].Dev Cell,2019,49(3):473-489.e9.DOI:10.1016/j.devcel.2019.04.008.
[28]Chen CC,Jeon SM,Bhaskar PT,et al.FOXOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor[J].Dev Cell,2010,18(4):592-604.DOI:10.1016/j.devcel.2010.03.008.
[29]Hay N.Interplay between FOXO,TOR,and Akt[J].Biochim Biophys Acta,201 1813(11):1965-1970.DOI:10.1016/j.bbamcr.2011.03.013.
[30]Rhee SG,Bae SH.The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1[J].Free Radic Biol Med,2015,88(Pt B):205-211.DOI:10.1016/j.freeradbiomed.2015.06.007.
[31]Budanov AV,Lee JH,Karin M.Stressin’ sestrins take an aging fight[J].EMBO Mol Med,2010,2(10):388-400.DOI:10.1002/emmm.201000097.
[32]Lanaspa MA,Cicerchi C,Garcia G,et al.Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver[J].PLoS One,201 7(11):e48801.DOI:10.1371/journal.pone.0048801.
[33]Kimura Y,Yanagida T,Onda A,et al.Soluble uric acid promotes atherosclerosis via AMPK (AMP-activated protein kinase)-mediated inflammation[J].Arterioscler Thromb Vasc Biol,2020,40(3):570-582.DOI:10.1161/ATVBAHA.119.313224.
[34]García-Arroyo FE,Monroy-Sánchez F,Muoz-Jiménez I,et al.Allopurinol prevents the lipogenic response induced by an acute oral fructose challenge in short-term fructose fed rats[J].Biomolecules,2019,9(10):601.DOI:10.3390/biom9100601.
[35]Zhang Y,Yamamoto T,Hisatome I,et al.Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells[J].Mol Cell Endocrinol,201 375(1-2):89-96.DOI:10.1016/j.mce.2013.04.027.
[36]Luo C,Lian X,Hong L,et al.High uric acid activates the ROS-AMPK pathway,impairs CD68 expression and inhibits OxLDL-induced foam-cell formation in a human monocytic cell line,THP-1[J].Cell Physiol Biochem,2016,40(3-4):538-548.DOI:10.1159/000452567.
(收稿日期:2024-01-22)