【摘 要】硫酸軟骨素蛋白多糖(chondroitin sulfate proteoglycans,CSPGs)是中樞神經(jīng)系統(tǒng)細(xì)胞外基質(zhì)的組成部分,在中樞神經(jīng)系統(tǒng)發(fā)育、正常維持及病理過(guò)程中都發(fā)揮著關(guān)鍵的作用。脊髓損傷后,損傷部位CSPGs的表達(dá)明顯上調(diào),這主要源于病變部位活化的星形膠質(zhì)細(xì)胞。CSPGs的上調(diào)會(huì)限制脊髓損傷部位的軸突再生、傳導(dǎo)和再髓鞘化,并且可以促進(jìn)脊髓損傷中的炎癥反應(yīng),不利于脊髓損傷后神經(jīng)功能恢復(fù)。因此,抑制CSPGs可能是促進(jìn)脊髓損傷后軸突再生和功能恢復(fù)的有效治療方法。本文對(duì)CSPGs在脊髓損傷中的研究現(xiàn)狀進(jìn)行綜述。
【關(guān)鍵詞】硫酸軟骨素蛋白多糖;脊髓損傷;糖胺聚糖;神經(jīng)修復(fù)
【中圖分類號(hào)】R651.2 【文獻(xiàn)標(biāo)志碼】A 【收稿日期】2023-09-20
脊髓損傷(spinal cord injury,SCI)是由創(chuàng)傷或非創(chuàng)傷致病因素導(dǎo)致的脊髓結(jié)構(gòu)與功能的破壞,而促進(jìn)神經(jīng)組織再生和恢復(fù)神經(jīng)元連接仍是現(xiàn)代醫(yī)學(xué)面臨的最大挑戰(zhàn)之一[1]。SCI后病變部位出現(xiàn)血管破壞和缺血,引發(fā)神經(jīng)膠質(zhì)細(xì)胞活化、神經(jīng)炎癥和氧化應(yīng)激,這些急性期變化導(dǎo)致細(xì)胞死亡、軸突損傷、基質(zhì)重塑和膠質(zhì)瘢痕的形成[2]。損傷脊髓中的多種細(xì)胞共同作用形成膠質(zhì)瘢痕,包括激活的星形膠質(zhì)細(xì)胞、少突膠質(zhì)前體細(xì)胞、小膠質(zhì)細(xì)胞、成纖維細(xì)胞和周細(xì)胞,膠質(zhì)瘢痕可以限制神經(jīng)炎癥向鄰近脊髓組織擴(kuò)散;同時(shí),神經(jīng)膠質(zhì)瘢痕中的反應(yīng)性星形膠質(zhì)細(xì)胞和其他細(xì)胞都會(huì)上調(diào)硫酸軟骨素蛋白多糖(chondroitin sulfate proteoglycans,CSPGs)的表達(dá)[3-4]。在SCI的亞急性和慢性階段,成熟的膠質(zhì)瘢痕和上調(diào)的CSPGs成為抑制軸突再生和細(xì)胞分化的因素[5]。神經(jīng)膠質(zhì)瘢痕是阻礙脊髓損傷修復(fù)的物理屏障和化學(xué)屏障,其抑制性主要?dú)w因于高濃度的抑制蛋白,包括CSPGs和髓鞘蛋白,限制軸突再生和運(yùn)動(dòng)感覺(jué)功能的恢復(fù)[6-7]。因此,SCI修復(fù)愈合的策略之一是降低CSPGs的抑制作用。目前已有眾多關(guān)于CSPGs在SCI病理生理及治療中的研究報(bào)道,本文對(duì)其最新研究進(jìn)展進(jìn)行綜述。
1 CSPGs的組成及其在中樞神經(jīng)系統(tǒng)中的作用
1.1 CSPGs家族
蛋白聚糖是細(xì)胞外基質(zhì)的主要組分之一,由核心蛋白和糖胺聚糖(glycosaminoglycan,GAG)共價(jià)結(jié)合形成。存在于人體內(nèi)的GAG包括透明質(zhì)酸、硫酸軟骨素、硫酸皮膚素、硫酸角質(zhì)、肝素和硫酸肝素,GAG鏈多是由氨基己糖和己糖醛酸構(gòu)成的雙糖單位重復(fù)連接形成,軟骨素磺基轉(zhuǎn)移酶可將硫酸鹽添加到GAG鏈的特定位置,GAG的硫酸化增加了蛋白聚糖的結(jié)構(gòu)復(fù)雜性[8]。GAG鏈通過(guò)糖苷鍵連接到核心蛋白上形成蛋白聚糖,硫酸軟骨素以O(shè)-糖苷鍵與蛋白質(zhì)鏈上絲氨酸殘基結(jié)合形成CSPGs。CSPGs家族主要包括lecticans、富含亮氨酸的小蛋白聚糖(small leucine-rich proteoglycans,SLRPs)、磷酸酶蛋白聚糖(phosphacan)和神經(jīng)膠質(zhì)抗原2(neuron-glial antigen 2,NG2)[6]。Lecticans 家族包括聚集蛋白聚糖(aggrecan)、短蛋白聚糖(brevican)、神經(jīng)蛋白聚糖(neurocan)和多能聚糖(versican),它們的結(jié)構(gòu)相似,N端為透明質(zhì)酸結(jié)合結(jié)構(gòu)域,C端為球狀結(jié)構(gòu)域,可與其他基質(zhì)蛋白結(jié)合[9-10]。在中樞神經(jīng)系統(tǒng)細(xì)胞外基質(zhì)中,aggrecan通過(guò)與連接蛋白和肌腱蛋白相互作用,將透明質(zhì)酸結(jié)合到細(xì)胞表面[11]。brevican和neurocan是中樞神經(jīng)系統(tǒng)中含量最豐富的CSPGs,brevican是細(xì)胞外基質(zhì)中神經(jīng)元周圍網(wǎng)(perineuronalnets,PNN)的關(guān)鍵成分,神經(jīng)膠質(zhì)細(xì)胞和神經(jīng)元都會(huì)分泌brevican,其在突觸的穩(wěn)定和控制突觸活動(dòng)方面發(fā)揮著重要作用[12]。neurocan在胚胎發(fā)育過(guò)程中高表達(dá),并在神經(jīng)細(xì)胞遷移、神經(jīng)元突起生長(zhǎng)和調(diào)節(jié)突觸可塑性等過(guò)程中發(fā)揮作用[13]。versican作為結(jié)構(gòu)大分子,分布于成人體內(nèi)的上皮組織、疏松結(jié)締組織、軟骨膜、平滑肌細(xì)胞和神經(jīng)組織中,在發(fā)育過(guò)程中以及炎癥等病理?xiàng)l件下versican會(huì)瞬時(shí)高水平表達(dá),炎癥早期階段,versican在活化的成纖維細(xì)胞、內(nèi)皮細(xì)胞和浸潤(rùn)的巨噬細(xì)胞中表達(dá),versican可能通過(guò)與透明質(zhì)酸結(jié)合或介導(dǎo)細(xì)胞因子的信號(hào)傳導(dǎo)來(lái)調(diào)節(jié)炎癥[14]。NG2和phos?phacan不同于lecticans的結(jié)構(gòu),phosphacan是受體型酪氨酸磷酸酶β的胞外結(jié)構(gòu)域;NG2是一種跨膜CSPGs,在人類中也稱為CSPG4,主要由少突膠質(zhì)前體細(xì)胞、小膠質(zhì)細(xì)胞、巨噬細(xì)胞和周細(xì)胞表達(dá),星形膠質(zhì)細(xì)胞不表達(dá)[9]。增殖的NG2陽(yáng)性周細(xì)胞參與SCI病灶區(qū)域血管生成和纖維化瘢痕形成,NG2 膠質(zhì)細(xì)胞在SCI 后也會(huì)增殖,并在膠質(zhì)瘢痕中大量聚集[15]。SLRPs的核心蛋白由富含亮氨酸的重復(fù)序列組成,廣泛存在于細(xì)胞外基質(zhì)中,研究認(rèn)為SLRP通過(guò)改變組織力學(xué)和結(jié)構(gòu)來(lái)阻止軸突再生,并確定 SLRP富集是人類大腦和脊髓病變的一個(gè)特征[16]。
1.2 CSPGs在中樞神經(jīng)系統(tǒng)中的作用
CSPGs是中樞神經(jīng)系統(tǒng)細(xì)胞外基質(zhì)的組成部分,在大腦和脊髓的發(fā)育和正常生理過(guò)程中起著重要作用。CSPGs的核心蛋白對(duì)其生物活性方面的影響較小,而附著在核心蛋白上的GAG則是其主要功能成分[17-18]。PNN是環(huán)繞在許多神經(jīng)元細(xì)胞體周圍并隨樹(shù)突延伸的網(wǎng)狀結(jié)構(gòu),是一種獨(dú)特的細(xì)胞外基質(zhì)結(jié)構(gòu),在神經(jīng)發(fā)育、突觸發(fā)生和調(diào)控神經(jīng)系統(tǒng)可塑性方面發(fā)揮著關(guān)鍵作用,CSPGs 參與形成PNN,CSPGs 和PNN調(diào)節(jié)出生后神經(jīng)發(fā)育中關(guān)鍵期的開(kāi)啟和關(guān)閉[19]。研究發(fā)現(xiàn),降解CSPGs破壞了PNN的結(jié)構(gòu),導(dǎo)致視覺(jué)皮層發(fā)育的關(guān)鍵期重新開(kāi)啟并激活神經(jīng)可塑性[20]。進(jìn)一步研究發(fā)現(xiàn),關(guān)鍵期的關(guān)閉與PNN的形成及CSPGs的硫酸化模式有關(guān),表現(xiàn)為關(guān)閉時(shí)4-硫酸軟骨素與6-硫酸軟骨素的比率增加[21]。在整個(gè)大腦發(fā)育過(guò)程中,CSPGs的表達(dá)水平逐漸降低,當(dāng)中樞神經(jīng)系統(tǒng)受到嚴(yán)重?fù)p傷后其表達(dá)量開(kāi)始上調(diào)[7]。CSPGs和硫酸肝素蛋白多糖(heparan sulfate proteoglycans,HSPGs)的GAG鏈都可以與軸突生長(zhǎng)錐上的受體蛋白酪氨酸磷酸酶σ(receptor protein tyrosine phosphataseσ,RPTPσ)結(jié)合,HSPGs促進(jìn)軸突生長(zhǎng),而CSPGs抑制軸突生長(zhǎng)[22]。CSPGs和其他蛋白多糖的適當(dāng)平衡是神經(jīng)元發(fā)育的關(guān)鍵。此外,CSPGs的表達(dá)對(duì)中樞神經(jīng)系統(tǒng)的神經(jīng)元遷移和突觸穩(wěn)定具有重要作用。在大腦發(fā)育中,neurocan、versican和phosphacan在紋狀體、邊緣區(qū)等部位大量表達(dá),調(diào)節(jié)興奮性和抑制性神經(jīng)元的遷移,并且發(fā)現(xiàn),編碼核心蛋白和GAG合成及修飾酶的基因與多種精神和智力障礙有關(guān),導(dǎo)致發(fā)病的原因可能涉及神經(jīng)元遷移缺陷[23]。對(duì)基因敲除突變小鼠進(jìn)行研究,這種小鼠突變體缺乏四種細(xì)胞外基質(zhì)成分brevican、neurocan 以及糖蛋白tenascin-C 和tenascin-R,使用共培養(yǎng)系統(tǒng)培養(yǎng)原代胚胎海馬神經(jīng)元和星形膠質(zhì)細(xì)胞,在突變星形膠質(zhì)細(xì)胞存在的條件下培養(yǎng)神經(jīng)元兩周后顯示出突觸數(shù)量增加,而經(jīng)過(guò)3周或更長(zhǎng)時(shí)間后,突觸的形成和穩(wěn)定均受到影響[24]。
CSPGs參與中樞神經(jīng)系統(tǒng)的病理過(guò)程。中樞神經(jīng)系統(tǒng)損傷后,受損部位形成膠質(zhì)瘢痕,神經(jīng)膠質(zhì)瘢痕邊界的形成可以隔離神經(jīng)損傷,并分泌大量CSPGs、膠原和致密的細(xì)胞外基質(zhì),這有利于保護(hù)周圍的正常組織,但不利于神經(jīng)組織再生[3,25]。Snow DM等[26]首次觀察到條帶試驗(yàn)中小雞胚胎背根節(jié)神經(jīng)元優(yōu)先在層粘連蛋白條帶上生長(zhǎng),而避開(kāi)含有CSPGs的條帶。這說(shuō)明CSPGs能有效地抑制軸突再生。此外,CSPGs通過(guò)限制少突膠質(zhì)前體細(xì)胞的成熟,并促使神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞轉(zhuǎn)變,從而阻止少突膠質(zhì)細(xì)胞的成熟和再髓鞘化過(guò)程[6,27]。CSPGs和PNN的異常與神經(jīng)退行性疾病的病理相關(guān)。在阿爾茨海默病的研究中發(fā)現(xiàn),PNN包裹的神經(jīng)元避免了神經(jīng)纖維纏結(jié),其對(duì)神經(jīng)元具有保護(hù)作用[28]。CSPGs是PNN的組成部分,對(duì)調(diào)節(jié)其神經(jīng)保護(hù)功能至關(guān)重要,阻斷抑制性CSPGs可改善阿爾茨海默病小鼠模型的物體識(shí)別能力[29]。此外,相關(guān)研究表明CSPGs與雙相情感障礙、精神分裂癥、孤獨(dú)癥、抑郁、焦慮和癲癇等疾病有關(guān)[30]。
2 CSPGs在SCI中的表達(dá)及作用
2.1 CSPGs在SCI后表達(dá)上調(diào)
SCI 后24 h 內(nèi)病灶處CSPGs 的表達(dá)開(kāi)始上調(diào),上調(diào)的CSPGs 包括neurocan、brevican、versican 和NG2,于2 周后達(dá)到峰值并長(zhǎng)期保持上調(diào)水平,不同類型的細(xì)胞會(huì)表達(dá)不同的CSPGs[9,31]。SCI 局部和損傷區(qū)域遠(yuǎn)端的NG2 和lecticans 表達(dá)均增加,脊髓損傷區(qū)域遠(yuǎn)端的組織學(xué)變化不明顯,但細(xì)胞外蛋白聚糖發(fā)生明顯變化,甚至持續(xù)至SCI后30 d[32]。病變周圍特定CSPGs的分布各不相同,neurocan和brevican在病灶附近表達(dá),而phosphacan 和versican 則在較遠(yuǎn)的地方表達(dá)[5,33]。抑制性CSPGs主要由損傷組織中的星形膠質(zhì)細(xì)胞大量合成,并沉積在細(xì)胞外基質(zhì)中[31]。SCI后,病變周圍的星形膠質(zhì)細(xì)胞出現(xiàn)反應(yīng),表現(xiàn)為細(xì)胞肥大、突起延長(zhǎng)和膠質(zhì)纖維酸性蛋白表達(dá)增加,在損傷后1周表現(xiàn)出反應(yīng)性星形膠質(zhì)細(xì)胞(reactive astrocytes,RAs)的典型形態(tài);在損傷后2周,損傷區(qū)周圍的星形膠質(zhì)細(xì)胞轉(zhuǎn)化為瘢痕形成星形膠質(zhì)細(xì)胞(scar-forming astrocytes,SAs),并參與形成膠質(zhì)瘢痕[34]。研究表明,SAs 中的CSPGs 相關(guān)基因Xylt1、Csgalanact1、Pcan和 Slit2的表達(dá)量明顯高于幼稚星形膠質(zhì)細(xì)胞和RAs,而與損傷后2周的SAs相比,損傷后12周的慢性期星形膠質(zhì)細(xì)胞中的Csgalanact1和Pcan的表達(dá)明顯降低[35-36]。因此,損傷后12周時(shí)CSPGs的表達(dá)相對(duì)較低。創(chuàng)傷性SCI后受損部位血管破壞和出血會(huì)使瘢痕形成細(xì)胞暴露于血漿中的因子,如纖維蛋白原。Schachtrup C 等[37] 研究發(fā)現(xiàn)纖維蛋白原通過(guò)TGFβ/Smad2信號(hào)通路誘導(dǎo)星形膠質(zhì)細(xì)胞表達(dá)CSPGs。Su?sarla BT等[18]的研究發(fā)現(xiàn)TGF-β誘導(dǎo)星形膠質(zhì)細(xì)胞中CSPGs的表達(dá)是依賴Smad 的,不同類別CSPGs 的合成機(jī)制對(duì)Smad2和Smad3的依賴性不同。而另1項(xiàng)研究發(fā)現(xiàn),TGFβ通過(guò)不依賴Smad的途徑誘導(dǎo)星形膠質(zhì)細(xì)胞產(chǎn)生CSPGs,使用siRNA敲除Smad2或Smad4基因后CSPGs的表達(dá)明顯上調(diào),CSPGs 的上調(diào)是由PI3K/Akt/mTOR 軸介導(dǎo)的[38]。還需要進(jìn)一步的研究來(lái)驗(yàn)證SCI后誘導(dǎo)星形膠質(zhì)細(xì)胞合成CSPGs的具體機(jī)制。
2.2 CSPGs抑制SCI后的功能恢復(fù)
SCI后,CSPGs可以特異性地抑制神經(jīng)元的突起生長(zhǎng),同時(shí)抑制軸突傳導(dǎo)和再髓鞘化過(guò)程,并可以促進(jìn)SCI后的炎癥反應(yīng),從而對(duì)神經(jīng)功能恢復(fù)產(chǎn)生不利影響。Petrosyan HA等[39]研究發(fā)現(xiàn),長(zhǎng)期輸注NG2單克隆抗體可以改善SCI大鼠的軸突傳導(dǎo)性和興奮性,增加脊髓血清素軸突密度,改善運(yùn)動(dòng)功能,并發(fā)現(xiàn)NG2可以通過(guò)調(diào)節(jié)Na+通道直接阻止軸突傳導(dǎo)。SCI后,成熟的少突膠質(zhì)細(xì)胞大量死亡,少突膠質(zhì)細(xì)胞的再生可以保護(hù)軸突的完整性和促進(jìn)損傷脊髓白質(zhì)修復(fù),而 CSPGs可直接誘導(dǎo)神經(jīng)干細(xì)胞和少突膠質(zhì)細(xì)胞祖細(xì)胞凋亡,并抑制神經(jīng)干細(xì)胞和少突膠質(zhì)前體細(xì)胞分化、成熟和髓鞘化的能力[40]。研究發(fā)現(xiàn),從神經(jīng)干細(xì)胞衍生的少突膠質(zhì)細(xì)胞中去除GAG可加速其形態(tài)成熟[41]。
CSPGs參與調(diào)節(jié)SCI中的免疫反應(yīng),并通過(guò)促進(jìn)SCI中的炎癥反應(yīng)來(lái)限制內(nèi)源性修復(fù)[42]。CSPGs整合來(lái)自微環(huán)境的信號(hào)并激活免疫細(xì)胞,通過(guò)結(jié)合toll樣受體、選擇素、CD44和β1整合素等免疫受體促進(jìn)炎癥反應(yīng),還能結(jié)合免疫細(xì)胞的信號(hào)分子并激活基質(zhì)降解酶[8]。Rolls A 等[43]發(fā)現(xiàn)SCI 后CSPGs參與調(diào)節(jié)巨噬細(xì)胞/小膠質(zhì)細(xì)胞的活化和在病變部位的空間定位,并發(fā)現(xiàn)損傷后立即抑制CSPGs的形成會(huì)促進(jìn)炎癥反應(yīng),損傷2 d后處理CSPGs則有利于功能恢復(fù)。在早期階段,CSPG激活小膠質(zhì)細(xì)胞和巨噬細(xì)胞,并可能通過(guò)建立膠質(zhì)瘢痕屏障來(lái)限制損傷部位的擴(kuò)大,這似乎對(duì)SCI修復(fù)是有利的,而在慢性階段或當(dāng)CSPG高表達(dá)時(shí),則會(huì)抑制軸突再生。最近1項(xiàng)研究表明,脊髓損傷部位的CSPGs通過(guò)TLR4介導(dǎo)在免疫反應(yīng)的多個(gè)階段發(fā)揮著關(guān)鍵作用,其激活固有免疫細(xì)胞進(jìn)入促炎狀態(tài),并促進(jìn)適應(yīng)性免疫細(xì)胞的浸潤(rùn),還會(huì)阻止M1型免疫細(xì)胞向M2轉(zhuǎn)化,使炎癥持續(xù)存在[44]。
2.3 參與介導(dǎo)CSPGs作用的受體
研究發(fā)現(xiàn),CSPGs的糖胺聚糖殘基可以與多種神經(jīng)發(fā)育抑制性受體相互作用,如Nogo受體家族成員NgR1和NgR3、RPTPσ 和白細(xì)胞共同抗原相關(guān)磷酸酶受體(leukocyte com?mon antigen-related phosphatase receptor,LAR),CSPGs 與這些受體作用可以抑制軸突再生[45-46]。SCI后,當(dāng)神經(jīng)元生長(zhǎng)錐與CSPGs等抑制性分子接觸時(shí),相應(yīng)的抑制性受體會(huì)被激活,從而啟動(dòng)與細(xì)胞骨架動(dòng)力學(xué)有關(guān)的下游信號(hào)通路。目前關(guān)于RhoA/ROCK通路的研究比較深入。Rho蛋白家族是一組GTP結(jié)合蛋白,相對(duì)分子量約為20~30 kD,在調(diào)節(jié)神經(jīng)元生長(zhǎng)錐、神經(jīng)元突起和神經(jīng)元發(fā)育方面發(fā)揮重要作用[47]。SCI后RhoA的表達(dá)明顯增加,RhoA/ROCK激活時(shí)通過(guò)阻止微管招募,促進(jìn)生長(zhǎng)錐中纖維狀肌動(dòng)蛋白解體,從而阻礙軸突的伸長(zhǎng),最終導(dǎo)致生長(zhǎng)錐塌陷[48-49]。另有研究發(fā)現(xiàn),CSPG作用于RPTPσ和LAR不僅可以激活RhoA/ROCK信號(hào),同時(shí)使Akt和Erk通路失活,并且2種受體在上述信號(hào)通路的下游采取不同途徑,以實(shí)現(xiàn)CSPGs對(duì)軸突生長(zhǎng)的抑制作用[50]。LAR和RPTPσ參與介導(dǎo)CSPGs對(duì)神經(jīng)干細(xì)胞、少突膠質(zhì)前體細(xì)胞和神經(jīng)元等多種細(xì)胞類型的作用,對(duì)這些受體進(jìn)行抑制處理可以限制CSPGs的影響[4]。
3 CSPGs在SCI治療中的作用
SCI后,損傷微環(huán)境中CSPGs的沉積是阻礙神經(jīng)修復(fù)的重要因素,其也成為SCI治療的重要靶點(diǎn)。通過(guò)酶解GAG鏈清除CSPGs,減少CSPGs的合成和阻斷CSPGs受體,都會(huì)在不同實(shí)驗(yàn)條件下引起軸突再生和再髓鞘化,有利于SCI后的修復(fù)。SCI是一個(gè)漸進(jìn)而復(fù)雜的病理過(guò)程,涉及多種細(xì)胞類型、細(xì)胞反應(yīng)和生物過(guò)程,目前的一些研究采用多種策略相結(jié)合以減輕CSPGs的抑制作用,從而增強(qiáng)治療效果。
3.1 酶解CSPGs
軟骨素酶ABC(chondroitinase ABC,ChABC)是一種裂解酶,ChABC 具有內(nèi)切酶和外切酶兩種亞型,內(nèi)切酶消化CSPGs 的硫酸化GAG 鏈,外切酶將釋放的多糖降解為二糖[51]。用ChABC降解GAG鏈可以促進(jìn)軸突再生,并改善各種中樞神經(jīng)系統(tǒng)損傷模型的行為。Barritt AW 等[52]研究發(fā)現(xiàn),大鼠頸部脊髓損傷后用ChABC處理可誘導(dǎo)變性和去神經(jīng)支配區(qū)域的皮質(zhì)脊髓束、5-羥色胺能和初級(jí)傳入纖維出芽,因此認(rèn)為促進(jìn)脊髓軸突出芽需要降解CSPGs。Hu JL等[53]在燈魚(yú)脊髓橫切模型中研究發(fā)現(xiàn),ChABC降解CSPGs不僅能增強(qiáng)SCI后的軸突再生,還能抑制逆行性網(wǎng)狀脊髓神經(jīng)元凋亡信號(hào)的傳導(dǎo)。然而,由于CSPGs在SCI后神經(jīng)再生中的復(fù)雜作用,全面消耗CSPGs 似乎并不是一個(gè)可行的選擇[54]。研究發(fā)現(xiàn),CSPGs在小鼠SCI后的急性期發(fā)揮著關(guān)鍵作用,損傷后立即抑制CSPGs的合成會(huì)影響運(yùn)動(dòng)功能恢復(fù),并增加組織損失,而延遲抑制CSPGs可改善功能恢復(fù)[43]。這說(shuō)明SCI后可能需謹(jǐn)慎選擇降解CSPGs的時(shí)機(jī)和程度。
由酶介導(dǎo)的CSPGs降解療法面臨的問(wèn)題是ChABC的熱不穩(wěn)定性和缺乏作用的持續(xù)性[51]。為了提高療效,設(shè)計(jì)高效、多功能的生物輔助材料和改進(jìn)ChABC的輸送可能是有效的解決辦法。1項(xiàng)研究發(fā)現(xiàn),發(fā)生定點(diǎn)突變和聚乙二醇鏈共價(jià)修飾的PEG-N1000G-ChABC穩(wěn)定性高、功能半衰期延長(zhǎng),通過(guò)甲基纖維素水凝膠輸送該蛋白,可以實(shí)現(xiàn)其局部親和控制釋放,在動(dòng)物實(shí)驗(yàn)中更高效地降解CSPG[55]。目前,病毒載體遞送ChABC可能成為有效的治療方法,通過(guò)使用慢病毒和腺相關(guān)病毒載體對(duì)酶的表達(dá)和活性進(jìn)行時(shí)間調(diào)控,由于轉(zhuǎn)導(dǎo)細(xì)胞會(huì)不斷合成軟骨素酶,一次性注射就能實(shí)現(xiàn)ChABC的持續(xù)釋放[56]。此前大量研究都證明了ChABC用于治療SCI的有效性,目前的研究致力于如何將ChABC更高效準(zhǔn)確地用于SCI的治療。
3.2 減少CSPGs合成
CSPGs由核心蛋白和附著硫酸鹽的GAG側(cè)鏈組成,在SCI急性期抑制GAG的生物合成有望成為促進(jìn)神經(jīng)功能恢復(fù)的有效方法。硫酸軟骨素是由15種以上的酶合成的,抑制這些酶的合成將減少CSPGs的表達(dá);CSGalNAcT1(T1)是其中一種酶,T1基因敲除小鼠在SCI后表現(xiàn)出廣泛的軸突再生[57]。軟骨素磺基轉(zhuǎn)移酶15(chondroitin sulfotransferase 15,Chst15)參與硫酸軟骨素的合成,在大鼠橫斷脊髓組織中施用Chst15 抑制劑可有效促進(jìn)運(yùn)動(dòng)功能恢復(fù)和神經(jīng)組織再生[58]。另1項(xiàng)研究發(fā)現(xiàn),用2-花生四烯酸甘油(2-arachidon?oylglycerol,2-AG)或其水解酶抑制劑處理可以下調(diào)活化星形膠質(zhì)細(xì)胞CSPGs的表達(dá),并且2-AG可直接促進(jìn)CSPGs抑制條件下的少突膠質(zhì)細(xì)胞的分化[31]。物理治療也被用于減少CSPGs合成的研究中。Zhang ZH等[59]研究發(fā)現(xiàn)以50毫瓦/平方厘米的功率密度照射小鼠的脊髓損傷部位,可以下調(diào)SCI中CSPGs的表達(dá),小鼠的運(yùn)動(dòng)功能得到有效恢復(fù),而versican 是光生物調(diào)制的關(guān)鍵靶分子之一,MAPK/Sox9 和Smad3/Sox9通路可能在該過(guò)程中發(fā)揮作用。對(duì)大鼠SCI模型進(jìn)行水跑步機(jī)訓(xùn)練,能有效降低SCI后星形膠質(zhì)細(xì)胞的活化和損傷周圍CSPGs的表達(dá)水平,并抑制脊髓損傷后神經(jīng)元NgR/RhoA/ROCK信號(hào)通路的激活[47]。
3.3 抑制CSPGs相關(guān)受體
通過(guò)抑制CSPGs的相關(guān)受體可以形成有利于軸突再生和神經(jīng)功能恢復(fù)的微環(huán)境。目前已開(kāi)發(fā)出LAR和RPTPσ的抑制劑ILP和ISP,阻斷LAR和RPTPσ可使SCI后M2型小膠質(zhì)細(xì)胞/巨噬細(xì)胞和調(diào)節(jié)性T細(xì)胞數(shù)量增加,可促進(jìn)少突膠質(zhì)前體細(xì)胞形成,并減輕Caspase 3介導(dǎo)的成熟少突膠質(zhì)細(xì)胞死亡,形成有利于損傷修復(fù)的微環(huán)境[40,42]。近期研究還發(fā)現(xiàn),抑制CSPG/LAR/PTPσ軸可促進(jìn)SCI后移植神經(jīng)干細(xì)胞的分化成熟,進(jìn)而有利于損傷后修復(fù)[60]。CSPGs 通過(guò)LAR 和RPTPσ受體激活細(xì)胞內(nèi)RhoA/ROCK通路,阻礙軸突生長(zhǎng)和再生。Dubreuil CI等[61]研究發(fā)現(xiàn),阻斷SCI后Rho的過(guò)度激活可以保護(hù)神經(jīng)細(xì)胞免于p75NTR依賴性凋亡。體外實(shí)驗(yàn)表明,RPTPσ缺失的小鼠小腦顆粒神經(jīng)元對(duì)CSPGs抑制作用的敏感性降低,這可能有助于皮質(zhì)脊髓束軸突穿過(guò)富含CSPGs的神經(jīng)膠質(zhì)瘢痕[62]。在刪除編碼RPTPσ和LAR基因的小腦顆粒神經(jīng)元原代培養(yǎng)物中,會(huì)出現(xiàn)軸突生長(zhǎng)的疊加增強(qiáng)效應(yīng)[50]。總之,RPTPσ 和LAR 是介導(dǎo)CSPGs對(duì)軸突抑制作用的重要靶點(diǎn),拮抗相應(yīng)受體將成為SCI后促進(jìn)修復(fù)的有效方法。
3.4 針對(duì)CSPGs的其他SCI治療方法
當(dāng)前,大量研究使用新型的基于生物材料的遞送系統(tǒng)或者生物載體,將抑制CSPGs的相關(guān)因子傳遞至脊髓損傷部位,從而促進(jìn)損傷后功能恢復(fù)。Sun XM等[54]使用功能性自組裝肽(functional self-assembling peptide,F(xiàn)-SAP)水凝膠來(lái)連接大鼠SCI后橫斷的病灶,F(xiàn)-SAP水凝膠由納米纖維網(wǎng)絡(luò)組成,負(fù)載有ISP和ILP,兩者分別是RPTPσ和LAR的拮抗劑,以此阻斷CSPGs的信號(hào)傳導(dǎo);與負(fù)載ChABC的F-SAP水凝膠相比,負(fù)載ISP和ILP的F-SAP水凝膠促進(jìn)抗炎反應(yīng),形成有利于軸突再生和突觸形成的微環(huán)境。Epac2的激活能促進(jìn)SCI 后的軸突生長(zhǎng),并能抑制活化星形膠質(zhì)細(xì)胞和CSPGs,使用基于生物材料的水凝膠系統(tǒng)局部遞送Epac2激動(dòng)劑,能增強(qiáng)SCI模型中軸突再生,并減少神經(jīng)膠質(zhì)細(xì)胞的激活[63]。NG2被認(rèn)為是脊髓損傷后限制軸突生長(zhǎng)的關(guān)鍵抑制因子之一。最近1項(xiàng)研究發(fā)現(xiàn),腺相關(guān)病毒載體介導(dǎo)的NG2功能中和抗體和神經(jīng)營(yíng)養(yǎng)素-3可改善成年大鼠脊髓挫傷后的突觸傳遞、運(yùn)動(dòng)以及尿路功能[64]。通過(guò)調(diào)節(jié)CSPGs為神經(jīng)再生構(gòu)建1個(gè)有利的細(xì)胞外基質(zhì)環(huán)境,是促進(jìn)SCI后內(nèi)源性修復(fù)的策略之一。
4 總結(jié)與展望
CSPGs在中樞神經(jīng)系統(tǒng)的發(fā)育和穩(wěn)態(tài)維持中發(fā)揮著重要作用,參與細(xì)胞黏附、神經(jīng)細(xì)胞遷移、軸突引導(dǎo)以及維持突觸穩(wěn)定等過(guò)程。SCI后,損傷部位的多種細(xì)胞上調(diào)CSPGs的表達(dá),包括星形膠質(zhì)細(xì)胞、神經(jīng)元、少突膠質(zhì)細(xì)胞和巨噬細(xì)胞。CSPGs在SCI后內(nèi)源性修復(fù)中起抑制作用,主要包括抑制軸突出芽和軸突傳導(dǎo),阻止少突膠質(zhì)細(xì)胞的再髓鞘化和促進(jìn)SCI后的炎癥反應(yīng)。然而,關(guān)于CSPGs使損傷脊髓再生能力降低的機(jī)制仍未完全闡明,例如CSPGs促進(jìn)神經(jīng)炎癥的具體機(jī)制。因此,更深入地研究CSPGs在人體生理和疾病中的作用,有助于人們真正認(rèn)識(shí)CSPGs在SCI后的內(nèi)源性修復(fù)中所扮演的角色。
減輕CSPGs在神經(jīng)修復(fù)中的抑制作用,是目前關(guān)于SCI治療的研究方向之一。主要的治療策略包括使用ChABC降解GAG鏈,減少SCI后CSPGs的合成和阻斷與CSPGs抑制作用相關(guān)的受體,相關(guān)研究結(jié)果都顯示出這些策略的有效性,但也存在療效有限、操作復(fù)雜等問(wèn)題。目前,一些研究使用新型的基于生物材料的遞送系統(tǒng)和生物載體將抑制CSPGs的藥物輸送至SCI部位,有望提高療效,促進(jìn)SCI患者神經(jīng)功能恢復(fù)。
參考文獻(xiàn)
[1] Bieler L,Vogl M,Kirchinger M,et al. The prenylflavonoid ENDF1
overrules central nervous system growth inhibitors and facilitates regen?
eration of DRG neurons[J]. Front Cell Neurosci,2019,13:332.
[2] Guest J,Datta N,Jimsheleishvili G,et al. Pathophysiology,classifi?
cation and comorbidities after traumatic spinal cord injury[J]. J Pers
Med,2022,12(7):1126.
[3] Anderson MA,Burda JE,Ren YL,et al. Astrocyte scar formation
aids central nervous system axon regeneration[J]. Nature,2016,532
(7598):195-200.
[4] Chambel SS,Cruz CD. Axonal growth inhibitors and their receptors
in spinal cord injury:from biology to clinical translation[J]. Neural Re?
gen Res,2023,18(12):2573-2581.
[5] Alizadeh A,Dyck SM,Karimi-Abdolrezaee S. Traumatic spinal
cord injury:an overview of pathophysiology,models and acute injury
mechanisms[J]. Front Neurol,2019,10:282.
[6] Adams KL,Gallo V. The diversity and disparity of the glial scar[J].
Nat Neurosci,2018,21(1):9-15.
[7] Mukherjee N,Nandi S,Garg S,et al. Targeting chondroitin sulfate
proteoglycans:an emerging therapeutic strategy to treat CNS injury[J].
ACS Chem Neurosci,2020,11(3):231-232.
[8] Stephenson EL,Yong VW. Pro-inflammatory roles of chondroitin
sulfate proteoglycans in disorders of the central nervous system[J]. Ma?
trix Biol,2018,71/72:432-442.
[9] Dyck SM,Karimi-Abdolrezaee S. Chondroitin sulfate proteogly?
cans:key modulators in the developing and pathologic central nervous
system[J]. Exp Neurol,2015,269:169-187.
[10] Viapiano MS,Matthews RT. From barriers to bridges:chondroitin
sulfate proteoglycans in neuropathology[J]. Trends Mol Med,2006,12
(10):488-496.
[11] Morawski M,Brückner G,Arendt T,et al. Aggrecan:beyond carti?
lage and into the brain[J]. Int J Biochem Cell Biol,2012,44(5):
690-693.
[12] Frischknecht R,Seidenbecher CI. Brevican:a key proteoglycan
in the perisynaptic extracellular matrix of the brain[J]. Int J Biochem
Cell Biol,2012,44(7):1051-1054.
[13] Schmidt S,Arendt T,Morawski M,et al. Neurocan contributes to
perineuronal net development[J]. Neuroscience,2020,442:69-86.
[14] Islam S,Watanabe H. Versican:a dynamic regulator of the extra?
cellular matrix[J]. J Histochem Cytochem,2020,68(11):763-775.
[15] Hesp ZC,Yoseph RY,Suzuki R,et al. Proliferating NG2-celldependent
angiogenesis and scar formation alter axon growth and func?
tional recovery after spinal cord injury in mice[J]. J Neurosci,2018,38
(6):1366-1382.
[16] Kolb J,Tsata V,John N,et al. Small leucine-rich proteoglycans
inhibit CNS regeneration by modifying the structural and mechanical
properties of the lesion environment[J]. Nat Commun,2023,14(1):
6814.
[17] Sherman LS,Back SA. A‘ GAG’ reflex prevents repair of the
damaged CNS[J]. Trends Neurosci,2008,31(1):44-52.
[18] Susarla BT,Laing ED,Yu PP,et al. Smad proteins differentially
regulate transforming growth factor-β-mediated induction of chondroi?
tin sulfate proteoglycans[J]. J Neurochem,2011,119(4):868-878.
[19] Sorg BA,Berretta S,Blacktop JM,et al. Casting a wide net:role of
perineuronal nets in neural plasticity[J]. J Neurosci,2016,36(45):
11459-11468.
[20] Beurdeley M,Spatazza J,Lee HH,et al. Otx2 binding to perineu?
ronal nets persistently regulates plasticity in the mature visual cortex[J].
J Neurosci,2012,32(27):9429-9437.
[21] Foscarin S,Raha-Chowdhury R,F(xiàn)awcett JW,et al. Brain ageing
changes proteoglycan sulfation,rendering perineuronal nets more inhibi?
tory[J]. Aging,2017,9(6):1607-1622.
[22] Coles CH,Shen YJ,Tenney AP,et al. Proteoglycan-specific mo?
lecular switch for RPTPσ clustering and neuronal extension[J]. Science,
2011,332(6028):484-488.
[23] Maeda N. Proteoglycans and neuronal migration in the cerebral
cortex during development and disease[J]. Front Neurosci,2015,9:98.
[24] Geissler M,Gottschling C,Aguado A,et al. Primary hippocampal
neurons,which lack four crucial extracellular matrix molecules,display
abnormalities of synaptic structure and function and severe deficits in
perineuronal net formation[J]. J Neurosci,2013,33(18):7742-7755.
[25] Barros CS,F(xiàn)ranco SJ,Müller U. Extracellular matrix:functions in
the nervous system[J]. Cold Spring Harb Perspect Biol,2011,3(1):
a005108.
[26] Snow DM,Lemmon V,Carrino DA,et al. Sulfated proteoglycans
in astroglial barriers inhibit neurite outgrowth in vitro[J]. Exp Neurol,
1990,109(1):111-130.
[27] Pendleton JC,Shamblott MJ,Gary DS,et al. Chondroitin sulfate
proteoglycans inhibit oligodendrocyte myelination through PTPσ[J]. Exp
Neurol,2013,247:113-121.
[28] Morawski M,Brückner G,J?ger C,et al. Involvement of perineuro?
nal and perisynaptic extracellular matrix in Alzheimer’s disease neuro?
pathology[J]. Brain Pathol,2012,22(4):547-561.
[29] Yang S,Hilton S,Alves JN,et al. Antibody recognizing 4-sul?
fated chondroitin sulfate proteoglycans restores memory in tauopathyinduced
neurodegeneration[J]. Neurobiol Aging,2017,59:197-209.
[30] Yang X. Chondroitin sulfate proteoglycans:key modulators of neu?
ronal plasticity,long-term memory,neurodegenerative,and psychiatric
disorders[J]. Rev Neurosci,2020,31(5):555-568.
[31] Feliu A,Mestre L,Carrillo-Salinas FJ,et al. 2-arachidonoylglyc?
erol reduces chondroitin sulphate proteoglycan production by astrocytes
and enhances oligodendrocyte differentiation under inhibitory conditions
[J]. Glia,2020,68(6):1255-1273.
[32] Mukhamedshina YO,Povysheva TV,Nikolenko VN,et al. Up?
regulation of proteoglycans in the perilesion perimeter in ventral horns
after spinal cord injury[J]. Neurosci Lett,2019,704:220-228.
[33] Buss A,Pech K,Kakulas BA,et al. NG2 and phosphacan are
present in the astroglial scar after human traumatic spinal cord injury[J].
BMC Neurol,2009,9:32.
[34] Zhang C,Kang JN,Zhang XD,et al. Spatiotemporal dynamics of
the cellular components involved in glial scar formation following spinal
cord injury[J]. Biomedecine Pharmacother,2022,153:113500.
[35] Tamaru T,Kobayakawa K,Saiwai H,et al. Glial scar survives un?
til the chronic phase by recruiting scar-forming astrocytes after spinal
cord injury[J]. Exp Neurol,2023,359:114264.
[36] Hara M,Kobayakawa K,Ohkawa Y,et al. Interaction of reactive
astrocytes with type I collagen induces astrocytic scar formation through
the integrin-N-cadherin pathway after spinal cord injury[J]. Nat Med,
2017,23(7):818-828.
[37] Schachtrup C,Ryu JK,Helmrick MJ,et al. Fibrinogen triggers as?
trocyte scar formation by promoting the availability of active TGF-beta
after vascular damage[J]. J Neurosci,2010,30(17):5843-5854.
[38] Jahan N,Hannila SS. Transforming growth factor β-induced ex?
pression of chondroitin sulfate proteoglycans is mediated through non-
Smad signaling pathways[J]. Exp Neurol,2015,263:372-384.
[39] Petrosyan HA,Hunanyan AS,Alessi V,et al. Neutralization of in?
hibitory molecule NG2 improves synaptic transmission,retrograde trans?
port,and locomotor function after spinal cord injury in adult rats[J]. J
Neurosci,2013,33(9):4032-4043.
[40] Dyck S,Kataria H,Akbari-Kelachayeh K,et al. LAR and PTPσ
receptors are negative regulators of oligodendrogenesis and oligodendro?
cyte integrity in spinal cord injury[J]. Glia,2019,67(1):125-145.
[41] Karus M,Ulc A,Ehrlich M,et al. Regulation of oligodendrocyte
precursor maintenance by chondroitin sulphate glycosaminoglycans[J].
Glia,2016,64(2):270-286.
[42] Dyck S,Kataria H,Alizadeh A,et al. Perturbing chondroitin sul?
fate proteoglycan signaling through LAR and PTPσ receptors promotes a
beneficial inflammatory response following spinal cord injury[J]. J Neu?
roinflammation,2018,15(1):90.
[43] Rolls A,Shechter R,London A,et al. Two faces of chondroitin
sulfate proteoglycan in spinal cord repair:a role in microglia/macro?
phage activation[J]. PLoS Med,2008,5(8):e171.
[44] Francos-Quijorna I,Sánchez-Petidier M,Burnside ER,et al.
Chondroitin sulfate proteoglycans prevent immune cell phenotypic con?
version and inflammation resolution via TLR4 in rodent models of spinal
cord injury[J]. Nat Commun,2022,13(1):2933.
[45] Dickendesher TL,Baldwin KT,Mironova YA,et al. NgR1 and
NgR3 are receptors for chondroitin sulfate proteoglycans[J]. Nat Neuro?
sci,2012,15(5):703-712.
[46] Shen YJ,Tenney AP,Busch SA,et al. PTPsigma is a receptor for
chondroitin sulfate proteoglycan,an inhibitor of neural regeneration[J].
Science,2009,326(5952):592-596.
[47] Ying XW,Yu XL,Zhu JT,et al. Water treadmill training amelio?
rates neurite outgrowth inhibition associated with NGR/RhoA/ROCK by
inhibiting astrocyte activation following spinal cord injury[J]. Oxid Med
Cell Longev,2022,2022:1724362.
[48] Wu KY,Hengst U,Cox LJ,et al. Local translation of RhoA regu?
lates growth cone collapse[J]. Nature,2005,436(7053):1020-1024.
[49] Gutekunst CA,Tung JK,McDougal ME,et al. C3 transferase gene
therapy for continuous conditional RhoA inhibition[J]. Neuroscience,
2016,339:308-318.
[50] Ohtake Y,Wong D,Abdul-Muneer PM,et al. Two PTP receptors
mediate CSPG inhibition by convergent and divergent signaling path?
ways in neurons[J]. Sci Rep,2016,6:37152.
[51] Wei YT,Andrews MR. Advances in chondroitinase delivery for
spinal cord repair[J]. J Integr Neurosci,2022,21(4):118.
[52] Barritt AW,Davies M,Marchand F,et al. Chondroitinase ABC
promotes sprouting of intact and injured spinal systems after spinal cord
injury[J]. J Neurosci,2006,26(42):10856-10867.
[53] Hu JL,Rodemer W,Zhang GX,et al. Chondroitinase ABC pro?
motes axon regeneration and reduces retrograde apoptosis signaling in
lamprey[J]. Front Cell Dev Biol,2021,9:653638.
[54] Sun XM,Liu HQ,Tan Z,et al. Remodeling microenvironment for
endogenous repair through precise modulation of chondroitin sulfate pro?
teoglycans following spinal cord injury[J]. Small,2023,19(6):e2205012.
[55] Hettiaratchi MH,O’Meara MJ,Teal CJ,et al. Local delivery of
stabilized chondroitinase ABC degrades chondroitin sulfate proteogly?
cans in stroke-injured rat brains[J]. J Control Release,2019,297:14-
25.
[56] Zhao RR,Muir EM,Alves JN,et al. Lentiviral vectors express
chondroitinase ABC in cortical projections and promote sprouting of
injured corticospinal axons[J]. J Neurosci Methods,2011,201(1):228-
238.
[57] Igarashi M,Takeuchi K,Sugiyama S. Roles of CSGalNAcT1,a
key enzyme in regulation of CS synthesis,in neuronal regeneration and
plasticity[J]. Neurochem Int,2018,119:77-83.
[58] Li LM,Zheng HP,Ma XP,et al. Inhibition of astrocytic carbohy?
drate sulfotransferase 15 promotes nerve repair after spinal cord injury
via mitigation of CSPG mediated axonal inhibition[J]. Cell Mol Neuro?
biol,2023,43(6):2925-2937.
[59] Zhang ZH,Song ZW,Luo L,et al. Photobiomodulation inhibits
the expression of chondroitin sulfate proteoglycans after spinal cord
injury via the Sox9 pathway[J]. Neural Regen Res,2024,19(1):180-
189.
[60] Hosseini SM,Alizadeh A,Shahsavani N,et al. Suppressing CSPG/
LAR/PTPσ axis facilitates neuronal replacement and synaptogenesis by
human neural precursor grafts and improves recovery after spinal cord
injury[J]. J Neurosci,2022,42(15):3096-3121.
[61] Dubreuil CI,Winton MJ,McKerracher L. Rho activation patterns
after spinal cord injury and the role of activated Rho in apoptosis in the
central nervous system[J]. J Cell Biol,2003,162(2):233-243.
[62] Fry EJ,Chagnon MJ,López-Vales R,et al. Corticospinal tract re?
generation after spinal cord injury in receptor protein tyrosine phospha?
tase sigma deficient mice[J]. Glia,2010,58(4):423-433.
[63] Guijarro-Belmar A,Viskontas M,Wei YT,et al. Epac2 elevation
reverses inhibition by chondroitin sulfate proteoglycans in vitro and
transforms postlesion inhibitory environment to promote axonal out?
growth in an Ex vivo model of spinal cord injury[J]. J Neurosci,2019,39
(42):8330-8346.
[64] Petrosyan HA,Alessi V,Lasek K,et al. AAV vector mediated
delivery of NG2 function neutralizing antibody and neurotrophin NT-3
improves synaptic transmission,locomotion,and urinary tract function
after spinal cord contusion injury in adult rats[J]. J Neurosci,2023,43
(9):1492-1508.
(責(zé)任編輯:曾 玲)
重慶醫(yī)科大學(xué)學(xué)報(bào)2024年3期