奧格斯·阿力甫 劉宏毅 趙夢(mèng)潔 肖紅
【摘要】神經(jīng)膠質(zhì)瘤是顱內(nèi)常見(jiàn)惡性腫瘤,治療難度大,且預(yù)后不佳。因此,膠質(zhì)瘤的致病機(jī)制和治療策略的研究是當(dāng)前神經(jīng)腫瘤領(lǐng)域的熱點(diǎn)。絲氨酸是一種重要的非必需氨基酸,不僅為細(xì)胞內(nèi)蛋白質(zhì)、核酸和脂質(zhì)的合成提供必要的前體,還可以為腫瘤細(xì)胞中氧化還原穩(wěn)態(tài)的維持提供還原力,在細(xì)胞的生理和病理過(guò)程中發(fā)揮重要作用。近年來(lái),有研究發(fā)現(xiàn)絲氨酸代謝與神經(jīng)膠質(zhì)瘤發(fā)展過(guò)程密切相關(guān)。本文旨在對(duì)絲氨酸在膠質(zhì)瘤進(jìn)展中的作用、潛在機(jī)制以及治療策略做一綜述。
【關(guān)鍵詞】絲氨酸代謝;神經(jīng)膠質(zhì)瘤;磷酸甘油酸脫氫酶;磷酸絲氨酸轉(zhuǎn)氨酶1;磷酸絲氨酸磷酸酶
【中圖分類(lèi)號(hào)】R651【文獻(xiàn)標(biāo)志碼】A【文章編號(hào)】16727770(2024)02021604
Research progress on serine metabolism in gliomas Aogesi Alifu, LIU Hongyi, ZHAO Mengjie, et al. Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
Corresponding author: LIU Hongyi
Abstract: Glioma is a common malignant tumor within the cranium, presenting significant challenges in treatment and poor prognosis. Consequently, the investigation of the pathogenic mechanisms and therapeutic strategies for glioma represents a current focal point within the field of neurooncology. Serine is a critical nonessential amino acid, not only providing essential precursors for the synthesis of intracellular proteins, nucleic acids, and lipids, but also contributing to the maintenance of the redox homeostasis within tumor cells, playing a crucial role in the physiological and pathological processes of cells. In recent years, research has found a close association between serine metabolism and the development of glioma. This review aims to provide an overview of the role of serine in the progression of glioma, its potential mechanisms, and therapeutic.
Key words: serine metabolism; glioma; PHGDH; PSAT1; PSPH
神經(jīng)膠質(zhì)瘤是一種起源于神經(jīng)膠質(zhì)細(xì)胞的惡性腫瘤,是最常見(jiàn)的顱內(nèi)腫瘤,約占所有顱內(nèi)腫瘤的45%。目前,對(duì)于膠質(zhì)瘤的治療主要包括手術(shù)切除、放療、化療等,但生存率仍很低,亟需尋找新的治療策略。絲氨酸是一種非必需氨基酸, 用于包括蛋白、核酸和脂質(zhì)等生物分子的合成。絲氨酸在體內(nèi)通過(guò)絲氨酸合成途徑(serine synthesis pathway,SSP)產(chǎn)生。它是糖酵解途徑的分流,將糖酵解與一碳代謝、核苷酸合成聯(lián)系起來(lái)。而SSP通路的活化能夠通過(guò)調(diào)控氧化還原穩(wěn)態(tài)、細(xì)胞周期以及核苷酸的合成來(lái)支持腫瘤細(xì)胞存活。包括神經(jīng)膠質(zhì)瘤在內(nèi)的多種腫瘤中,異常激活的SSP關(guān)鍵酶如磷酸甘油酸脫氫酶(phosphoglycerate dehydrogenase,PHGDH)、磷酸絲氨酸轉(zhuǎn)氨酶1(phosphate serine transaminase 1,PSAT1)、磷酸絲氨酸磷酸酶(phosphate serine phosphatase,PSPH)等均可促進(jìn)腫瘤細(xì)胞的增殖、遷移等生物學(xué)表型。通過(guò)研究SSP及相關(guān)關(guān)鍵酶在神經(jīng)膠質(zhì)瘤進(jìn)展中的作用,可以為其治療提供新的思路和靶點(diǎn)。
1絲氨酸的來(lái)源與功能
細(xì)胞內(nèi)絲氨酸的來(lái)源主要有3種,從外界攝取、細(xì)胞內(nèi)合成和甘氨酸轉(zhuǎn)化。絲氨酸在細(xì)胞內(nèi)合成的過(guò)程被稱(chēng)為絲氨酸從頭合成途徑,與葡萄糖代謝關(guān)系密切。葡萄糖從細(xì)胞外攝取后,在細(xì)胞質(zhì)中進(jìn)行糖酵解,糖酵解的中間產(chǎn)物3磷酸甘油酸(3 phosphoglycerate,3PG)是絲氨酸合成的重要原料。3PG在PHGDH作用下形成3磷酸羥基丙酮酸(3phosphate hydroxypyruvate,3PHP),3PHP與谷氨酸在PSAT1的作用下生成3磷酸絲氨酸(3 phosphate serine,3PS),最后3PS在PSPH作用下水解生成絲氨酸。此外,細(xì)胞質(zhì)中的甘氨酸可接受葉酸循環(huán)的中間產(chǎn)物5,10亞甲基四氫葉酸上的甲基。此外,細(xì)胞質(zhì)中的甘氨酸可接受葉酸循環(huán)的中間產(chǎn)物5,10亞甲基四氫葉酸上的甲基,在絲氨酸羥甲基轉(zhuǎn)移酶1(serine hydroxymethyltransferase 1,SHMT1)的催化下生成絲氨酸。在快速增殖的腫瘤細(xì)胞中,SSP是絲氨酸最主要的來(lái)源。
無(wú)論是外源攝入還是細(xì)胞內(nèi)自主合成,絲氨酸在細(xì)胞生理和病理中扮演著三大關(guān)鍵角色。首先,它是合成各類(lèi)生物高分子的基礎(chǔ)物質(zhì)。其次,絲氨酸的一部分轉(zhuǎn)入線粒體,參與葉酸循環(huán),并轉(zhuǎn)化為S腺苷甲硫氨酸(Sadenosine methionine,SAM),后者是細(xì)胞內(nèi)大多數(shù)甲基化反應(yīng)的直接甲基供應(yīng)源,為甲基化過(guò)程提供必需的甲基團(tuán)。在某些腫瘤細(xì)胞中,DNA甲基化修飾是調(diào)控腫瘤表觀遺傳學(xué)的關(guān)鍵環(huán)節(jié),由此可見(jiàn),絲氨酸的代謝對(duì)于腫瘤的表觀遺傳調(diào)控具有至關(guān)重要的意義。最后,絲氨酸通過(guò)參與葉酸循環(huán)可使NADP+轉(zhuǎn)化為NADPH。后者通過(guò)再生還原型谷胱甘肽來(lái)提高細(xì)胞抗氧化能力。此外,絲氨酸在合成多種生物大分子,特別是通過(guò)一碳單位在嘌呤和嘧啶的生物合成過(guò)程中也發(fā)揮著不可或缺的作用,對(duì)腫瘤細(xì)胞的進(jìn)展至關(guān)重要。
2絲氨酸的從頭合成途徑
絲氨酸的從頭合成途徑在眾多腫瘤中處于活躍狀態(tài),對(duì)于腫瘤細(xì)胞的迅速增殖以及化療藥物的耐藥性發(fā)展至關(guān)重要。SSP高活性被認(rèn)為是腫瘤侵襲性增強(qiáng)的標(biāo)志,與預(yù)后不良相關(guān)。激活轉(zhuǎn)錄因子4(activating transcription factors 4,ATF4)是SSP的關(guān)鍵的調(diào)控因子,可直接結(jié)合并調(diào)控SSP關(guān)鍵酶PHGDH、PSAT1、PSPH和SHMT的轉(zhuǎn)錄[1]。此外,多種調(diào)節(jié)因子通過(guò)ATF4間接調(diào)節(jié)SSP途徑。實(shí)驗(yàn)表明,ATF3在SSP的激活中發(fā)揮著至關(guān)重要的作用,特別是在絲氨酸缺乏的情況下。在絲氨酸匱乏期間,ATF4首先被激活,隨后ATF3迅速響應(yīng)并依賴(lài)于ATF4的激活而增強(qiáng)。ATF3不僅促進(jìn)了ATF4的表達(dá),還通過(guò)與PHGDH、PSAT1和PSPH的增強(qiáng)子及啟動(dòng)子區(qū)域相互作用,進(jìn)一步提高了PHGDH、PSAT1和PSPH的表達(dá)水平[2]。TFCP2是轉(zhuǎn)錄因子細(xì)胞啟動(dòng)子,在多種生物學(xué)過(guò)程中扮演著關(guān)鍵角色,包括腫瘤的發(fā)展、腫瘤細(xì)胞干性的維持、血管形成以及細(xì)胞衰老等 [3]。TFCP2是ATF3激活絲氨酸代謝所必需的。在神經(jīng)膠質(zhì)瘤細(xì)胞中,敲低TFCP2表達(dá)顯著抑制ATF3與PHGDH啟動(dòng)子的結(jié)合,抑制裸鼠神經(jīng)膠質(zhì)瘤細(xì)胞生長(zhǎng)、神經(jīng)球形成和致瘤能力。因此可以推斷ATF3與TFCP2相互作用,共同調(diào)控絲氨酸的從頭合成,促進(jìn)神經(jīng)膠質(zhì)瘤細(xì)胞的生長(zhǎng)[4]。
3SSP與一碳代謝
一碳單位是指含有1個(gè)碳原子的有機(jī)基團(tuán),包括亞甲基、甲基和甲酰基[56]。以四氫葉酸為載體的一碳單位循環(huán)構(gòu)成了細(xì)胞代謝的基礎(chǔ)。這些一碳單位不僅是嘌呤和嘧啶合成過(guò)程中參與DNA和RNA合成的主要來(lái)源,同時(shí)也維持著谷胱甘肽的穩(wěn)定,并有助于細(xì)胞氧化還原平衡的維持。這一過(guò)程對(duì)于腫瘤細(xì)胞的快速增殖維持至關(guān)重要[7]。同位素標(biāo)記實(shí)驗(yàn)表明絲氨酸是一碳單位的主要來(lái)源[8],在絲氨酸轉(zhuǎn)化為甘氨酸的過(guò)程中,亞甲基從絲氨酸中分離出來(lái),進(jìn)入葉酸循環(huán)。隨著四氫葉酸(tetrahydrofolate,THF)上一碳單位的轉(zhuǎn)化,亞甲基從絲氨酸進(jìn)入蛋氨酸循環(huán)。最終,這個(gè)一碳單位以SAM的形式充當(dāng)甲基供體[9]。研究表明,在膠質(zhì)母細(xì)胞瘤組織的低營(yíng)養(yǎng)區(qū)域中,絲氨酸和甘氨酸水平相較于其他區(qū)域顯著升高。谷氨酰胺饑餓影響絲氨酸代謝以推動(dòng)一碳代謝,這一過(guò)程伴隨著PSAT1、SHMT2的表達(dá)水平上升。對(duì)膠質(zhì)母細(xì)胞瘤細(xì)胞的代謝和功能深入研究表明,絲氨酸及其一碳代謝途徑在谷氨酰胺匱乏條件下支持神經(jīng)膠質(zhì)瘤細(xì)胞的生存,并強(qiáng)調(diào)了絲氨酸依賴(lài)性一碳代謝在谷氨酰胺饑餓存活中的關(guān)鍵作用[10]。
4SSP關(guān)鍵酶與神經(jīng)膠質(zhì)瘤進(jìn)展的關(guān)系
4.1PHGDHPHGDH是SSP第一步的限速酶,在某些腫瘤中,包括乳腺癌、黑色素瘤和非小細(xì)胞肺癌,可以發(fā)現(xiàn)PHGDH表達(dá)上調(diào)[1112]。研究發(fā)現(xiàn),PHGDH在正常腦組織中的表達(dá)量通常為陰性。在大多數(shù)神經(jīng)膠質(zhì)細(xì)胞中,PHGDH的表達(dá)顯著升高,且隨著腫瘤病理級(jí)別提升,其表達(dá)水平亦上升。抑制神經(jīng)膠質(zhì)瘤細(xì)胞中PHGDH的表達(dá)可降低基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)2、細(xì)胞周期蛋白D1、血管內(nèi)皮生長(zhǎng)因子和CHK2的表達(dá)水平,減少神經(jīng)膠質(zhì)瘤細(xì)胞在體內(nèi)和體外的增殖和侵襲,并降低致癌轉(zhuǎn)錄因子FOXMI的表達(dá)[13]。此外,抑制PHGDH表達(dá)可導(dǎo)致中等或高PHGDH表達(dá)的神經(jīng)膠質(zhì)瘤細(xì)胞中NADPH/NADP+比率顯著降低,影響細(xì)胞增殖并增加了對(duì)低氧誘導(dǎo)的細(xì)胞死亡的敏感性。反之亦然,LN229細(xì)胞中過(guò)表達(dá)的PHGDH提高了細(xì)胞對(duì)低氧的耐受能力,并增加了NADPH/NADP+比率,進(jìn)一步導(dǎo)致腫瘤細(xì)胞的惡性表型[14]。
高表達(dá)的PHGDH除了上述的作用外還與腫瘤的耐藥性、治療敏感性以及不良預(yù)后有關(guān)[12,15]。例如,PHGDH在乳腺癌肺轉(zhuǎn)移過(guò)程中扮演著至關(guān)重要的角色,通過(guò)促進(jìn)mTOR復(fù)合體1(mTOR complex 1,MTORC1)信號(hào)通路的活化,進(jìn)而調(diào)控腫瘤對(duì)雷帕霉素治療的敏感性[16]。對(duì)人和小鼠膠質(zhì)母細(xì)胞瘤的代謝組學(xué)和轉(zhuǎn)錄組學(xué)分析表明,PHGDH的表達(dá)和絲氨酸代謝在腫瘤內(nèi)皮細(xì)胞(endothelial cell,EC)中優(yōu)先改變。腫瘤微環(huán)境信號(hào)會(huì)誘導(dǎo)內(nèi)皮細(xì)胞ATF4介導(dǎo)的PHGDH的表達(dá),觸發(fā)氧化還原依賴(lài)的機(jī)制,調(diào)節(jié)內(nèi)皮細(xì)胞的糖酵解和核苷酸生成,導(dǎo)致內(nèi)皮細(xì)胞過(guò)度生長(zhǎng)。抑制PHGDH可消除腫瘤內(nèi)的缺氧狀態(tài),促進(jìn)T細(xì)胞對(duì)腫瘤組織的滲入,并提高神經(jīng)膠質(zhì)瘤對(duì)CART治療敏感性[17]。另外,PHGDH是一個(gè)潛在的神經(jīng)膠質(zhì)瘤預(yù)后標(biāo)志物,在裸鼠實(shí)驗(yàn)中,與接受野生型細(xì)胞注射的對(duì)照組相比,注射了穩(wěn)定沉默PHGDH的神經(jīng)膠質(zhì)瘤細(xì)胞的存活時(shí)間顯著延長(zhǎng)。研究還發(fā)現(xiàn),PHGDH能與FOXM1相互作用并使其穩(wěn)定,從而促進(jìn)膠質(zhì)細(xì)胞的增殖和侵襲。因此,PHGDHFOXM1軸的靶向研究能為腦腫瘤治療提供新的策略[13]。
4.2PSAT1和PSPHPSAT1 和PSPH分別是 SSP 中的第二、第三個(gè)關(guān)鍵酶,PSAT1、PSPH在各種腫瘤中均有表達(dá),在腫瘤的惡性進(jìn)展中起著重要的調(diào)節(jié)作用[1819]。PSAT1在三陰性乳腺癌中高表達(dá),且與腫瘤的侵襲性、轉(zhuǎn)移性和預(yù)后呈顯著相關(guān)性[20]。PSAT1在卵巢上皮性癌中表達(dá)顯著上調(diào),沉默其表達(dá)能顯著降低腫瘤的克隆形成,阻滯細(xì)胞周期,并促進(jìn)細(xì)胞凋亡[21]。無(wú)論是在低級(jí)別還是高級(jí)別的神經(jīng)膠質(zhì)瘤組織中,PSAT1、PSPH的表達(dá)水平均顯著高于正常腦組織。此外,對(duì)高通量基因表達(dá)(Gene Expression Omnibus,GEO)(GSE4290;n=180)的分析顯示,與正常組織相比,PSAT1和PSPH基因在神經(jīng)膠質(zhì)瘤組織中的表達(dá)水平顯著上調(diào)。與這些發(fā)現(xiàn)一致,通過(guò)實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(quantitative realtime polymerase chain reaction,qRTPCR)和免疫印跡(Western Blot)分析進(jìn)一步證實(shí),在人類(lèi)膠質(zhì)母細(xì)胞瘤細(xì)胞和膠質(zhì)瘤干細(xì)胞中,PSAT1和PSPH的mRNA和蛋白質(zhì)表達(dá)水平均高于人類(lèi)正常星形膠質(zhì)細(xì)胞[22]。
此外,通過(guò)對(duì)50例原發(fā)性人腦膠質(zhì)母細(xì)胞瘤標(biāo)本的分析發(fā)現(xiàn),AMPKpT172和HIF1α的表達(dá)水平與PSAT1和PSPH的表達(dá)水平存在顯著的正相關(guān)性。在對(duì)比50例患者的生存時(shí)間時(shí),所有患者在手術(shù)切除腫瘤后,均接受了標(biāo)準(zhǔn)的輔助放射治療,并進(jìn)行了替莫唑胺治療。其中,PSAT1和PSPH表達(dá)水平較低的患者的中位生存期分別為81周和84.05周,而PSAT1和PSPH表達(dá)水平較高的患者中位生存期則分別為45.6周和55.2周。這些數(shù)據(jù)結(jié)果揭示了AMPKHIF1α信號(hào)介導(dǎo)的SSP活化在人腦膠質(zhì)母細(xì)胞瘤的臨床表現(xiàn)中扮演著重要角色,AMPK pT172和HIF1α的表達(dá)水平以及PSAT1和PSPH的表達(dá)水平與膠質(zhì)母細(xì)胞瘤的臨床侵襲性有著顯著的相關(guān)性[22]。
4.3 SHMT在人類(lèi)細(xì)胞內(nèi),存在兩種SHMT亞型:一種是細(xì)胞質(zhì)內(nèi)的SHMT1,另一種是線粒體內(nèi)的SHMT2。在細(xì)胞質(zhì)和線粒體中,SHMT1和SHMT2分別催化絲氨酸和四氫葉酸轉(zhuǎn)化為甘氨酸和5,10亞甲基四氫葉酸。一般來(lái)說(shuō),各種癌細(xì)胞增殖所需的一碳單位是由線粒體中的絲氨酸代謝產(chǎn)生,并由葉酸轉(zhuǎn)運(yùn)的。在一碳單位的生成過(guò)程中,SHMT2直接催化絲氨酸轉(zhuǎn)化為甘氨酸,并引導(dǎo)葉酸循環(huán)的產(chǎn)生。而SHMT1則可能對(duì)葉酸循環(huán)及一碳代謝過(guò)程進(jìn)行調(diào)控[23]。
在肝癌和肺癌等腫瘤中,SHMT2的表達(dá)水平明顯升高[2425]。在神經(jīng)膠質(zhì)瘤中,SHMT2的表達(dá)水平明顯高于正常腦組織,并且根據(jù)世界衛(wèi)生組織(World Health Organization,WHO)的分級(jí),其表達(dá)隨著等級(jí)升高而逐步增強(qiáng)。SHMT2的表達(dá)與Ki67的表達(dá)和WHO分級(jí)呈顯著正相關(guān)(P<0.01),但與性別、年齡、Karnofsky性能狀態(tài)、腫瘤直徑、MGMT、GSTpi等臨床病理參數(shù)無(wú)顯著關(guān)聯(lián)(P>0.05)。KaplanMeier生存曲線和Cox回歸分析顯示,SHMT2的表達(dá)是影響膠質(zhì)瘤患者預(yù)后的指標(biāo)[26]。此外,在神經(jīng)膠質(zhì)瘤缺血區(qū)內(nèi),絲氨酸和甘氨酸代謝對(duì)腫瘤細(xì)胞的存活發(fā)揮了至關(guān)重要的作用。在膠質(zhì)母細(xì)胞瘤中,SHMT2和甘氨酸脫羧酶 (glycine decarboxylase,GLDC) 在壞死灶周?chē)募傩詵艡跇蛹?xì)胞中呈高表達(dá)。SHMT2的活性限制了M2型丙酮酸激酶(pyruvate kinase M2,PKM2)的活性,并減少了氧氣消耗,從而使細(xì)胞能夠在缺血性腫瘤微環(huán)境中生存,且未被GLDC代謝的過(guò)量甘氨酸可以轉(zhuǎn)化為有毒性的氨基丙酮和甲基乙二醛,因此GLDC的抑制會(huì)損害SHMT2表達(dá)較高的細(xì)胞。綜上,SHMT2是腫瘤細(xì)胞適應(yīng)腫瘤微環(huán)境的必要條件[27]。
5靶向SSP在神經(jīng)膠質(zhì)瘤治療中的應(yīng)用
以往研究表明,許多腫瘤細(xì)胞會(huì)大量消耗絲氨酸,并依賴(lài)外源性絲氨酸來(lái)獲得最佳生長(zhǎng)[11,20,2829]。然而,大多數(shù)細(xì)胞可以通過(guò)激活SSP通路來(lái)適應(yīng)絲氨酸饑餓。絲氨酸是糖酵解最后一步PKM2的激活劑,在絲氨酸缺乏的條件下,PKM2活性降低,從而使糖酵解中間產(chǎn)物轉(zhuǎn)入SSP[3031]。這種反應(yīng)與ATF4和組蛋白甲基轉(zhuǎn)移酶G9A依賴(lài)性激活 SSP 的三種酶相協(xié)調(diào)[20,3132],使得大部分腫瘤細(xì)胞在絲氨酸缺乏的情況下仍能存活并持續(xù)繁殖。高表達(dá)的PHGDH、PSAT1和PSPH在腫瘤細(xì)胞中普遍存在,這些酶激活了內(nèi)源性絲氨酸代謝途徑,從而降低了絲氨酸缺乏狀態(tài)下對(duì)腫瘤治療的潛在影響。PHGDH作為SSP的首要關(guān)鍵酶,在多種腫瘤的致瘤過(guò)程中起著重要作用。研究表明,PHGDH抑制劑與無(wú)絲氨酸和甘氨酸的培養(yǎng)基(SG)聯(lián)合使用,可以通過(guò)抑制DNA、嘌呤和谷胱甘肽(glutathione,GSH)的合成來(lái)抑制腫瘤生長(zhǎng)[33]。更為關(guān)鍵的是,僅補(bǔ)充一碳單位或甘氨酸并不能恢復(fù)腫瘤細(xì)胞的增殖能力,而同時(shí)補(bǔ)充兩者能夠通過(guò)促進(jìn)ATP和GTP的合成,使細(xì)胞的增殖能力部分恢復(fù)。此外,PHGDH抑制劑和SG聯(lián)合治療對(duì)絲氨酸耗竭產(chǎn)生保護(hù)性反應(yīng),并展現(xiàn)出比單一治療更為顯著的療效[34]。
研究發(fā)現(xiàn),膠質(zhì)母細(xì)胞瘤細(xì)胞對(duì)絲氨酸攝入的依賴(lài)性各不相同。在具有低或中度PHGDH表達(dá)的細(xì)胞(LN308和LN229)中,單獨(dú)的絲氨酸剝奪僅顯示細(xì)胞生長(zhǎng)的顯著減少和缺氧誘導(dǎo)的細(xì)胞死亡的增加,這表明它們依賴(lài)于外源性絲氨酸的攝入,而具有較高PHGDH表達(dá)水平的G55細(xì)胞不太容易受到單一絲氨酸饑餓的影響,CBR5884作為新型小分子PHGDH抑制劑[35],結(jié)合絲氨酸/甘氨酸缺乏的條件可減少腫瘤細(xì)胞的增殖并高度提高細(xì)胞對(duì)缺氧誘導(dǎo)的細(xì)胞死亡敏感性[14]。另外,一種高選擇性的PHGDH抑制劑NCT503和替莫唑胺聯(lián)合治療,對(duì)比單獨(dú)治療更顯著地抑制膠質(zhì)母細(xì)胞瘤的生長(zhǎng)和促進(jìn)細(xì)胞凋亡,特別是在MGMT高表達(dá)的替莫唑胺耐藥膠質(zhì)母細(xì)胞瘤中[36]。另外,瑞戈非尼是一種口服多激酶抑制劑,在體外和體內(nèi)均表現(xiàn)出優(yōu)于替莫唑胺的治療效果,后者是膠質(zhì)母細(xì)胞瘤治療的一線化療藥物。在機(jī)制上,瑞戈非尼直接穩(wěn)定PSAT1,從而觸發(fā)PRKAA依賴(lài)的自噬啟動(dòng),并抑制RAB11A介導(dǎo)的自噬體溶酶體融合,導(dǎo)致膠質(zhì)母細(xì)胞瘤細(xì)胞中致命的自噬阻滯。因此,維持PSAT1的高表達(dá)對(duì)瑞戈非尼殺傷腫瘤細(xì)胞至關(guān)重要[37]。
6總結(jié)
綜上所述,絲氨酸作為一種重要的非必需氨基酸,在腫瘤發(fā)生發(fā)展中扮演重要角色,其功能機(jī)制及相應(yīng)治療策略的研究引發(fā)了廣泛的關(guān)注。絲氨酸是通過(guò)SSP在體內(nèi)生成,與腫瘤細(xì)胞的發(fā)生發(fā)展有著緊密的聯(lián)系。研究揭示,包括神經(jīng)膠質(zhì)瘤在內(nèi)的多種腫瘤中,異常激活的SSP關(guān)鍵酶,例如PHGDH、PSAT1、PSPH等,可能導(dǎo)致腫瘤細(xì)胞的惡性進(jìn)展。針對(duì)SSP作為潛在的治療靶點(diǎn),本研究需要進(jìn)一步的基礎(chǔ)研究和臨床轉(zhuǎn)化研究來(lái)探索其在神經(jīng)膠質(zhì)瘤治療中的實(shí)用性和有效性。通過(guò)深度探索絲氨酸代謝及其相關(guān)關(guān)鍵酶的功能,其可能為神經(jīng)膠質(zhì)瘤的精確醫(yī)療提供新的視角和策略。
利益沖突:所有作者均聲明不存在利益沖突。
[參 考 ?文 ?獻(xiàn)]
[1]Wortel IMN,van der Meer LT,Kilberg MS,et al.Surviving stress:modulation of ATF4mediated stress responses in normal and malignant cells[J].Trends Endocrinol Metab,2017,28(11):794806.
[2]Li XY,Gracilla D,Cai L,et al.ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction[J].Cell Rep,2021,36(12):109706.
[3]Kotarba G,Krzywinska E,Grabowska AI,et al.TFCP2/TFCP2L1/UBP1 transcription factors in cancer[J].Cancer Lett,2018,420:7279.
[4]Luo XY,Ge JW,Liu JF,et al.TFCP2,a binding protein of ATF3,promotes the progression of glioma by activating the synthesis of serine[J].Exp Cell Res,2022,416(1):113136.
[5]Locasale JW.Serine,glycine and onecarbon units:cancer metabolism in full circle[J].Nat Rev Cancer,2013,13(8):572583.
[6]Shetty S,Varshney U.Regulation of translation by onecarbon metabolism in bacteria and eukaryotic organelles[J].J Biol Chem,2021,296:100088.
[7]Ducker GS,Rabinowitz JD.Onecarbon metabolism in health and disease[J].Cell Metab,2017,25(1):2742.
[8]Newman AC,Maddocks ODK.Onecarbon metabolism in cancer[J].Br J Cancer,2017,116(12):14991504.
[9]Zhou XJ,Tian C,Cao YS,et al.The role of serine metabolism in lung cancer:From oncogenesis to tumor treatment[J].Front Genet,2023,13:1084609.
[10]Tanaka K,Sasayama T,Nagashima H,et al.Glioma cells require onecarbon metabolism to survive glutamine starvation[J].Acta Neuropathol Commun,2021,9(1):16.
[11]DeNicola GM,Chen PH,Mullarky E,et al.NRF2 regulates serine biosynthesis in nonsmall cell lung cancer[J].Nat Genet,2015,47(12):14751481.
[12]Possemato R,Marks KM,Shaul YD,et al.Functional genomics reveal that the serine synthesis pathway is essential in breast cancer[J].Nature,2011,476(7360):346350.
[13]Liu JL,Guo SL,Li QZ,et al.Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1[J].J Neurooncol,2013,111(3):245255.
[14]Engel AL,Lorenz NI,Klann K,et al.Serinedependent redox homeostasis regulates glioblastoma cell survival[J].Br J Cancer,2020,122(9):13911398.
[15]Ma CM,Zheng K,Jiang K,et al.The alternative activity of nuclear PHGDH contributes to tumour growth under nutrient stress[J].Nat Metab,2021,3(10):13571371.
[16]Rinaldi G,Pranzini E,Van Elsen J,et al.In vivo evidence for serine biosynthesisdefined sensitivity of lung metastasis,but not of primary breast tumors,to mTORC1 inhibition[J].Mol Cell,2021,81(2):386397.e7.
[17]Zhang D,Li AM,Hu GH,et al.PHGDHmediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy[J].Cell Metab,2023,35(3):517534.e8.
[18]Yang Y,Wu J,Cai J,et al.PSAT1 regulates cyclin D1 degradation and sustains proliferation of nonsmall cell lung cancer cells[J].Int J Cancer,2015,136(4):E39E50.
[19]Jovov B,AraujoPerez F,Sigel CS,et al.Differential gene expression between African American and European American colorectal cancer patients[J].PLoS One,2012,7(1):e30168.
[20]Metcalf S,Dougherty S,Kruer T,et al.Selective loss of phosphoserine aminotransferase 1(PSAT1) suppresses migration,invasion,and experimental metastasis in triple negative breast cancer[J].Clin Exp Metastasis,2020,37(1):187197.
[21]Zhang YQ,Li JJ,Dong XH,et al.PSAT1 regulated oxidationreduction balance affects the growth and prognosis of epithelial ovarian cancer[J].Onco Targets Ther,2020,13:54435453.
[22]Yun HJ,Li M,Guo D,et al.AMPKHIF1α signaling enhances glucosederived de novo serine biosynthesis to promote glioblastoma growth[J].J Exp Clin Cancer Res,2023,42(1):340.
[23]Giardina G,Paone A,Tramonti A,et al.The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells[J].FEBS J,2018,285(17):32383253.
[24]Luo LX,Zheng YS,Lin ZP,et al.Identification of SHMT2 as a potential prognostic biomarker and correlating with immune infiltrates in lung adenocarcinoma[J].J Immunol Res,2021,2021:6647122.
[25]Woo CC,Chen WC,Teo XQ,et al.Downregulating serine hydroxymethyltransferase 2(SHMT2) suppresses tumorigenesis in human hepatocellular carcinoma[J].Oncotarget,2016,7(33):5300553017.
[26]Wang B,Wang W,Zhu ZZ,et al.Mitochondrial serine hydroxymethyltransferase 2 is a potential diagnostic and prognostic biomarker for human glioma[J].Clin Neurol Neurosurg,2017,154:2833.
[27]Kim D,F(xiàn)iske BP,Birsoy K,et al.SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance[J].Nature,2015,520(7547):363367.
[28]Maddocks ODK,Berkers CR,Mason SM,et al.Serine starvation induces stress and p53dependent metabolic remodelling in cancer cells[J].Nature,2013,493:542546.
[29]Labuschagne CF,van den Broek NJF,MacKay GM,et al.Serine,but not glycine,supports onecarbon metabolism and proliferation of cancer cells[J].Cell Rep,2014,7(4):12481258.
[30]Chaneton B,Hillmann P,Zheng L,et al.Serine is a natural ligand and allosteric activator of pyruvate kinase M2[J].Nature,2012,491(7424):458462.
[31]Ye JB,Mancuso A,Tong XM,et al.Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation[J].Proc Natl Acad Sci USA,2012,109(18):69046909.
[32]Ding J,Li T,Wang XW,et al.The histone H3 methyltransferase G9A epigenetically activates the serineglycine synthesis pathway to sustain cancer cell survival and proliferation[J].Cell Metab,2013,18(6):896907.
[33]Montrose DC,Saha S,F(xiàn)oronda M,et al.Exogenous and endogenous sources of serine contribute to colon cancer metabolism,growth,and resistance to 5fluorouracil[J].Cancer Res,2021,81(9):22752288.
[34]Tajan M,Hennequart M,Cheung EC,et al.Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy[J].Nat Commun,2021,12(1):366.
[35]Mullarky E,Lucki NC,Beheshti Zavareh R,et al.Identification of a small molecule inhibitor of 3phosphoglycerate dehydrogenase to target serine biosynthesis in cancers[J].Proc Natl Acad Sci USA,2016,113(7):17781783.
[36]Jin L,Kiang KMY,Cheng SY,et al.Pharmacological inhibition of serine synthesis enhances temozolomide efficacy by decreasing O6methylguanine DNA methyltransferase(MGMT) expression and reactive oxygen species(ROS)mediated DNA damage in glioblastoma[J].Lab Invest,2022,102(2):194203.
[37]Jiang J,Zhang L,Chen H,et al.Regorafenib induces lethal autophagy arrest by stabilizing PSAT1 in glioblastoma[J].Autophagy,2020,16(1):106122.