国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

2-D離散時(shí)滯系統(tǒng)的新時(shí)滯相關(guān)穩(wěn)定性準(zhǔn)則

2024-05-15 05:58:36彭丹張明霞
關(guān)鍵詞:離散系統(tǒng)上界時(shí)變

彭丹 張明霞

摘? 要:研究了具有時(shí)變時(shí)滯的二維(two-dimensional,2-D)離散系統(tǒng)的時(shí)滯相關(guān)穩(wěn)定性問(wèn)題.所創(chuàng)建的Lyapunov-Krasovskii泛函(Lyapunov-Krasovskii functionals,LKFs)考慮在二次項(xiàng)和單項(xiàng)求和項(xiàng)中引入時(shí)滯相關(guān)矩陣,包含了更多的狀態(tài)信息.同時(shí)在單項(xiàng)求和項(xiàng)中引入增廣向量矩陣,并給出適用于2-D系統(tǒng)的多重輔助函數(shù)不等式和互凸組合不等式,用于處理LKFs差分,以便降低計(jì)算負(fù)擔(dān).然后,為具有時(shí)變時(shí)滯的2-D離散系統(tǒng)推導(dǎo)出保守性更小的穩(wěn)定性準(zhǔn)則.通過(guò)兩個(gè)數(shù)值算例驗(yàn)證了所設(shè)計(jì)方法的有效性和優(yōu)越性.

關(guān)鍵詞:二維離散系統(tǒng);時(shí)變時(shí)滯;Lyapunov-Krasovskii泛函;多重輔助函數(shù)不等式;互凸組合不等式

中圖分類號(hào):O231????? 文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2024)03-0050-12

二維(2-D)系統(tǒng)通常被視為有兩個(gè)獨(dú)立的自變量.由于其在自動(dòng)控制、迭代學(xué)習(xí)控制、多維數(shù)字濾波器等多個(gè)學(xué)科和工程領(lǐng)域發(fā)揮著重要作用,2-D離散系統(tǒng)越來(lái)越受到關(guān)注[1-2].因此,許多學(xué)者對(duì)2-D離散系統(tǒng)進(jìn)行了廣泛研究,并取得了許多成果[3].

眾所周知,在很多實(shí)際系統(tǒng)中,時(shí)滯都是不可避免的,例如通信系統(tǒng),電力系統(tǒng),網(wǎng)絡(luò)傳輸系統(tǒng)[4-6].所以時(shí)滯是現(xiàn)實(shí)生活以及實(shí)際工程系統(tǒng)中有待解決的問(wèn)題[7-11].時(shí)滯的存在,一方面使系統(tǒng)的動(dòng)態(tài)性能變差,甚至造成系統(tǒng)的不穩(wěn)定.另一方面,在一些控制系統(tǒng)中,人們可以利用時(shí)滯來(lái)提高控制效果,比如在重復(fù)控制系統(tǒng)中,需要利用時(shí)滯來(lái)達(dá)到預(yù)期目標(biāo)[12-15].為了更好地利用時(shí)滯解決實(shí)際問(wèn)題,避免其不良后果,有必要從理論角度更加深入地分析和理解時(shí)滯對(duì)動(dòng)態(tài)系統(tǒng)的影響.

由于離散系統(tǒng)更適用于實(shí)際生活而逐漸受到更多的關(guān)注,離散系統(tǒng)的穩(wěn)定性也因此成為一個(gè)熱門話題.因此,針對(duì)1-D離散系統(tǒng)中LKFs的設(shè)計(jì)方面已經(jīng)得到突破[16-23].文獻(xiàn)[24]構(gòu)建了一個(gè)新的LKFs,其中包含兩個(gè)時(shí)滯相關(guān)矩陣,一個(gè)具有單項(xiàng)求和項(xiàng),另一個(gè)具有二次項(xiàng),用來(lái)研究離散時(shí)滯系統(tǒng)的穩(wěn)定性.但是,由于2-D系統(tǒng)的結(jié)構(gòu),即信息傳播發(fā)生在兩個(gè)獨(dú)立的方向上,選取的LKFs通常導(dǎo)致系統(tǒng)的保守性較大[25].目前對(duì)于2-D離散系統(tǒng)的研究,文獻(xiàn)[26]采用LKFs方法研究了2-D連續(xù)離散系統(tǒng)的有限區(qū)域耗散控制問(wèn)題.文獻(xiàn)[27]給出了2-D離散系統(tǒng)的穩(wěn)定性準(zhǔn)則,其中LKFs是使用LMIs的區(qū)間時(shí)變時(shí)滯結(jié)合時(shí)滯分區(qū)的方法所設(shè)計(jì).文獻(xiàn)[28]研究了基于時(shí)滯分區(qū)的LKFs來(lái)分析2-D離散系統(tǒng)的時(shí)滯相關(guān)穩(wěn)定性問(wèn)題.文獻(xiàn)[29]構(gòu)建的增廣LKFs充分利用了時(shí)滯變化的信息.以上針對(duì)1-D離散系統(tǒng)研究的文獻(xiàn)都在LKFs的構(gòu)造中進(jìn)行了創(chuàng)新,同時(shí)考慮到了更多的狀態(tài)信息.然而,到目前為止,還沒(méi)有關(guān)于在2-D離散系統(tǒng)中將時(shí)滯相關(guān)技術(shù)擴(kuò)展到LKFs求和項(xiàng)的文章.基于上述分析,本文的主要?jiǎng)?chuàng)新點(diǎn)如下:

收稿日期:2023-01-12;修回日期:2023-03-17.

基金項(xiàng)目:國(guó)家自然科學(xué)基金杰出青年科學(xué)基金(61825304);河北省自然科學(xué)基金(F2022203085);河北省省級(jí)科技計(jì)劃資助(F2020203037);河北省自然科學(xué)基金創(chuàng)新研究群體項(xiàng)目(F2020203013).

作者簡(jiǎn)介(通信作者):彭丹(1978-),女,吉林吉林市人,燕山大學(xué)教授,博士,研究方向?yàn)?-D非線性系統(tǒng)和時(shí)滯系統(tǒng),E-mail:dpeng1219@163.com.

引用本文:彭丹,張明霞.2-D離散時(shí)滯系統(tǒng)的新時(shí)滯相關(guān)穩(wěn)定性準(zhǔn)則[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,52(3):50-61.(Peng Dan,Zhang Mingxia.New delay-variation-dependent stability criterion for 2-D discrete systems with delays[J].Journal of Henan Normal University(Natural Science Edition),2024,52(3):50-61.DOI:10.16366/j.cnki.1000-2367.2023.01.12.0001.)

1)建立具有時(shí)變時(shí)滯的2-D離散系統(tǒng)模型,將時(shí)滯相關(guān)矩陣P1(d1(i)),P2(d2(j)),Q1(d1(i)),Q2(d2(j))和增廣向量矩陣ξk(i,j)(k=1,2,3,4)分別添加到二次項(xiàng)和單項(xiàng)求和項(xiàng)中,同時(shí)所創(chuàng)建的LKFs還包含三重求和項(xiàng),例如5=∑-d1m-1s=-d1M∑-d1m-1u=s∑-1ν=uyT(i+ν,j)R1y(i+ν,j)(與水平方向相關(guān)),這包含了有關(guān)時(shí)滯上界和下界的更多信息,從而得到保守性更小的穩(wěn)定性準(zhǔn)則和較大的時(shí)滯上界.

2)新的2-D加權(quán)求和不等式應(yīng)用于LKFs前向差分中有限和項(xiàng)的處理,加權(quán)不等式的存在簡(jiǎn)化了計(jì)算過(guò)程,降低了系統(tǒng)穩(wěn)定性準(zhǔn)則的計(jì)算負(fù)擔(dān),同時(shí)促進(jìn)了2-D系統(tǒng)理論的發(fā)展.然后根據(jù)LMIs推導(dǎo)出新的時(shí)滯相關(guān)穩(wěn)定性準(zhǔn)則.與參考文獻(xiàn)中時(shí)滯相關(guān)的穩(wěn)定性結(jié)果相比,本文推導(dǎo)的結(jié)果利用的決策變量的數(shù)目更少,并且適用于更廣泛的時(shí)滯范圍.

1? 模型描述

考慮2-D離散時(shí)變時(shí)滯系統(tǒng),如下:x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+A1dx(i-d1(i),j+1)+A2dx(i+1,j-d2(j)),(1)

其中x(i,j)∈Rn是狀態(tài)向量,i,j∈N.A1,A2,A1d和A2d是具有適當(dāng)維度的常量矩陣.d1(i)和d2(j)分別是水平和豎直方向上的時(shí)變時(shí)滯,分別滿足: 0<d1md1(i)d1M,0<d2md2(j)d2M,μ1mΔd1(i)=d1(i+1)-d1(i)μ1M,μ2mΔd2(j)=d2(j+1)-d2(j)μ2M,(2)

其中d1m,d2m,d1M和d2M是常量正整數(shù),表示時(shí)滯邊界,μ1m,μ2m,μ1M和μ2M是常量整數(shù),表示時(shí)滯變化范圍.邊界條件假定為:x(i,j)=φi,j,0ir1,j=-d2M,-d2M+1,…,0,

x(i,j)=0,i>r1,j=-d2M,-d2M+1,…,0,x(i,j)=ψi,j,0jr2,i=-d1M,-d1M+1,…0,

x(i,j)=0,j>r2,i=-d1M,-d1M+1,…,0,φ0,0=ψ0,0,(3)

其中r1和r2是正整數(shù).

鑒于上述形式,本文旨在找到新的穩(wěn)定性準(zhǔn)則保證系統(tǒng)(1)穩(wěn)定.為了推導(dǎo)出本文結(jié)果,提供了適用于2-D系統(tǒng)的多重輔助函數(shù)不等式[30]以及互凸組合不等式[31].

引理1[30]? 對(duì)于給定的正定n×n矩陣R,3個(gè)給定的非負(fù)整數(shù)a,b,k滿足a<bk,一個(gè)向量函數(shù)x(·)∈Rn并且表示y(s,j)=x(s+1,j)-x(s,j),y(i,s)=x(i+1,s)-x(i,s),有:1)∑-a-1s=-byT(s,1)Ry(s,1)1b-a(0a,b)TR(0a,b)+3b-a(1a,b)TR(1a,b)+5b-a(2a,b)TR(2a,b),

2)∑-a-1s=-b∑-a-1u=syT(u,1)Ry(u,1)2(3a,b)TR(3a,b)+4(4a,b)TR(4a,b),(4)

其中0a,b=x(-a,1)-x(-b,1),1a,b=x(-a,1)+x(-b,1)-2b-a+1∑-au=-bx(u,1),

2a,b=x(-a,1)-x(-b,1)+6b-a+1∑-au=-bx(u,1)-12(b-a+1)(b-a+2)∑-as=-b∑-au=sx(u,1),

3a,b=x(-a,1)-1b-a+1∑-au=-bx(u,1),

4a,b=x(-a,1)+2b-a+1∑-au=-bx(u,1)-6(b-a+1)(b-a+2)∑-as=-b∑-au=sx(u,1).

引理2[31]? 對(duì)于任何向量ξ∈Rmx,矩陣R1,R2∈Snx+,S∈Rnx×nx,W1,W2∈Rnx×mx和實(shí)標(biāo)量α>0,β>0滿足α+β=1,滿足以下不等式:1αξTWT1R1W1ξ+1βξTWT2R2W2ξξTW1W2TR1SSTR2W1W2ξ,(5)

滿足R1SSTR20.

2? 穩(wěn)定性分析

本節(jié)給出了使用增廣LKFs推導(dǎo)出的新穩(wěn)定性準(zhǔn)則.新型LKFs的形式如下:V=+=∑5k=1k+∑5k=1k,(6)

其中1=ξT1P1(d1(i))ξ1,2=1∑-d1m+1s=-d1MξT3(i+s,j)Q1(d1(i))ξ3(i+s,j),

3=1∑-1s=-d1M∑-1u=syT(i+u,j)Q3y(i+u,j),

4=∑-1s=-d1M∑-1u=s∑-1ν=uyT(i+ν,j)S1y(i+ν,j),5=∑-d1m-1s=-d1M∑-d1m-1u=s∑-1ν=uyT(i+ν,j)R1y(i+ν,j),

1=ξT2P2(d2(j))ξ2,2=2∑-d2m+1s=-d2MξT4(i,j+s)Q2(d2(j))ξ4(i,j+s),

3=2∑-1s=-d2M∑-1u=syT(i,j+u)Q4y(i,j+u),

4=∑-1s=-d2M∑-1u=s∑-1ν=uyT(i,j+ν)S2y(i,j+ν),5=∑-d2m-1s=-d2M∑-d2m-1u=s∑-1ν=uyT(i,j+ν)R2y(i,j+ν),

以及

ξ1(i,j)=[xT(i,j)? xT(i-d1(i),j)? ∑-1s=-d1m]xT(i+s,j)? ∑-1s=-d1m∑-1u=sxT(i+u,j)]T,

ξ2(i,j)=[xT(i,j)? xT(i,j-d2(i))? ∑-1s=-d2m]xT(i,j+s)? ∑-1s=-d2m∑-1u=sxT(i,j+u)]T,

ξ3(s,j)=[y(s,j)? x(s,j)? ∑-d1m-1u=sy(u,j)]T,ξ4(i,s)=[y(i,s)? x(i,s)? ∑-d2m-1u=sy(i,u)]T.

本文的創(chuàng)新之處是在創(chuàng)建LKFs(6)時(shí),常數(shù)矩陣P1,P2和Q1,Q2被時(shí)滯相關(guān)矩陣P1(d1(i)),P2(d2(j))和Q1(d1(i)),Q2(d2(j))所替代,這些矩陣包含更多的時(shí)變時(shí)滯信息.另一方面,增廣向量矩陣ξ1(i,j),ξ2(i,j),ξ3(i,j),ξ4(i,j)被添加到單項(xiàng)求和項(xiàng)中.受文獻(xiàn)[24]中結(jié)果的啟發(fā),二次項(xiàng)中的時(shí)滯相關(guān)矩陣P1(d1(i)),P2(d2(j)),Q1(d1(i))和Q(d2(j))構(gòu)造如下形式:P1(d1(i))=(d1M-d1(i))P111(i,0)+(d1(i)-d1m)P211(i,0)P12*P22,

P2(d2(j))=(d2M-d2(j))P111(0,j)+(d2(j)-d2m)P211(0,j)P12*P22,(7)

Q1(d1(i))=(d1(i)-d1m)Q111(i,0)+(d1M-d1(i))Q211(i,0)+Q10Q12*Q22,

Q2(d2(j))=(d2(j)-d2m)Q111(0,j)+(d2M-d2(j))Q211(0,j)+Q10Q12*Q22,(8)

需要以下表示以便推導(dǎo)出結(jié)果:

α1=d1(i)-d1m1,β1=d1M-d1(i)1,μ1=max{|μ1m|,|μ1M|},a,b=1b-a+1∑-as=-bx(s,1),

α2=d2(j)-d2m2,β2=d2M-d2(j)2,μ2=max{|μ2m|,|μ2M|},a,b=1b-a+1∑-as=-bx(1,s),

a,b=1(b-a+1)(b-a+2)∑-as=-b∑-au=sx(s,1),1=d1M-d1m,l=diag{Rl,Rl,Rl},l=1,2,

a,b=1(b-a+1)(b-a+2)∑-as=-b∑-au=sx(1,s),2=d2M-d2m,k=diag{Sk,Sk,Sk},k=1,2,

ei=[0n×(i-1)n? In? 0n×(32-i)n],i=1,2,…,32,es=A1eT1+A2eT2+A3deT3+A4deT4,

ζ=col{x0,1,x1,0,x-d1(i),1,x1,-d2(j),x-d1m,1,x1,-d2m,x-d1M,1,x1,-d2M,x-d1m+1,1,x1,-d2m+1,x-d1M+1,1,x1,-d1M+1,

Δx-d1(i),1,Δx1,-d2(j),Δx0,1,Δx1,0,0,d1m,0,d2m,0,d1m,0,d2m,d1(i),d1M,d2(j),d2M,d1m,d1(i),d2m,d2(j),

d1(i),d1M,d2(j),d2M,d1m,d1(i),d2m,d2(j),0,d1M,0,d2M,0,d1M,0,d2M},

Π0=[eTs? eT3+eT13? (d1m+1)eT17-eT5? (d1m+1)(d1m+2)eT19-(d1m+1)eT5]T,ρ1=e9-e5,

Π3=[eTs? eT4+eT14? (d2m+1)eT18-eT6? (d2m+1)(d2m+2)eT20-(d1m+1)eT6]T,ρ2=e10-e6,

Π1=[eT1? eT3? (d1m+1)eT17-eT1? (d1m+1)(d1m+2)eT19-(d1m+1)eT1]T,ρ13=es-e1,

Π4=[eT2? eT4? (d2m+1)eT18-eT2? (d2m+1)(d2m+2)eT20-(d2m+1)eT2]T,ρ14=es-e2,

Π2=[eTs-eT1? eT13? eT1-eT5? (d1m+1)eT1-(d1m+1)eT5]T,Π7=[eT11-eT7? eT7? eT5-eT7]T,

Π5=[eTs-eT2? eT14? eT2-eT6? (d2m+1)eT2-(d2m+1)eT6]T,Π11=[eT12-eT8? eT8eT6-eT8]T,

Π9=[eT9-eT11? (d1M-d1(i)+1)eT21+(d1(i)-d1m+1)eT23-eT3-eT7? 1eT5-(d1M-

d1(i)+1)eT21-(d1(i)-d1m+1)eT23+eT3+eT7]T,ρ15=[ρT5? ρT3]T,

Π13=[eT10-eT12? (d2M-d2(j)+1)eT22+(d2(j)-d1m+1)eT24-eT4-eT8? 2eT6-(d2M-

d2(j)+1)eT22-(d2(j)-d1m+1)eT24+eT4+eT8]T,ρ16=[ρT6? ρT4]T,

ρ3=[eT3-eT7? 3(eT3+eT7-2eT21)? 5(eT3-eT7+6eT21-12eT25)]T,Π6=[eT9-eT5? eT5? 0]T,

ρ4=[eT4-eT8? 3(eT4+eT8-2eT22)? 5(eT4-eT8+6eT22-12eT26)]T,Π10=[eT10-eT6? eT6? 0]T,

ρ5=[eT5-eT3? 3(eT5+eT3-2eT23)? 5(eT5-eT3+6eT23-12eT27)]T,Π8=[0? 0? eT9-eT5]T,

ρ6=[eT6-eT4? 3(eT6+eT4-2eT24)? 5(eT6-eT4+6eT24-12eT28)]T,Π12=[0? 0? eT10-eT6]T,

ρ7=[2(eT1-eT29)? 2(eT1+2eT29-6eT31)]T,ρ9=[2(eT3-eT21)? 2(eT3+2eT21-6eT25)]T,

ρ8=[2(eT2-eT30)? 2(eT2+2eT30-6eT32)]T,ρ10=[2(eT4-eT22)? 2(eT4+2eT22-6eT26)]T,

ρ11=[2(eT5-eT23)? 2(eT5+2eT23-6eT27)]T,ρ12=[2(eT6-eT24)? 2(eT6+2eT24-6eT28)]T,

j11=diag{j11,j11,j11},j=1,2,i=diag{Ni,Ni,Ni},i=1,2,

θ1(Δd1(i))=1X1*1,Ξ1(Δd1(i))=111X3*111,Ξ2(Δd1(i))=211X4*211,

θ2(Δd2(j))=2X2*2,Ξ3(Δd2(j))=111X5*111,Ξ4(Δd2(j))=211X6*211.

以下定理是本文推導(dǎo)出的2-D離散時(shí)變時(shí)滯系統(tǒng)(1)的新穩(wěn)定性準(zhǔn)則.

定理1? 系統(tǒng)(1)是漸近穩(wěn)定的,如果存在4個(gè)4n×4n矩陣P111(Δd1(i))>0,P211(Δd1(i))>0,P111(Δd2(j))>0,P211(Δd2(j))>0,1個(gè)4n×2n矩陣P12,1個(gè)2n×2n矩陣P22>0,5個(gè)n×n對(duì)稱矩陣Q111(Δd1(i)),Q211(Δd1(i)),Q111(Δd2(j)),Q211(Δd2(j))和Q10,1個(gè)n×2n矩陣Q12,1個(gè)2n×2n矩陣滿足Q22>0,6個(gè)n×n矩陣Q3>0,Q4>0,S1>0,S2>0,R1>0以及R2>0,6個(gè)3n×3n對(duì)稱矩陣X1,i=1,2,…,6,使得以下LMIs成立:1Pi11P12*P22>0,1Qi11Q10Q12*Q22>0,

2Pi11P12*P22>0,2Qi11Q10Q12*Q22>0,? i=1,2,(9)

N-1∶=Q3-(μ1Q111(Δd1(i))+μ1Q211(Δd1(j)))>0,N-2∶=Q4-(μ2Q111(Δd2(i))+μ2Q211(Δd2(j)))>0,(10)

1+1X1*10,111X3*1110,111X5*1110,

2+2X2*20,211X4*2110,211X6*2110,(11)

Ψ(Δd1(i),Δd2(j))<0,(Δd1(i),Δd2(j))∈{μ1m,μ1M}×{μ2m,μ2M},(12)

其中

Ψ(Δd1(i),Δd2(j))=Ψ1(Δd1(i),Δd2(j))-Ψ2(Δd1(i),Δd2(j)),

Ψ1(Δd1(i),Δd2(j))=ξT{Δd1(i)∏T0(-P111+P211)∏0+Δd2(j)∏T3(-P111+P211)∏3+

∏T2P1∏2+1Δd1(i)ρT1(Q111-Q211)ρ1+1∏T6Q1(d1(i))∏6-2∏T11Q2(d2(j))∏11+

∏T5P2∏5+2Δd2(j)ρT2(Q111-Q211)ρ2+2∏T10Q2(d2(j))∏10-1∏T7Q1(d1(i))∏7+

21∏T8Q1(d1(i))∏8+22ρT14Q4ρ14+d1M(d1M+1)2ρT13S1Ρ13+d1(d1+1)2eT15R1e15+

22∏T12Q2(d2(j))∏12+21ρT12Q3ρ12+d2M(d2M+1)2ρT14S2ρ14+d2(d2+1)2eT16R2e16+

sym(∏T1P1∏2+∏T4P2∏5+1∏T9Q(d1(i))∏8+2∏T13Q(d2(j))∏13)}ξ,

Ψ2(Δd1(i),Δd2(j))=ρT71ρ7+ρT82ρ8+ρT91ρ9+ρT102ρ10+ρT111ρ11+ρT122ρ12+

ρT15(Q1(Δd1(i))+(μ1-Δd1(i))Ξ1(Δd1(i))+(μ1+Δd1(i))Ξ2(Δd1(i))ρ15+

ρT16(Q2(Δd2(i))+(μ2-Δd2(i))Ξ3(Δd2(i))+(μ2+Δd2(i))Ξ4(Δd2(i))ρ16.

證明? 考慮LKF(6)與4個(gè)時(shí)滯相關(guān)矩陣P1(d1(i)),P2(d2(j)),Q1(d1(i))和Q2(d2(j))被表示如式(7)和(8).通過(guò)計(jì)算,矩陣P1(d1(i)),P2(d2(j)),P1(d1(i+1)),P2(d2(j+1)),Q1(d1(i)),Q2(d2(j)),Q1(d1(i+1))和Q2(d2(j+1))可重新表示如下:P1(d1(i))=11(d1M-d1(i))1P111(i,0)P12*P22+(d1(i)-d1m)1P211(i,0)P12*P22,

P2(d2(j))=12(d2M-d2(i))2P111(0,j)P12*P22+(d2(j)-d2m)2P211(0,j)P12*P22,

Q1(d1(i))=11(d1M-d1(i))1Q111(i,0)+Q10Q12*Q22+(d1(i)-d1m)1Q211(i,0)+Q10Q12*Q22,

Q2(d2(j))=12(d2M-d2(j))2Q111(0,j)+Q10Q12*Q22+(d2(j)-d2m)2Q211(0,j)+Q10Q12*Q22,(13)

P1(d1(i+1))=Δd1(i)(-P111(i,0)+P211(i,0))04n×2n04n×2n02n×2n+P1(d1(i)),

P2(d2(j+1))=Δd2(j)(-P111(0,j)+P211(0,j))04n×2n04n×2n02n×2n+P2(d2(j)),

Q1(d1(i+1))=Δd1(i)(Q111(i,0)-Q211(i,0))0n×2n02n×n02n×2n+Q1(d1(i)),

Q2(d2(j+1))=Δd2(j)(Q111(0,j)-Q211(0,j))0n×2n02n×n02n×2n+Q2(d2(j)),(14)

通過(guò)使用式(14)、(20)和(21),得到了P(d1(i))>0,P(d2(j))>0,Q1(d1(i))>0和Q2(d2(j))>0,這意味著存在一個(gè)正數(shù)λ1>0,能夠使得Vλ1‖x(i,j)‖2>0,i=1,2,…,j=1,2,…,(15)

根據(jù)V作前向差分,ΔV(i,j)=V(i+1,j+1)-V(i,j),可得到:

Δ1=ζT{Δd1(i)∏T0(-P111(i,0)+P211(i,0))∏0+∏T2P1∏2+sym(∏T1P1∏2)}ζ,

Δ2=ζT{1Δd1(i)ρT1(Q111-Q211)ρ1+1∏T6Q1(d1(i))∏6-1∏T7Q1(d1(i))∏7+

21∏T8Q1(d1(i))∏8+sym(1∏T9Q1(d1(i))∏8)}ζ+

1Δd1(i)∑-d1ms=-d1M+1yT(s,1)(Q111(i,0)-Q211(i,0))y(s,1),

Δ3=21yT(0,1)Q3y(0,1)-1∑-d1m-1s=-d1MyT(s,1)Q3y(s,1),

Δ4=d1M(d1M+1)2yT(0,1)S1y(0,1)-∑-1s=-d1M∑-1u=syT(u,1)S1y(u,1),

Δ5=1(1+1)2yT(0,1)R1y(0,1)-∑-d1(i)-1s=-d1M∑-d1(i)-1u=syT(u,1)R1y(u,1)-

(d1M-d1(i))∑-d1m-1u=-d1(i)yT(u,1)R1y(u,1)-∑-d1m-1s=-d1(i)∑-d1m-1u=syT(u,1)R1y(u,1).

使用類似的方法處理Δ,得到:

Δ1=ζT{Δd2(j)∏T3(-P111(0,j)+P211(0,j))∏3+∏T5P2∏5+sym(∏T4P2∏5)}ζ,

Δ2=ζT{2Δd2(j)ρT2(Q111-Q211)ρ2+2∏T10Q2∏10-2∏T11Q2∏11+22∏T12Q2∏12+

sym(2∏T13Q2∏13)}ζ+2Δd2(j)∑-d1m-1s=-d1M+1yT(1,s)(Q111(0,j)-Q211(0,j))y(1,s),

Δ3=22yT(1,0)Q4y(1,0)-2∑-d2m-1s=-d2MyT(1,s)Q4y(1,s),

Δ4=d2M(d2M+1)2yT(1,0)S2y(1,0)-∑-1s=-d2M∑-1u=syT(1,u)S2y(1,u),

Δ5=2(2+1)2yT(1,0)R2y(1,0)-∑-d2(j)-1s=-d2M∑-d2(j)-1u=syT(1,u)R2y(1,u)-

(d2M-d2(j))∑-d2m-1u=-d2(j)yT(1,u)R2y(1,u)-∑-d2m-1s=-d2(j)∑-d2m-1u=syT(1,u)R2y(1,u).

根據(jù)N1∶=Q3-(μ1Q111+μ1Q211),N2∶=Q4-(μ2Q111+μ2Q211),Δ3,Δ3中的第2個(gè)積分項(xiàng)就可表示為:

-1∑-d1m-1s=-d1MyT(s,1)Q3y(s,1)=-1∑-d1(i)-1s=-d1MyT(s,1)N1y(s,1)-1∑-d1m-1s=-d1(i)yT(s,1)N1y(s,1)-

μ11∑-d1(i)-1s=-d1MyT(s,1)Q111y(s,1)-μ11∑-d1m-1s=-d1(i)yT(s,1)Q111y(s,1)-

μ11∑-d1(i)-1s=-d1MyT(s,1)Q211y(s,1)-μ11∑-d1m-1s=-d1(i)yT(s,1)Q211y(s,1),

-2∑-d2m-1s=-d2MyT(1,s)Q4y(1,s)=-2∑-d2(j)-1s=-d2MyT(1,s)N2y(1,s)-2∑-d2m-1s=-d2(j)yT(1,s)N2y(1,s)-

μ22∑-d2(j)-1s=-d2MyT(1,s)Q111y(1,s)-μ22∑-d2m-1s=-d2(j)yT(1,s)Q111y(1,s)-

μ22∑-d2(j)-1s=-d2MyT(1,s)Q211y(1,s)-μ22∑-d2m-1s=-d2(j)yT(1,s)Q211y(1,s).

因此,就得到:

ΔV=ζTΨ1[Δd1(i),Δd2(j)]ζ-1∑-d1(i)-1s=-d1MyT(s,1)N1y(s,1)-2∑-d2(j)-1s=-d2MyT(1,s)N2y(1,s)-

1∑-d1m-1s=-d1(i)yT(s,1)N1y(s,1)-1(μ1-Δd1(i))∑-d1(i)-1s=-d1MyT(s,1)Q111y(1,s)-

2∑-d2m-1s=-d2(j)yT(1,s)N2y(1,s)-1(μ1-Δd1(i))∑-d1m-1s=-d1(i)yT(s,1)Q111y(s,1)-

1(μ1+Δd1(i))∑-d1(i)-1s=-d1MyT(s,1)Q211y(s,1)-(d2M-d2(j))∑-d2m-1s=-d2(j)yT(1,s)R2y(1,s)-

2(μ2-Δd2(j))∑-d2(j)-1s=-d2MyT(1,s)Q111y(1,s)-(d1M-d1(i))∑-d1m-1s=-d1(i)yT(s,1)R1y(s,1)-

2(μ2+Δd2(j))∑-d2m-1s=-d2(j)yT(1,s)Q211y(1,s)-∑-1s=-d2M∑-1u=syT(1,u)S2y(1,u)-

2(μ2+Δd2(j))∑-d2(j)-1s=-d2MyT(1,s)Q211y(1,s)-∑-1s=-d1M∑-1u=syT(u,1)S1y(u,1)-

∑-d1(i)-1s=-d1M∑-d1(i)-1u=syT(u,1)R1y(u,1)-1(μ1+Δd1(i))∑-d1m-1s=-d1(i)yT(s,1)Q211y(s,1)-

∑-d2(j)-1s=-d2M∑-d2(j)-1u=syT(1,u)R2y(1,u)-2(μ2+Δd2(j))∑-d2m-1s=-d2(j)yT(1,s)Q111y(1,s)-

∑-d1m-1s=-d1(i)∑-d1m-1u=syT(u,1)R1y(u,1)-∑-d2m-1s=-d2(j)∑-d2m-1u=syT(1,u)R2y(1,u).

由于Q111(i,0)>0,Q211(i,0)>0,Q111(0,j)>0,Si>0,Ri>0,i=1,2和N1>0,N2>0,通過(guò)使用α1,α2,β1,β2,可得到:-1∑-d1m-1s=-d1(i)yT(s,1)N1y(s,1)-1α1ζT{ρT51ρ5}ζ,

-2∑-d2m-1s=-d2(j)yT(1,s)N2y(1,s)-1α2ζT{ρT62ρ6}ζ,

-1∑-d1(i)-1s=-d1MyT(s,1)N1y(s,1)-1β1ζT{ρT31ρ3}ζ,

-2∑-d2(j)-1s=-d2MyT(1,s)N2y(1,s)-1β2ζT{ρT42ρ4}ζ,

∑-1s=-d1M∑-1u=syT(u,1)S1y(u,1)ζT{-ρT71ρ7}ζ,

∑-1s=-d2M∑-1u=syT(1,u)S1y(1,u)ζT{-ρT82ρ8}ζ,

∑-d1(i)-1s=-d1M∑-d1(i)-1u=syT(u,1)R1y(u,1)ζT{-ρT91ρ9}ζ,

∑-d2(j)-1s=-d2M∑-d2(j)-1u=syT(1,u)R2y(1,u)ζT{-ρT102ρ10}ζ,

∑-d1m-1s=-d1(i)∑-d1m-1u=syT(u,1)R1y(u,1)ζT{-ρT111ρ11}ζ,

∑-d2m-1s=-d2(j)∑-d2m-1u=syT(1,u)R2y(1,u)ζT{-ρT122ρ12}ζ,

-(d1M-d1(i))∑-d1m-1s=-d1(i)yT(s,1)R1y(s,1)-(1α1-1)ζT{ρT51ρ5}ζ,

-(d2M-d2(j))∑-d2m-1s=-d2(j)yT(1,s)R2y(1,s)-(1α2-1)ζT{ρT62ρ6}ζ,

-1(μ1-Δd1(i))∑-d1(i)-1s=-d1MyT(s,1)Q111y(s,1)-(μ1-Δd1(i))1β1ζT{ρT3111ρ3}ζ,

-1(μ1+Δd1(i))∑-d1(i)-1s=-d1MyT(s,1)Q211y(s,1)-(μ1+Δd1(i))1β1ζT{ρT3211ρ3}ζ,

-2(μ2-Δd2(j))∑-d2(j)-1s=-d2MyT(1,s)Q111y(1,s)-(μ2-Δd2(j))1β2ζT{ρT4111ρ4}ζ,

-1(μ1+Δd1(i))∑-d1m-1s=-d1(i)yT(s,1)Q111y(s,1)-(μ1-Δd1(i))1α1ζT{ρT5111ρ5}ζ,

-1(μ1-Δd1(i))∑-d1m-1s=-d1(i)yT(s,1)Q211y(s,1)-(μ1+Δd1(i))1α1ζT{ρT5211ρ5}ζ,

-2(μ2-Δd2(j))∑-d2m-1s=-d2(j)yT(1,s)Q111y(1,s)-(μ2-Δd2(j))1α2ζT{ρT6111ρ6}ζ,

-2(μ2+Δd2(j))∑-d2m-1s=-d2(j)yT(1,s)Q211y(1,s)-(μ2+Δd2(j))1α2ζT{ρT6211ρ6}ζ,

-2(μ2+Δd2(j))∑-d2(j)-1s=-d2MyT(1,s)Q211y(1,s)-(μ2+Δd2(j))1β2ζT{ρT4211ρ4}ζ,

根據(jù)(10)和(11),通過(guò)使用引理2,就可得到以下6個(gè)估計(jì)不等式:

-1α1ζT{ρT51ρ5}ζ-1β1ζT{ρT31ρ3}ζ-(1α1-1)ζT{ρT51ρ5}ζζT{-ρT15θ1ρ15}ζ,

-1α2ζT{ρT62ρ6}ζ-1β2ζT{ρT42ρ4}ζ-(1α2-1)ζT{ρT62ρ6}ζζT{-ρT16θ2ρ16}ζ,

-(μ1-Δd1(i))ζT{1α1ρT5111(i,0)ρ5+1β1ρT3111(i,0)ρ3}ζζT{-ρT15Ξ1ρ15}ζ,

-(μ1+Δd1(i))ζT{1α1ρT5211(i,0)ρ5+1β1ρT3211(i,0)ρ3}ζζT{-ρT15Ξ2ρ15}ζ,

-(μ2-Δd2(j))ζT{1α2ρT6111(0,j)ρ6+1β2ρT4111(0,j)ρ4}ζζT{-ρT16Ξ3ρ16}ζ,

-(μ2+Δd2(j))ζT{1α2ρT6211(0,j)ρ6+1β2ρT4211(0,j)ρ4}ζζT{-ρT16Ξ4ρ16}ζ,(16)

綜上所述,就獲得VζTΨ(d1(i),d2(j))ζ.證明系統(tǒng)是漸近穩(wěn)定的,證畢.

推論1? 對(duì)于LKFs(6)不使用時(shí)滯相關(guān)矩陣的情況,通過(guò)設(shè)置P111=P211和Q111=Q211=0,即4個(gè)矩陣P1(d1(i)),P2(d2(j)),Q1(d1(i))和Q2(d2(j))被簡(jiǎn)化為4個(gè)常數(shù)矩陣P1,P2,Q1和Q2,根據(jù)定理1,就得到不使用時(shí)滯相關(guān)矩陣的系統(tǒng)穩(wěn)定性準(zhǔn)則:系統(tǒng)是漸近穩(wěn)定的,如果存在2個(gè)6n×6n矩陣Pi=iP111P12*P22>0,i=1,2,2個(gè)3n×3n矩陣Qi=Q10Q12*Q22>0,i=1,2,6個(gè)n×n矩陣Q3>0,Q4>0,S1>0,S2>0,R1>0,R2>0,2個(gè)3n×3n對(duì)稱矩陣X1,X2,使得以下LMIs(9)和(10)滿足Q111=Q211=0,并且Q1(d1(i)),Q2(d2(j))被Q1,Q2替代,N1,N2被Q3,Q4所替代.

注1? 當(dāng)μ1m,μ2m,μ1M,μ2M,d1m,d2m,d1M和d2M的值固定時(shí),定理1和推論1中的穩(wěn)定性條件將更改為L(zhǎng)MIs.通過(guò)使用MATLAB工具最大化時(shí)變時(shí)滯的算法,對(duì)于固定值,就可以獲得最大時(shí)變時(shí)滯的上界d2M的值,即時(shí)滯范圍.

3? 數(shù)值算例

在本節(jié)中,提出了兩個(gè)數(shù)值算例,一個(gè)選擇沒(méi)有使用時(shí)滯相關(guān)矩陣,另一個(gè)則使用,以驗(yàn)證本文所提出穩(wěn)定性準(zhǔn)則的有效性.

例1? 化學(xué)反應(yīng)器、熱交換器或管式爐中的熱過(guò)程可以用以下具有時(shí)滯的局部可微分方程來(lái)表示[6]:

T(x,t)x=T(x,t)t-a(x,t,T(x,t))T(x,t)-b(x,t,T(x,t))T(x,t-τ1),

其中T(x,t)是空間x和時(shí)間t處的溫度,τt是時(shí)滯,a(·)=a(x,t,T(x,t)),b(·)=b(x,t,T(x,t))是系數(shù)函數(shù),具體取決于狀態(tài)T(x,t).倘若

T(i,j)=T(iΔx,jΔt),T(x,t)x≈T(i,j)-T(i-1,j)Δx,T(x,t)t≈T(i,j+1)-T(i,j)Δx.

下列2-D線性模型就可以得到:T(i,j+1)=(1-ΔtΔx-a0Δt)T(i,j)+ΔtΔxT(i-1,j)-a1ΔtT(i,j-d2)+bΔtu(i,j).

記xT(i,j)=[TT(i-1,j)TT(i,j)],這樣2-D FM模型就可以轉(zhuǎn)化為:x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+A1dx(i-d1(i),j+1)+A2dx(i+1,j-d2(j)),其中

A1=00ΔtΔx1-ΔtΔx-a0Δt,A2=0100,A1d=000-a1Δt,A2d=0000.

令Δt=0.1,Δx=0.4,a0=1,a1=1.2,b=1將上述參數(shù)代入矩陣.考慮具有以下系統(tǒng)矩陣和參數(shù)的2-D離散時(shí)滯系統(tǒng)(1)[28](不使用時(shí)滯相關(guān)矩陣):

A1=000.250.65A2=0100A1d=000-0.12A2d=0000.(17)

當(dāng)時(shí)滯d2(j)對(duì)于d1(i)=6+5sin(πi/2)具有時(shí)變性時(shí),文獻(xiàn)[32]中的系統(tǒng)對(duì)于0d2(j)13是漸近穩(wěn)定的,即d2(j)的上界遠(yuǎn)大于文獻(xiàn)[6]中給出的上界.此外,對(duì)于推論1,系統(tǒng)在滿足0d2(j)20下仍然是漸近穩(wěn)定的,這表明時(shí)滯上界大于文獻(xiàn)[32]中給出的.表1中列出了允許的最大上界.從表1中,可以看到推論1提供了最大的允許上界.圖1和圖2顯示了系統(tǒng)兩個(gè)狀態(tài)變量在任意(隨機(jī)生成)邊界條件下的軌跡.

圖1和圖2顯示,隨著i和j繼續(xù)增加,狀態(tài)振幅變小并最終接近原點(diǎn),即具有系數(shù)矩陣(17)的系統(tǒng)(1)在時(shí)滯上界d2M=48下漸近穩(wěn)定.

例2? 研究了具有以下參數(shù)的2-D系統(tǒng)(1)(使用時(shí)滯相關(guān)矩陣)[33]:

A1=0.1000.2A2=0.400.20A1d=0.02000.01A2d=0.01000.01.(18)

假設(shè)時(shí)變時(shí)滯滿足條件:μ1M=-μ1m=μ2M=-μ1M=μ1M=μ和條件(2).將文獻(xiàn)[29]中的結(jié)果與本文中的LMIs決策變量數(shù)目進(jìn)行比較,由表2,本文決策變量的數(shù)目小于文獻(xiàn)[29]定理1中的數(shù)量.為了比較時(shí)滯范圍,對(duì)比文獻(xiàn)[27-29,34-35]的定理1以及本文結(jié)論可以找到最大允許上界d2M,并在表3中列出,且有:1)本文定理1得到的最大允許上界大于推論1中的,這表明本文設(shè)計(jì)的在單項(xiàng)求和項(xiàng)中引入時(shí)滯相關(guān)矩陣對(duì)于推導(dǎo)穩(wěn)定性準(zhǔn)則非常有意義;2)本文定理1和推論1中獲得的最大允許上界大于文獻(xiàn)[29]中獲得的,這證實(shí)了本文推導(dǎo)的結(jié)果優(yōu)于其他參考文獻(xiàn)獲得的結(jié)果.綜上,本文獲得的結(jié)果比參考文獻(xiàn)的保守性更小.

系統(tǒng)的兩個(gè)狀態(tài)變量在任意(隨機(jī)生成)邊界條件下的軌跡如圖3和圖4所示.在初始狀態(tài)下,狀態(tài)波動(dòng)一開(kāi)始變化顯著,隨著i和j的增加,系統(tǒng)狀態(tài)逐漸接近于零,因此本文給出的系統(tǒng)穩(wěn)定性準(zhǔn)則被證明是有效且有意義的.這也為以后設(shè)置控制器奠定了堅(jiān)實(shí)的基礎(chǔ).

4? 結(jié)? 論

本文創(chuàng)建具有三重求和項(xiàng)的LKFs同時(shí)考慮了時(shí)滯相關(guān)矩陣和增廣向量矩陣,包含有關(guān)時(shí)滯上界和下界的更多信息.然后利用多重輔助函數(shù)不等式和互凸組合不等式獲得了新的系統(tǒng)穩(wěn)定性準(zhǔn)則,擴(kuò)大了時(shí)滯范圍并降低了結(jié)果的保守性.同時(shí)本文結(jié)果減少了決策變量的數(shù)目,從而減輕了計(jì)算負(fù)擔(dān).最后,通過(guò)數(shù)值算例與現(xiàn)有結(jié)果進(jìn)行對(duì)比,驗(yàn)證了本文所設(shè)計(jì)方法的有效性和優(yōu)越性.本文設(shè)計(jì)的增廣向量矩陣中可同時(shí)包含時(shí)滯的上界和下界,并以此用來(lái)估計(jì)雙重求和項(xiàng)中的系統(tǒng)LKFs差分過(guò)程,進(jìn)一步降低穩(wěn)定性準(zhǔn)則的保守性,但會(huì)加大差分難度和計(jì)算量,進(jìn)而怎么處理LKFs差分產(chǎn)生的有限和項(xiàng),值得學(xué)者們進(jìn)一步探索.

參? 考? 文? 獻(xiàn)

[1] ??WU L G,WANG Z D,GAO H J,et al.Filtering for uncertain 2-D discrete systems with state delays[J].Signal Processing,2007,87(9):2213-2230.

[2]BISTRITZ Y.On testing stability of 2-D discrete systems by a finite collection of 1-D stability tests[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(11):1634-1638.

[3]KAR H,SINGH V.Robust stability of 2-D discrete systems described by the Fornasini-Marchesini second model employing quantization/overflow nonlinearities[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2004,51(11):598-602.

[4]HUA M G,DENG F Q,LIU X Z,et al.Robust delay-dependent exponential stability of uncertain stochastic system with time-varying delay[J].Circuits,Systems and Signal Processing,2010,29(3):515-526.

[5]LI Z,LIU H,GAO H.A delay partitioning approach tofiltering for continuous time-delay systems[J].Circuits Systems and Signal Process,2011,30(3):501-513.

[6]XU J M,YU L.Delay-dependent H∞ control for 2-D discrete state delay systems in the second FM model[J].Multidimensional Systems and Signal Processing,2009,20(4):333-349.

[7]PENG D,GUAN X P,LONG C N.Robust output feedback guaranteed cost control for 2-d uncertain state-delayed systems[J].Asian Journal of Control,2007,9(4):470-474.

[8]PENG D,GUAN X P.Output feedback H∞ control for 2-D state-delayed systems[J].Circuits,Systems & Signal Processing,2009,28(1):147-167.

[9]KWON O M,PARK M J,PARK J H,et al.Improved delay-dependent stability criteria for discrete-time systems with time-varying delays[J].Circuits,Systems,and Signal Processing,2013,32(4):1949-1962.

[10]CHEN Q,LIU X G,WANG F X.Improved results on-state estimation for neural networks with time-varying delay[J].Circuits,Systems,and Signal Processing,2022,41(1):122-146.

[11]SHAHBAZZADEH M,SADATI S J.Delay-dependent stabilization of time-delay systems with nonlinear perturbations[J].Circuits,Systems,and Signal Processing,2022,41(2):684-699.

[12]VAN HIEN L,TRINH H.Stability of two-dimensional Roesser systems with time-varying delays via novel 2D finite-sum inequalities[J].IET Control Theory & Applications,2016,10(14):1665-1674.

[13]PARK P,LEE W I,LEE S Y.Auxiliary function-based integral/summation inequalities:application to continuous/discrete time-delay systems[J].International Journal of Control,Automation and Systems,2016,14(1):3-11.

[14]LEE S Y,LEE W I,PARK P.Polynomials-based summation inequalities and their applications to discrete-time systems with time-varying delays[J].International Journal of Robust and Nonlinear Control,2017,27(17):3604-3619.

[15]GHOLAMI H,BINAZADEH T.Fixed-time control of nonlinear discrete-time systems with time-varying delay and uncertain parameters:state and output feedback approaches[J].Soft Computing,2021,25(17):11509-11522.

[16]FRIDMAN E,SHAKED U,LIU K.New conditions for delay-derivative-dependent stability[J].Automatica,2009,45(11):2723-2727.

[17]KWON O M,PARK M J,PARK J H,et al.Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov-Krasovskii functional[J].Journal of the Franklin Institute,2013,350(3):521-540.

[18]SEURET A,GOUAISBAUT F,F(xiàn)RIDMAN E.Stability of discrete-time systems with time-varying delays via a novel summation inequality[J].IEEE Transactions on Automatic Control,2015,60(10):2740-2745.

[19]ZENG H B,HE Y,WU M,et al.Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J].IEEE Transactions on Automatic Control,2015,60(10):2768-2772.

[20]JIN P M,HOON L S,MIN K O,et al.Augmented Lyapunov-krasovskii functional approach to stability of discrete systems with time-varying delays[J].IEEE Access,2017,5:24389-24400.

[21]ZHANG C K,HE Y,JIANG L,et al.Delay-variation-dependent stability of delayed discrete-time systems[J].IEEE Transactions on Automatic Control,2016,61(9):2663-2669.

[22]CHEN J,XU S Y,MA Q,et al.Two novel general summation inequalities to discrete-time systems with time-varying delay[J].Journal of the Franklin Institute,2017,354(13):5537-5558.

[23]KWON W,KOO B,LEE S M.Novel Lyapunov-Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems[J].Applied Mathematics and Computation,2018,320:149-157.

[24]NAM P T,LUU T H.A new delay-variation-dependent stability criterion for delayed discrete-time systems[J].Journal of the Franklin Institute,2020,357(11):6951-6967.

[25]SOLGI Y,F(xiàn)ATEHI A,SHARIATI A.Non-monotonic Lyapunov-Krasovskii functional approach to stability analysis and stabilization of discrete time-delay systems[J].IEEE/CAA Journal of Automatica Sinica,2020,7(3):752-763.

[26]YANG R N,LI L L.Observer-based finite-region dissipative control for 2-D continuous-discrete systems over networks[J].Journal of the Franklin Institute,2020,357(16):11974-11995.

[27]PENG D,ZHANG J,HUA C C,et al.A delay-partitioning approach to the stability analysis of 2-D linear discrete-time systems with interval time-varying delays[J].International Journal of Control,Automation and Systems,2018,16(2):682-688.

[28]PENG D,HUA C C.Delay-dependent stability and static output feedback control of 2-D discrete systems with interval time-varying delays[J].Asian Journal of Control,2014,16(6):1726-1734.

[29]PENG D,XU H S.A novel approach to delay-variation-dependent stability analysis of 2-D discrete-time systems with mixed delays[J].IEEE Access,2019,7:99817-99829.

[30]NAM P T,TRINH H,PATHIRANA P N.Discrete inequalities based on multiple auxiliary functions and their applications to stability analysis of time-delay systems[J].Journal of the Franklin Institute,2015,352(12):5810-5831.

[31]SEURET A,GOUAISBAUT F.Allowable delay sets for the stability analysis of linear time-varying delay systems using a delay-dependent reciprocally convex lemma[J].IFAC-PapersOnLine,2017,50(1):1275-1280.

[32]FENG Z Y,HE Y,XU L,et al.Delay-dependent robust stability and stabilisation of uncertain two-dimensional discrete systems with time-varying delays[J].IET Control Theory & Applications,2010,4(10):1959-1971.

[33]YAO J,WANG W Q,ZOU Y.The delay-range-dependent robust stability analysis for 2-D state-delayed systems with uncertainty[J].Multidimensional Systems and Signal Processing,2013,24(1):87-103.

[34]PENG D,HUA C C.Improved approach to delay-dependent stability and stabilisation of two-dimensional discrete-time systems with interval time-varying delays[J].IET Control Theory & Applications,2015,9(12):1839-1845.

[35]ZHANG J,PENG D,HUA C C,et al.New approach to delay-dependent stability of two-dimensional discrete-time systems with interval time-varying delays[C]//2017 29th Chinese Control and Decision Conference(CCDC).[s.l.]:IEEE,2017:5604-5609.

New delay-variation-dependent stability criterion for 2-D discrete systems with delays

Peng Dan, Zhang Mingxia

(School of Science, Yanshan University, Qinhuangdao 066004, China)

Abstract: The delay-variation-dependent stability problem for two-dimensional(2-D) discrete-time systems with delays is studied. The Lyapunov-Krasovskii functionals(LKFs) are constructed by using delay-dependent matrices in the quadratic and single-sum terms, respectively, considering more state information. It is also the first time that the augmented vector matrices in the single summation term have been studied the system stability. Meanwhile, the multiple auxiliary function inequality and reciprocally convex inequality suitable for 2-D systems are given to process LKFs differentiation so as to reduce the computational burden. Derive a less conservative stability criterion for 2-D discrete systems with time-varying delays. The effectiveness and superiority of the devised method is confirmed by two numerical examples.

Keywords: two-dimensional discrete systems; time-varying delays; Lyapunov-Krasovskii functionals; multiple auxiliary function inequality; reciprocally convex inequality

[責(zé)任編校? 陳留院? 趙曉華]

猜你喜歡
離散系統(tǒng)上界時(shí)變
一個(gè)三角形角平分線不等式的上界估計(jì)
一道經(jīng)典不等式的再加強(qiáng)
關(guān)于非自治離散系統(tǒng)中敏感性的一些結(jié)論
基于時(shí)變Copula的股票市場(chǎng)相關(guān)性分析
煙氣輪機(jī)復(fù)合故障時(shí)變退化特征提取
基于MEP法的在役橋梁時(shí)變可靠度研究
2-D連續(xù)-離散系統(tǒng)的迭代學(xué)習(xí)控制
Nekrasov矩陣‖A-1‖∞的上界估計(jì)
基于MATLAB的離散系統(tǒng)分析
自適應(yīng)兩級(jí)UKF算法及其在時(shí)變偏差估計(jì)中的應(yīng)用
德江县| 海门市| 荔波县| 孟津县| 滦南县| 五家渠市| 永兴县| 泰安市| 鸡泽县| 鹤庆县| 奉化市| 荥经县| 宣城市| 广州市| 青河县| 沿河| 万荣县| 林甸县| 苏尼特左旗| 依兰县| 如皋市| 鞍山市| 朔州市| 丰镇市| 独山县| 南京市| 玛曲县| 灵山县| 沽源县| 宣威市| 无锡市| 大足县| 科技| 遂平县| 宁陕县| 大连市| 高州市| 仁布县| 合阳县| 泸西县| 庆阳市|