李欣欣 田陽(yáng)青 趙強(qiáng) 穆妮熱·阿卜杜艾尼 吳剛 王文慶 張家豪 占東霞 宋興虎
doi:10.7606/j.issn.1004-1389.2024.07.008
https://doi.org/10.7606/j.issn.1004-1389.2024.07.008
收稿日期:2023-06-02? 修回日期:2023-09-07
基金項(xiàng)目:新疆維吾爾自治區(qū)重大科技專項(xiàng)(2020A01002-2)。
第一作者:李欣欣,女,碩士研究生,研究方向?yàn)樽魑锘瘜W(xué)控制原理與技術(shù)。E-mail:l1901023664@163.com
通信作者:趙? 強(qiáng),男,博士,教授,研究方向?yàn)樽魑锘瘜W(xué)控制原理與技術(shù)。E-mail:qiangzhao99@163.com
占東霞,女,博士,講師,研究為作物高產(chǎn)栽培技術(shù)。E-mail:zhandongxia@sina.cn
摘? 要? 通過(guò)田間試驗(yàn),探尋亞磷酸鉀復(fù)配的最優(yōu)搭配組合,為提高棉花產(chǎn)量和新疆棉花高產(chǎn)高效栽培技術(shù)的發(fā)展提供新思路和理論依據(jù)。試驗(yàn)于2022年在新疆阿克蘇地區(qū)沙雅縣進(jìn)行,供試棉花品種為‘新陸中84號(hào),采用隨機(jī)區(qū)組設(shè)計(jì),以亞磷酸鉀750 mL/hm2為主,分別和6-芐氨基嘌呤12 mL/hm2(PHO1)、14-羥基蕓苔素甾醇150 mL/hm2(PHO2)、萘乙酸0.18 mL/hm2(PHO3)、吲哚乙酸0.18 g/hm2(PHO4)和胺鮮酯20 g/hm2(PHO5)進(jìn)行復(fù)配,單施亞磷酸鉀750 mL/hm2(CK1)和清水(CK2)為對(duì)照,在化學(xué)封頂(7月5日)和封頂后7 d各噴施1次,分析各處理下棉鈴時(shí)空分布、干物質(zhì)積累與分配、光合特性和產(chǎn)量指標(biāo)。結(jié)果表明:各處理均提高葉片光合速率,增加地上部干物質(zhì)積累量,提高棉花單株結(jié)鈴數(shù)和產(chǎn)量;其中PHO4和PHO5處理均可提高第1果節(jié)成鈴率,從而增加單株結(jié)鈴數(shù),分別較對(duì)照單株結(jié)鈴數(shù)增加3.09%~? 17.89%;PHO5處理較對(duì)照單鈴質(zhì)量提高1.35%,PHO4處理較對(duì)照籽棉產(chǎn)量提高15.76%~19.81%。因此,新疆地區(qū)化學(xué)封頂后推薦使用750 mL/hm2亞磷酸鉀復(fù)配0.18 g/hm2吲哚乙酸(PHO4)或復(fù)配20 g/hm2胺鮮酯(PHO5),以增加棉花單株結(jié)鈴數(shù),形成增產(chǎn)效果。
關(guān)鍵詞? 棉花;亞磷酸鉀;外源物質(zhì);成鈴特性;產(chǎn)量
棉花打頂是棉區(qū)普遍采用的一項(xiàng)整枝技術(shù),是棉花栽培管理措施的一個(gè)重要環(huán)節(jié),影響棉花的產(chǎn)量和品質(zhì)。新疆棉花化學(xué)封頂面積大,其中以縮節(jié)胺為主成分的封頂劑應(yīng)用最為廣泛[1-4]。噴施外源物質(zhì)可減少蕾鈴脫落,增加成鈴率,改善纖維品質(zhì),在提高棉花產(chǎn)量方面發(fā)揮了重要作用[5]。亞磷酸鉀是一種具環(huán)保、殺菌作用的新型特殊磷鉀復(fù)合水溶性肥[6],前人研究結(jié)果表明亞磷酸鉀可以通過(guò)提高馬鈴薯葉片中的抗氧化系統(tǒng)而提高葉面光合能力[7-9]。棉花葉面噴施6-芐氨基嘌呤(6-BA),單施或與赤霉素進(jìn)行復(fù)配可延長(zhǎng)作物葉片的功能期,增加葉面積,提高葉片葉綠素含量,增強(qiáng)光合能力,增加中部果枝棉鈴質(zhì)量和單株結(jié)鈴數(shù)從而提高產(chǎn)量[10-12]。蕓苔素類物質(zhì)復(fù)配外源物質(zhì)或葉面肥可促進(jìn)植物生長(zhǎng)發(fā)育和根系活力[13-14],增加大白菜單球質(zhì)量[15]。萘乙酸(NAA)能夠調(diào)節(jié)植物生長(zhǎng)發(fā)育[16],誘導(dǎo)葉片氣孔張開(kāi),提高植物光合速率[17]。李健忠等[18]研究表明α-NAA應(yīng)用在棉花種植上可以減少棉花蕾鈴的脫落,增加單鈴質(zhì)量,改善品質(zhì);吲哚乙酸(IAA)可誘導(dǎo)葉片氣孔張開(kāi),提高光合速率,促進(jìn)植物生長(zhǎng)[19]。鄭樂(lè)婭等[20]研究表明噴施外源IAA可提高水稻葉凈光合速率和群體葉面積指數(shù)從而增加水稻產(chǎn)量。胺鮮酯能提高植物酶的活性和葉綠素的含量,加快光合速率從而促進(jìn)植物細(xì)胞的分裂伸長(zhǎng)和根系的發(fā)育,調(diào)節(jié)植物生長(zhǎng)發(fā)育[21-22];胺鮮酯與IAA和NAA混用后提高玉米葉綠素含量,增加產(chǎn)量[23],前人研究發(fā)現(xiàn)胺鮮酯復(fù)配不同外源物質(zhì)可增加干物質(zhì)積累量和百粒質(zhì)量[24-25],提高根系活力,增加葉綠素含量,從而提高產(chǎn)量改善品質(zhì)[26]。
化學(xué)封頂通過(guò)縮節(jié)胺及助劑抑制棉花頂尖生長(zhǎng)達(dá)到封頂效果,但是化學(xué)封頂后棉花生長(zhǎng)尤其是生殖生長(zhǎng)逐漸達(dá)到高峰期,如果不加強(qiáng)養(yǎng)分供應(yīng)可能會(huì)造成落蕾落花落鈴,結(jié)鈴減少和鈴質(zhì)量減輕,加之高溫天氣影響可能導(dǎo)致上部果枝成鈴率低,進(jìn)而影響產(chǎn)量、品質(zhì);因此挖掘化學(xué)封頂棉花的增產(chǎn)潛力,減少蕾鈴脫落,促進(jìn)棉鈴發(fā)育,提高鈴質(zhì)量,增加上部果枝成鈴率是亟待解決的問(wèn)題。本試驗(yàn)通過(guò)測(cè)定化學(xué)封頂棉花的成鈴特性、光合特性和產(chǎn)量等指標(biāo),探明亞磷酸鉀與外源物質(zhì)復(fù)配對(duì)化學(xué)封頂棉花生長(zhǎng)發(fā)育及產(chǎn)量形成的影響,揭示亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)化學(xué)封頂棉花系統(tǒng)的調(diào)控效應(yīng),為提高棉花產(chǎn)量與品質(zhì)提供理論依據(jù),及全程輕簡(jiǎn)化栽培提供參考。
1? 材料與方法
1.1? 試驗(yàn)地概況
試驗(yàn)于2022年在新疆阿克蘇地區(qū)沙雅縣海樓鎮(zhèn)(82°75′E,41°25′N)進(jìn)行,試驗(yàn)地前茬作物為棉花,播種時(shí)間為4月10日,采用機(jī)采棉1膜4行種植模式,行距為(76+10)cm。該地屬于溫暖帶沙漠邊緣氣候,常年日照充足,年平均日照? 3 031.2 h,降水量稀少,年平均降水47.33 mm,晝夜溫差大,平均氣溫10.7 ℃。從播種到收獲的每日最高溫/最低溫、日照時(shí)數(shù)和降水量如圖1所示。土壤質(zhì)地為壤土,0~40 cm土層pH為8.2,有機(jī)質(zhì)為8.08 g/kg,速效氮含量為54.12?? mg/kg,速效磷為? 15.47 mg/kg,速效鉀為? 125.85 mg/kg。
1.2? 供試品種與材料
供試品種為‘新陸中84號(hào)(當(dāng)?shù)刂髟云贩N),植株為塔形,全生育期138 d左右[27],由新疆天玉種業(yè)有限責(zé)任公司提供。
供試材料:亞磷酸鉀(H3PO3≥520 g/L,? K2O≥400 g/L,液體),6-芐氨基嘌呤(6-BA,液體),? 0.01% 14-羥基蕓苔素甾醇(液體),α-萘乙酸(α-NAA,含量:98%,用丙酮溶解配置,固體粉劑),吲哚乙酸(IAA,含量:98%,用75%無(wú)水乙醇溶解配置,固體粉劑)和8%胺鮮酯(固體粉劑)分別由新疆強(qiáng)農(nóng)豐禾農(nóng)業(yè)科技有限公司,鄭氏化工產(chǎn)品有限公司提供,中化作物保護(hù)品有限公司提供,新疆寶信源柏生物技術(shù)有限公司和四川國(guó)光農(nóng)化股份有限公司提供。
1.3? 試驗(yàn)設(shè)計(jì)
本試驗(yàn)藥劑用量參考前人[6,9-12,15-16,21-22]研究成果,其中吲哚乙酸和萘乙酸為原藥。共設(shè)7個(gè)處理,采用隨機(jī)區(qū)組設(shè)計(jì),以亞磷酸鉀為主體,分別與6-芐氨基嘌呤(6-BA)、14-羥基蕓苔素甾醇、萘乙酸、吲哚乙酸和8%胺鮮酯進(jìn)行復(fù)配,以單施亞磷酸鉀和清水為對(duì)照,試驗(yàn)處理如表1所示。各處理設(shè) 4 次重復(fù),共計(jì)28個(gè)小區(qū),各小區(qū)長(zhǎng)? 10 m,寬 6.88 m,小區(qū)面積為68.8 m2,采用背負(fù)式電動(dòng)噴霧器進(jìn)行噴施,小區(qū)之間用塑料布遮擋,防止霧滴漂移,于棉花化學(xué)封頂(7月5日)當(dāng)日及封頂后7 d(7月12日)各噴施1次;所用封頂劑為225 g/hm2 98%縮節(jié)胺+150 mL/hm2助劑,棉花整個(gè)生育期過(guò)程共滴灌10次,灌溉量為? 4 050 m3/hm2,施黃腐殖酸60 kg/hm2,尿素405 kg/hm2,磷酸一銨232.5 kg/hm2,鉀肥142.5 kg/hm2,復(fù)合型肥(N∶P∶K=15∶15∶15)345?? kg/hm2,其他管理措施與當(dāng)?shù)剞r(nóng)事管理一致。
1.4? 測(cè)定項(xiàng)目及方法
1.4.1? 棉花蕾鈴數(shù)? 施藥前在各小區(qū)選取長(zhǎng)勢(shì)一致棉花植株5株并進(jìn)行掛繩定株,于藥后每隔 7 d調(diào)查1次蕾鈴數(shù);鈴葉比=總鈴數(shù)/總?cè)~片數(shù)。
1.4.2? 地上部干物質(zhì)積累與分配? 噴藥后每隔10 d在各小區(qū)選取代表性棉花 3 株,從子葉節(jié)剪斷,按不同器官(莖、葉、蕾花、鈴)分樣,分器官放入105 ℃烘箱殺青30 min,80 ℃下烘干至恒量后稱干質(zhì)量。
1.4.3? 棉鈴時(shí)空分布? 時(shí)間分布:三桃比例于7月15日、8月15日和9月15日選取連續(xù)長(zhǎng)勢(shì)均勻且具有代表性的50株棉株進(jìn)行成鈴數(shù)調(diào)查,并掛牌。
空間分布:在吐絮期時(shí),測(cè)量定株每個(gè)果枝果節(jié)棉鈴情況,按照橫向和縱向分布,分析內(nèi)外圍鈴(內(nèi)圍鈴為各果枝第1果節(jié)的棉鈴,外圍鈴為各果枝第2果節(jié)及以上的棉鈴)和上中下部(下部為第1~3果枝,中部為第4~6果枝,上部為第7~9果枝,頂部為第9果枝以上)的成鈴分布。
1.4.4? 成鈴率? 吐絮期時(shí),利用株式圖調(diào)查方法記錄棉株各果枝、果節(jié)上的成鈴(棉鈴直徑大于2 cm)情況,利用Surfer 15.0軟件,繪制各處理下棉花的成鈴率等值線圖。
1.4.5? 光合參數(shù)? 噴藥后每隔7 d使用LI-6400便攜式光合儀(北京力高泰科技有限公司)于晴天11:00—13:30測(cè)定標(biāo)記棉花功能葉片(化學(xué)封頂后棉花倒3葉)的胞間CO2濃度(Ci)、氣孔導(dǎo)度(Gs)、凈光合速率(Pn)以及蒸騰速率(Tr)。
1.4.6? 產(chǎn)量構(gòu)成因素? 棉花吐絮期在每個(gè)小區(qū)選取6.67 m2的樣點(diǎn),調(diào)查樣點(diǎn)內(nèi)全部株數(shù)和鈴數(shù),計(jì)算出棉花種植密度和單株結(jié)鈴數(shù)并估算產(chǎn)量;每小區(qū)取100個(gè)吐絮鈴(分上部鈴30個(gè)、中部鈴40個(gè)、下部鈴30個(gè))風(fēng)干后測(cè)其單鈴質(zhì)量,百粒質(zhì)量和衣分。
1.5? 數(shù)據(jù)處理
采用SPSS 26.0和Excel 2021對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行數(shù)據(jù)分析,SPSS 26.0對(duì)數(shù)據(jù)進(jìn)行單因素方差分析及鄧肯多重范圍檢驗(yàn)法(Duncan),Sigmaplot 12.5和Surfer 15.0做圖。
2? 結(jié)果與分析
2.1? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)單株棉花蕾鈴數(shù)的影響
單株棉花蕾數(shù)隨施藥后時(shí)間的增加大體呈現(xiàn)下降的趨勢(shì)(圖2-A),單株花蕾鈴數(shù)隨施藥時(shí)間的增加呈現(xiàn)先上升后下降的趨勢(shì)(圖2-B)。PHO4和PHO5處理在施藥后0~14 d較各處理顯著增加蕾數(shù),14~28 d增加單株鈴數(shù);PHO4和PHO5處理在前期有利于花蕾的生長(zhǎng)發(fā)育,在后期增加單株花蕾鈴數(shù),提高棉花營(yíng)養(yǎng)生長(zhǎng)向生殖生長(zhǎng)轉(zhuǎn)化的速率。各處理均不同程度增加了單株棉鈴數(shù)量,PHO4較CK1和CK2鈴數(shù)分別增加6.84%和17.89%,PHO5鈴數(shù)較CK1和CK2分別增加3.09%和13.75%。各處理對(duì)棉花蕾鈴生長(zhǎng)發(fā)育的影響不一致,PHO4和PHO5在前期具有保蕾保鈴作用,促進(jìn)蕾鈴發(fā)育,提高蕾鈴數(shù)量。
2.2? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花鈴葉比的影響
由圖3可知,鈴葉比隨著生育進(jìn)程的推進(jìn)呈現(xiàn)先上升后下降的趨勢(shì)。PHO3、PHO4和PHO5較CK1提高鈴葉比,分別較CK1提高? 3.58%、5.39%和7.29%;較CK2鈴葉比分別提高2.81%、4.62%和6.50%;其中PHO5鈴葉比為最高,可能光合生產(chǎn)潛力得到充分發(fā)揮,說(shuō)明PHO5的庫(kù)容增大所需的養(yǎng)分能夠由葉源的供應(yīng)得以滿足。
2.3? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花棉鈴時(shí)空分布的影響
2.3.1? 對(duì)棉鈴時(shí)間分布的影響? 由表2可知,亞磷酸鉀復(fù)配不同外源物質(zhì)均不同程度地增加了棉花伏前桃和秋桃數(shù)量。PHO1顯著增加伏前桃,較CK1和CK2分別增加6.86%和16.51%;PHO2增加伏桃數(shù),較CK2分別增加10.53%;PHO4較CK1和CK2顯著增加秋桃,分別增加1.02倍和1.13倍。說(shuō)明PHO4處理更好地調(diào)節(jié)棉株?duì)I養(yǎng)生長(zhǎng)和生殖生長(zhǎng)的平衡,從而提高棉花產(chǎn)量。
2.3.2? 對(duì)棉花空間分布的影響? 由棉鈴縱向空間分布(圖4-A)可知,各處理對(duì)棉花下部成鈴數(shù)無(wú)顯著差異;對(duì)棉花中部成鈴數(shù)PHO3和PHO4處理大于CK1,較CK1鈴數(shù)提高27.59%,說(shuō)明亞磷酸鉀復(fù)配不同外源物質(zhì)的不同處理可以增加中下部棉鈴數(shù)量。由棉鈴橫向空間分布(圖4-B)可知,PHO4處理較CK1和CK2內(nèi)圍鈴分別增加8.70%和11.94%,PHO3處理較CK1外圍鈴增加25.93%。
2.3.3? 對(duì)成鈴率的影響? 由吐絮期成熟棉株的成鈴空間分布圖(圖5)可以看出,各處理不同位點(diǎn)果節(jié)成鈴率呈現(xiàn)由內(nèi)到外逐次遞減的趨勢(shì),且接近第1果節(jié)成鈴率高于第2果節(jié)成鈴率,下部果枝成鈴率高于上部果枝的成鈴率。PHO5處理較其他各個(gè)處理提高第5至第6果枝臺(tái)第1果節(jié)成鈴率,PHO3和PHO4處理較CK1和CK2提高第7至第8果枝臺(tái)第1果節(jié)成鈴率。各處理均提高第2至第3果枝臺(tái)第2果節(jié)成鈴率,PHO4處理較各處理提高第4果枝第2果節(jié)成鈴率,較各處理提高75%、40%、2.50倍、40%和1.33倍;說(shuō)明各PHO4和PHO5處理均提高中上部第1果節(jié)成鈴率,提高下部第2果節(jié)成鈴率。
2.4? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花單株干物質(zhì)積累量的影響
由表3可知,各處理棉花地上部分單株干物質(zhì)積累量隨著時(shí)間的增加而增加。藥后0~20 d各處理對(duì)莖桿單株干物質(zhì)積累量呈現(xiàn)上升趨勢(shì),20~40 d各處理大致呈現(xiàn)下降趨勢(shì),藥后40 d PHO5處理顯著增加莖桿單株干物積累量,較CK1和CK2分別增加4.6 g和1.85 g;PHO3、PHO4和PHO5處理較CK1和CK2顯著增加葉片單株干物質(zhì)積累量,PHO4處理葉片單株干物質(zhì)積累量較CK1和CK2分別增加3.04 g和? 2.12 g。各處理對(duì)生殖器官(蕾、花、鈴)單株干物質(zhì)積累量隨時(shí)間推進(jìn)呈現(xiàn)上升趨勢(shì),PHO5處理較CK1和CK2生殖器官單株干物質(zhì)積累量分別增加5.94 g和7.87 g。說(shuō)明亞磷酸鉀復(fù)配不同外源物質(zhì)促進(jìn)棉花植株生長(zhǎng),前期促進(jìn)棉株?duì)I養(yǎng)生長(zhǎng),后期加快營(yíng)養(yǎng)生長(zhǎng)向生殖生長(zhǎng)轉(zhuǎn)化,提高生殖器官干物質(zhì)積累量占比;PHO5處理擴(kuò)大棉株“源庫(kù)”,達(dá)到增產(chǎn)的目的。
2.5? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花葉片光合參數(shù)的影響
2.5.1? 對(duì)棉花葉片凈光合速率的影響? 由圖6可知,各處理對(duì)葉片凈光合速率呈現(xiàn)先上升后下降的趨勢(shì),在藥后14 d達(dá)到最大值。藥后7~? 14 d加快葉片凈光合速率,14~28 d葉片凈光合速率開(kāi)始緩慢下降。藥后28 d PHO2、PHO4和PHO5處理較CK1顯著提高葉片凈光合速率,分別較CK1提高15.13%、13.79%和14.67%;說(shuō)明PHO4和PHO5處理延長(zhǎng)葉片凈光合速率的高值持續(xù)期,延緩葉片衰老。
2.5.2? 對(duì)棉花葉片氣孔導(dǎo)度的影響? 由圖7可知,各處理對(duì)氣孔導(dǎo)度的影響不一致,大體呈現(xiàn)先上升后下降的趨勢(shì),藥后7~14 d提高氣孔張開(kāi)幅度,14~28 d減少氣孔張開(kāi)幅度。PHO4和PHO5處理在藥后7~21 d較CK1顯著提高氣孔導(dǎo)度;藥后28 d PHO5處理達(dá)到最大值,為? 0.84 mol/(m2·s);PHO4和PHO5處理分別較CK1提高5.84%和34.91%,PHO5處理較CK2氣孔導(dǎo)度提高19.57%。說(shuō)明各處理在前期促進(jìn)葉片氣孔張開(kāi)幅度,且PHO5處理對(duì)葉片氣孔張開(kāi)幅度影響最大。
2.5.3? 對(duì)棉花葉片胞間二氧化碳濃度的影響? 由圖8可知,葉片胞間二氧化碳濃度大體呈現(xiàn)先下降后上升的趨勢(shì)。藥后7 d、14 d、? 21 d,PHO4處理較CK1顯著降低;分別較CK1降低1.60%、? 2.50%和2.19%;藥后28 d PHO4和PHO5處理較CK1顯著降低2.09%和2.77%。
2.5.4? 對(duì)棉花葉片蒸騰速率的影響? 葉片蒸騰速率是影響作物生長(zhǎng)發(fā)育的重要生理過(guò)程之一。圖9所示為亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花葉片蒸騰速率的變化情況。各處理大體呈現(xiàn)先下降后上升再下降的趨勢(shì),且藥后21 d葉片蒸騰速率達(dá)到最大值。藥后28 d PHO4處理達(dá)到最大值,為12.23 mmol/(m2·s);PHO4和PHO5處理較CK1葉片蒸騰速率增加16.16%和? 10.80%。
2.6? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花產(chǎn)量的影響
由表4可知,各處理均不同程度提高單株結(jié)鈴數(shù),PHO1和PHO4處理顯著提高單株結(jié)鈴數(shù),較CK1分別提高14.93%,較CK2分別提高
18.26%;PHO5處理較CK2單鈴質(zhì)量提高? 1.35%。各處理均不同程度增加籽棉產(chǎn)量,其中PHO4處理顯著提高籽棉產(chǎn)量和皮棉產(chǎn)量,較CK1和CK2籽棉產(chǎn)量分別提高15.76%和? 19.81%,較CK1和CK2皮棉產(chǎn)量分別提高? 15.12%和19.12%。各處理對(duì)衣分無(wú)顯著影響,但各處理對(duì)子指有影響,且PHO5處理較CK2子指顯著提高,較CK2增加8.48%。說(shuō)明亞磷酸鉀復(fù)配外源物質(zhì)促進(jìn)棉花種子生長(zhǎng)發(fā)育,對(duì)衣分影響較小,提高棉花單株結(jié)鈴數(shù)和單鈴質(zhì)量從而提高產(chǎn)量。
3? 討 論
3.1? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花鈴葉比的影響
鈴葉比是棉花庫(kù)源關(guān)系的重要反映,鈴葉比的大小會(huì)影響庫(kù)源功能和庫(kù)源的關(guān)系。棉花是多源多庫(kù)的作物,通過(guò)分析棉花的鈴葉比來(lái)闡明各部位棉花鈴質(zhì)量提高的原因,外源物質(zhì)可影響植株體內(nèi)源激素水平的變化,從而調(diào)節(jié)同化物的運(yùn)轉(zhuǎn)和分配速率及方向[28-29],在適宜的葉面積指數(shù)下,提高鈴葉比是促進(jìn)葉片光合生產(chǎn)的外在表現(xiàn),葉片光合生產(chǎn)能力也會(huì)受到“庫(kù)”(棉鈴等)的影響。棉株鈴葉比增加,說(shuō)明庫(kù)容的增大所需的養(yǎng)分能夠從葉源得到滿足,前人研究表明在葉面積指數(shù)相近的情況下,不同鈴葉比的棉花群體冠層葉片光合強(qiáng)度隨鈴葉比的增大而增加,有利于棉花初鈴期冠層結(jié)構(gòu)葉片的光合反應(yīng)[28-30]。本研究發(fā)現(xiàn)各處理(除PHO2)均提高棉花鈴葉比,PHO4和PHO5分別較CK1提高5.39%和? 7.29%;較CK2鈴葉比分別提高4.62%和? 6.50%;其中PHO5鈴葉比為最高,可能光合生產(chǎn)潛力得到充分發(fā)揮,說(shuō)明PHO5的庫(kù)容增大所需的養(yǎng)分能夠由葉源的反饋得以滿足且復(fù)配后提高鈴葉比進(jìn)一步可增強(qiáng)葉片的光合強(qiáng)度;與前人研究結(jié)果一致[23,29-30]。
3.2? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花光合特性的影響
前人研究發(fā)現(xiàn)單施亞磷酸鉀[8,31]、6-BA[32-37]、蕓苔素類物質(zhì)[13-15,38-39]、NAA[40-41]、IAA[42]或胺鮮酯[21-22,43]可提高植物葉片的葉綠素含量和光合速率,降低光呼吸速率促進(jìn)葉片光合作用;本研究發(fā)現(xiàn)PHO2、PHO4和PHO5處理較CK1顯著提高葉片凈光合速率,分別較CK1提高15.13%、13.79%和14.67%;說(shuō)明PHO2、PHO4和PHO5處理延長(zhǎng)葉片凈光合速率的高值持續(xù)期,延緩葉片衰老,各處理均促進(jìn)葉片氣孔張開(kāi)幅度,且PHO5處理對(duì)葉片氣孔張開(kāi)幅度影響最大;這與前人結(jié)果研究一致[37]。溫度也是影響棉花生長(zhǎng)發(fā)育的環(huán)境因素之一[44],當(dāng)棉花受到逆境脅迫時(shí),其生長(zhǎng)發(fā)育受到抑制,葉片的光合速率下降;棉花葉片是進(jìn)行光合作用的主要媒介,其葉綠素含量的多少可影響棉花的光合能力[45]。前人研究表明高溫會(huì)引起葉片氣孔導(dǎo)度降低,胞間二氧化碳含量降低,從而降低凈光合速率[46];棉花在7-8月高溫,導(dǎo)致生育進(jìn)程加快,可能會(huì)造成棉花葉片萎蔫,導(dǎo)致氣孔部分關(guān)閉,從而降低植物體內(nèi)的二氧化碳含量,降低凈光合速率。本研究發(fā)現(xiàn)各處理均提高葉片凈光合速率和氣孔導(dǎo)度,這與前人研究結(jié)果不一致[46],可能是因?yàn)閲娛┩庠次镔|(zhì)后緩解了高溫對(duì)棉花的脅迫,調(diào)節(jié)棉株生長(zhǎng)發(fā)育,促進(jìn)棉株光合作用。
3.3? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花干物質(zhì)積累量與分配的影響
作物生長(zhǎng)是干物質(zhì)不斷積累的過(guò)程,是光合物質(zhì)積累及其在各器官分配的過(guò)程;因此提高干物質(zhì)生產(chǎn)能力和物質(zhì)轉(zhuǎn)化速率是增加產(chǎn)量的途徑之一[45];前人研究表明亞磷酸鉀能夠被植物葉片和根系所吸收,促進(jìn)作物營(yíng)養(yǎng)平衡,增加植物單株總干質(zhì)量和產(chǎn)量[6,31,46-47];單施6-BA可促進(jìn)增加單株干質(zhì)量[37,48];噴施蕓苔素甾醇可以增加小麥葉面積,提高干物質(zhì)積累[49];葉面噴施NAA、IAA處理可促進(jìn)根系生長(zhǎng)發(fā)育,增加植物葉面積從而提高單株生物量增加產(chǎn)量[50];胺鮮酯與復(fù)硝酚鈉復(fù)配后可提高棉花養(yǎng)分吸收,提高棉花干物質(zhì)積累量[51]。本研究表明各處理棉花地上部分干物質(zhì)積累量隨著時(shí)間的增加而增加,PHO5處理顯著增加營(yíng)養(yǎng)器官干物積累量,PHO4處理增加葉片干物質(zhì)積累量,PHO5處理增加生殖器官干物質(zhì)積累量;亞磷酸鉀復(fù)配不同外源物質(zhì)促進(jìn)棉花植株生長(zhǎng),在前期促進(jìn)棉花營(yíng)養(yǎng)生長(zhǎng),后期加來(lái)營(yíng)養(yǎng)生長(zhǎng)向生殖生長(zhǎng)的速率,PHO5處理擴(kuò)大棉花“源庫(kù)”,達(dá)到增產(chǎn)的目的;各處理對(duì)營(yíng)養(yǎng)器官干物質(zhì)占比隨時(shí)間呈現(xiàn)下降趨勢(shì),生殖器官干物質(zhì)占比呈現(xiàn)上升趨勢(shì);這與前人研究結(jié)果一致[31,37,46-47,50-51]。前人研究表明葉片的干物質(zhì)積累與分配可對(duì)棉鈴形成有影響,但在高溫時(shí)會(huì)降低其葉面積和干物質(zhì)積累[52],且高溫時(shí)棉花處于盛花期,可能會(huì)導(dǎo)致花粉失去活力,授粉不良等,減少棉鈴數(shù)量,從而降低生殖器官干物質(zhì)占比;本研究發(fā)現(xiàn)單施亞磷酸鉀(CK1)或復(fù)配胺鮮酯(PHO5)可促進(jìn)棉花營(yíng)養(yǎng)生長(zhǎng)向生殖生長(zhǎng)轉(zhuǎn)化,可能是因?yàn)椴糠滞庠次镔|(zhì)緩解了高溫對(duì)葉片的影響,使葉片氣孔張開(kāi);還發(fā)現(xiàn)PHO1和PHO2處理復(fù)配減少單株總干物質(zhì)質(zhì)量,單施亞磷酸鉀(CK1)或PHO5處理可增加棉花生殖器官質(zhì)量,可能是因?yàn)樗幒?~30 d各處理均顯著促進(jìn)營(yíng)養(yǎng)生長(zhǎng)向生殖生長(zhǎng)的速率,且前期溫度屬于溫光適宜,有利于棉花干物質(zhì)積累;但在后期高溫,棉株對(duì)養(yǎng)分的吸收不足,導(dǎo)致轉(zhuǎn)化速率降低,從而降低單株干物質(zhì)總質(zhì)量,這與前人研究結(jié)果一致[52]。
3.4? 亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)棉花產(chǎn)量的影響
外源物質(zhì)在作物化控中發(fā)揮著重要的作用[53],前人研究表明通過(guò)噴施外源物質(zhì)可以調(diào)節(jié)葉片同化物質(zhì)的輸出和分配[54];單施6-BA可延緩葉片衰老,增加棉花中部單鈴質(zhì)量,降低開(kāi)花后敗育率,提高產(chǎn)量改善品質(zhì)[10,12,36]。蕓苔素類物質(zhì)復(fù)配外源物或葉面肥增加有利于花粉受精,提高坐果率和千粒質(zhì)量,進(jìn)一步增加產(chǎn)量[55-56]。單施NAA水劑或復(fù)配外源物質(zhì)在棉花盛花期噴施時(shí),可增加單株結(jié)鈴數(shù),提高產(chǎn)量改善品質(zhì)[17,43]。外源噴施IAA可增加單鈴質(zhì)量[57],胺鮮酯與乙烯利等物質(zhì)復(fù)配可降低倒伏率,增加坐果率、百粒質(zhì)量[15,23,25]。本研究結(jié)果發(fā)現(xiàn)各處理均增加單株結(jié)鈴數(shù),其中PHO1和PHO4處理顯著提高單株結(jié)鈴數(shù),棉鈴數(shù)量為9.39~9.60個(gè),PHO5處理較CK2單鈴質(zhì)量提高1.35%,但PHO1降低單鈴質(zhì)量;這于前人結(jié)果部分不一致[12],可能因?yàn)楦邷厣M(jìn)程加快,導(dǎo)致棉花對(duì)營(yíng)養(yǎng)物質(zhì)吸收和光合產(chǎn)物供應(yīng)不足,導(dǎo)致單鈴質(zhì)量降低。本研究還發(fā)現(xiàn)各處理通過(guò)增加單株結(jié)鈴數(shù)從而提高產(chǎn)量,改善下部棉纖維品質(zhì),其中PHO4處理顯著提高籽棉產(chǎn)量和皮棉產(chǎn)量;各處理均增加子指,說(shuō)明亞磷酸鉀復(fù)配外源物質(zhì)促進(jìn)棉花種子生長(zhǎng)發(fā)育,這與前人研究結(jié)果一致[6,8]。
4? 結(jié)? 論
結(jié)合各處理對(duì)棉鈴時(shí)空分布、干物質(zhì)積累與分配、光合參數(shù)及產(chǎn)量的影響,發(fā)現(xiàn)葉面噴施亞磷酸鉀復(fù)配不同外源物質(zhì)對(duì)化學(xué)封頂棉花的生長(zhǎng)發(fā)育具有一定促進(jìn)作用,PHO4和PHO5處理增加棉花單株結(jié)鈴數(shù)和產(chǎn)量,提高鈴葉比,增加棉株中下部?jī)?nèi)圍鈴和外圍鈴的成鈴率,提高葉片凈光合速率和光合產(chǎn)物,從而增加棉花干物質(zhì)積累量,提高產(chǎn)量;各處理均提高產(chǎn)量,因此綜合考慮各處理下化學(xué)封頂棉花生長(zhǎng)發(fā)育,其中750 mL/hm2 亞磷酸鉀與0.18 g/hm2吲哚乙酸復(fù)配組合(PHO4)或750? mL/hm2 亞磷酸鉀與20 g/hm2胺鮮酯(PHO5)對(duì)新疆化學(xué)封頂棉花效果最優(yōu)。
參考文獻(xiàn)? Reference:
[1]? 李亞兵,韓迎春,馮? 璐,等.我國(guó)棉花輕簡(jiǎn)化栽培關(guān)鍵技術(shù)研究進(jìn)展[J].棉花學(xué)報(bào),2017,29(S1):80-88.
LI Y B,HAN Y CH,F(xiàn)ENG L,et al. Advances of light and simplified cultivation technologies in China[J].Acta Gossypii Sinica,2017,29(S1):80-88.
[2]? 胡宇凱,趙書(shū)珍,董紅強(qiáng),等.化學(xué)打頂對(duì)南疆棉花干物質(zhì)積累與分配的影響[J].棉花學(xué)報(bào),2022,34(3):247-255.
HU Y K,ZHAO SH ZH,DONG H Q,et al.Effects of chemical topping on dry matter accumulation and distribution of cotton in Southern Xinjiang[J].Acta Gossypii Sinica,2022,? 34(3):247-255.
[3]? MAHEY R K,AGGARWAL N,KAUR R.Simulation of the effect of mepiquat chloride on growth and yield of cotton (Gossypium hirsutum)[J].Indian Journal of Ecology,2010,37(1):101-104.
[4]? WANG L,MU C,DU M,et al.The effect of mepiquat chloride on elongation of cotton(Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid[J].Plant Science,2014,(225):15-23.
[5]? 白? 巖,毛樹(shù)春,田立文,等.新疆棉花高產(chǎn)簡(jiǎn)化栽培技術(shù)評(píng)述與展望[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(1):38-50.
BAI Y,MAO SH CH,TIAN L W,et al.Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area[J].Scientia Agricultura Sinica, 2017,50(1):38-50.
[6]? 包梓依.不同磷、鉀配方水溶肥對(duì)桃生長(zhǎng)與果實(shí)品質(zhì)的影響[D].山東泰安:山東農(nóng)業(yè)大學(xué),2021.
BAO Z Y.Effects ofdifferent phosphorus and potassium formulation water soluble fertilizers on peach growth and fruit quality[D].Taian Shandong:Shandong Agricultural University,2021.
[7]? BORZA T,SCHOFIELD A,SAKTHIVEL G,et al.Ion chromatography analysis of phosphite uptake and translocation by potato plants:dose-dependent uptake and inhibition of Phytophthora infestans development[J].Crop Protection,2014,56:74-81.
[8]? MOHAMMADI M A,HAN X,ZHANG Z,et al.Phosphite application alleviates pythophthora infestans by modulation of photosynthetic and physio-biochemical metabolites in potato leaves[J].Pathogens,2020,9(3):170.
[9]? FEDOROVA Y N,MOROZOV V V,F(xiàn)EDOROVA L N,? et al.Study of the effect of foliar top dressing with liquid polymer fertilizer Zelenit nitrogen micro on the growth and development of potato plants in vivo[J].IOP Conference Series:Earth and Environmental Science,2022,1045(1):1-6.
[10]? 谷宇超,楊懿德,鄢? 敏,等.打頂后噴施不同濃度GA3和6-BA對(duì)烤煙農(nóng)藝性狀和化學(xué)成分的影響[J].作物雜志,2021(6):171-176.
GU Y CH,YANG Y D,YAN M,et al. Effects of GA3 and 6-BA on agronomic traits and chemical components of flue cured tobacco after topping[J].Crops,2021(6):171-176.
[11]? 李? 雪,朱昌華,夏? 凱,等.辛酸甲酯、癸酸甲酯和6-BA對(duì)棉花去頂?shù)挠绊懀跩].棉花學(xué)報(bào),2009,21(1):70-72.
LI X,ZHU CH H,XIA K,et al.Effects of methyl octanoate,methyl decanoate and 6-BA on topping in cotton[J].Acta Gossypii Sinica,2009,21(1):70-72.
[12]? 趙新華,劉佳杰,王友華,等.不同溫度下外施6-BA和ABA對(duì)棉花(Gossypium hirsutum L.)產(chǎn)量和纖維品質(zhì)的影響[J].棉花學(xué)報(bào),2010,22(6):547-553.
ZHAO X H,LIU J J,WANG Y H,et al.Effect of 6-BA and ABA on cotton (Gossypium hirsutum L.) yield and fiber quality under different temperature conditions[J].Acta Gossypii Sinica,2010,22(6):547-553.
[13] ?王慶彬,彭春娥,孟? 慧,等.蕓苔素內(nèi)酯·吲哚乙酸·赤霉酸在不同氮濃度下對(duì)小白菜產(chǎn)量和品質(zhì)的影響[J].? 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2021,38(4):626-635.
WANG Q B,PENG CH E,MENG H,et al.Effects of brassinolactone · indoleacetic acid ·gibberellic acid on the yield and quality of pakchoi (Brassica chinensis L.) under different nitrogen concentrations[J].Journal of Agricultural Resources and Environment, 2021,38(4):626-635.
[14]? 許曼琳,高慶剛,潘月慶,等.蕓苔素內(nèi)酯復(fù)配劑對(duì)花生條紋病毒病的田間藥效評(píng)價(jià)[J].花生學(xué)報(bào),2020,49(2):73-76.
XU M L,GAO Q G,PAN Y Q,et al.Assessment of field efficacy of brassinolide compound on Peanut stripe virus[J].Journal of Peanut Science,2020,49(2):73-76.
[15]? 薛珠政,康玉妹,溫慶放.蕓苔素內(nèi)酯·胺鮮酯水分散粒劑對(duì)大白菜生長(zhǎng)效果的研究試驗(yàn)[J].上海蔬菜,2016(3):47-48.
XUE ZH ZH,KANG Y M,WEN Q F.Research experiments on the effect of brassinolide-aminocrylene water-dispersible granules on the growth of Chinese cabbage[J].Shanghai Vegetables, 2016(3):47-48.
[16]? 羅丹瑜,張小花,李巧麗,等.α-萘乙酸對(duì)低溫脅迫下油菜幼苗抗寒性的影響[J].生態(tài)學(xué)雜志,2020,39(1):99-109.
LUO D Y,ZHANG X H,LI Q L,et al.Regulation of?? α-naphthaleneacetic acid on cold resistance of Brassica campestris seedlings under low temperature stress[J].Chinese Journal of Ecology,2020,39(1):99-109.
[17]? 高? 振,王冀川,孫? 婷,等.縮節(jié)胺與萘乙酸和蕓苔素內(nèi)酯配施在雜交棉上的化學(xué)調(diào)控互作效應(yīng)[J].貴州農(nóng)業(yè)科學(xué),2020,48(10):10-14.
GAO ZH,WANG J CH,SUN T,et al.Chemical requlation interaction effect of combined? application of DPC,NAA and BR on hybrid cotton[J].Guizhou Agricultural Sciences,2020,48(10):10-14.
[18]? 李健忠,薛立新,朱金峰,等.打頂后噴施油菜素內(nèi)酯和生長(zhǎng)素對(duì)烤煙田間生長(zhǎng)、碳氮代謝及煙葉品質(zhì)的影響[J].? 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2015,23(11):1404-1412.
LI J ZH,XUE L X,ZHU J F,et al.Effects of brassinolide and auxin on growth,carbon and nitrogen metabolism and tobacco quality of flue-cured tobacco leaves after topping[J].Chinese Journal of Eco-Agriculture, 2015,23(11):1404-1412.
[19]? 李春儉.植物激素在頂端優(yōu)勢(shì)中的作用[J].植物生理學(xué)通訊,1995(6):401-406.
LI CH J.The role of plant hormone in apical dominance[J].Plant Physiology Journal,1995(6):401-406.
[20]? 鄭樂(lè)婭,閻? 川,張玉海,等.植物生長(zhǎng)調(diào)節(jié)劑對(duì)中稻新兩優(yōu)6號(hào)光合速率的影響[J].安徽農(nóng)業(yè)科學(xué),2011,39(9):5128-5129.
ZHENG L Y,YAN CH,ZHANG Y H,et al.Effect of plant growth requlator on photosynthetic rate of middle-season rice new Liangyou No.6[J].Journal of Anhui Agricultural Sciences,2011,39(9):5128-5129.
[21]? 徐蒙可.DA-6對(duì)棉花種子萌發(fā)及幼苗光合特性的影響[D].新疆石河子:石河子大學(xué),2021.
XU M K.Effects of DA-6 on seed germination and seedling photosynthetic characteristics of cotton[D].Shihezi? Xinjiang:Shihezi University,2021.
[22]? 胡兆平,李? 偉,陳建秋,等.復(fù)硝酚鈉、DA-6和α-萘乙酸鈉對(duì)茄子產(chǎn)量和品質(zhì)的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2013,? 29(25):168-172.
HU ZH P,LI W,CHEN J Q,et al.Effect of sodium nitrophenolate,DA-6 and NAA on the eggplant yield and quality[J].Chinese Agricultural Science Bulletin,2013,? 29(25):168-172.
[23]? 王明杰,張佳琪,武敏樺,等.30%胺鮮酯·乙烯利水劑(玉黃金)對(duì)密植春玉米莖折強(qiáng)度及生理特性的影響[J].江蘇農(nóng)業(yè)科學(xué),2022,50(20):101-107.
WANG M J,ZHANG J Q,WU M H,et al.Effects of 30% aminoacyl easter and ethylene water agent (Yu Huangjin) on stem fold strength and physiological characteristics of densely planted spring maize[J].Jiangsu Agricultural Sciences,2022,50(20):101-107.
[24]? 彭智平,于俊紅,胡錦榮,等.DA-6對(duì)菜心養(yǎng)分吸收和產(chǎn)量的影響[J].廣東農(nóng)業(yè)科學(xué),2012,39(22):80-81.
PENG ZH P,YU J H,HU J R,et al.Effects of DA-6 application on nutrient absorption and yield of flowering Chinese cabbage[J].Guangdong Agricultural Sciences, 2012,39(22):80-81.
[25]? 徐加利,尹紅增,周海燕,等.復(fù)硝酚鈉和胺鮮酯·復(fù)硝酚鈉對(duì)大棚番茄生長(zhǎng)和果實(shí)品質(zhì)的影響[J].植物醫(yī)生,2019,32(1):23-26.
XU J L,YIN H Z,ZHOU H Y,et al.The effects of 1.8% compound sodium nitrophenolate wateraqua and 3%?? amine hexanoate·compound sodium nitrophenolate water aqua on the growth and quality of greenhouse-grown tomato[J].Plant Health and Medicine,2019,32(1):23-26.
[26]? 成武洋.胺鮮酯與枯草芽孢桿菌復(fù)配對(duì)煙苗生長(zhǎng)發(fā)育影響[D].長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2020.
CHENG W Y.Effects of DA-6 and bacillus subtilis combination on growth and development of tobacco seedlings[D].Changsha:Hunan? Agricultural University,2020.
[27]? 寧新民,王為然,朱家輝,等.豐產(chǎn)優(yōu)質(zhì)機(jī)采棉新品種——新陸中84號(hào)[J].中國(guó)棉花,2018,45(11):32-33.
NING X M,WANG W R,ZHU J H,et al.A high yield,fine quality,machine-harvested cotton variety,Xinluzhong 84[J].China Cotton,2018,45(11):32-33.
[28]? 郭文善,封超年,嚴(yán)六零,等.小麥開(kāi)花后源庫(kù)關(guān)系分析[J].作物學(xué)報(bào),1995(3):334-340.
GUO W SH,F(xiàn)ENG CH N,YAN L L,et al. Analysis of source-store relationships in wheat after flowering[J].Acta Agronomica Sinica,1995(3):334-340.
[29]? 紀(jì)從亮,俞敬忠,劉友良,等.棉花高產(chǎn)品種的源庫(kù)流特點(diǎn)研究[J].棉花學(xué)報(bào),2000,12(6):298-301.
JI C L,YU J ZH,LIU Y L,et al. Study on source sink characteristics of high yielding cotton varieties[J].Acta Gossypii Sinica,2000,12(6):298-301.
[30]? 陳德華,吳云康,段? 海,等.棉花群體葉面積載荷量與產(chǎn)量關(guān)系及對(duì)源的調(diào)節(jié)效應(yīng)研究[J].棉花學(xué)報(bào),1996,8(2):109-112.
CHEN D H,WU Y K,DUAN H,et al.Study on the relationship of sink capacity of unit leaf area to yield and regulation effect to source in cotton population[J].Acta Gossypii Sinica,1996,8(2):109-112.
[31]? 任士偉,王亮亮,張萍萍,等.噴施亞磷酸鉀對(duì)番茄生長(zhǎng)發(fā)育的影響[J].黑龍江農(nóng)業(yè)科學(xué),2019(6):50-53.
REN S W,WANG L L,ZHANG P P,et al.Effects of potassium phosphite as foliar fertilizer on tomato growth[J].Heilongjiang Agricultural Sciences,2019(6):50-53.
[32]? 董永華,史吉平,李廣敏.6—BA提高玉米幼苗光合作用機(jī)理探討[J].河北農(nóng)業(yè)科學(xué),1996(1):1-2.
DONG Y H,SHI J P,LI G M.Mechanism of 6-BA in enhancing photosynthesis in maize seedlings[J].Journal of Hebei Agricultural Sciences,1996(1):1-2.
[33]? 商振清,李愛(ài)麗,董永華,等.6-BA或KT對(duì)水分脅迫條件下小麥旗葉光合能力及千粒重的影響[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2000(2):20-24.
SHANG ZH Q,LI A L,DONG Y H,et al.Effect of 6-BA or KT on photosynthetic capacity in wheat flag leaf and the weight of 1 000 grains under? water stress[J].Journal of Hebei Agricultural University,2000(2):20-24.
[34]? 趙毓桔.6-芐氨基嘌呤延緩小麥葉片衰老機(jī)制的研究[J].植物生理學(xué)報(bào),1978(1):39-50.
ZHAO Y J.Studies on the mechanism of retarding leaf senescence by 6-benzylaminopurine? in wheat seedings[J].Plant Physiology Journal,1978(1):39-50.
[35]? WANG K X,SHEN Y X,WANG H,et al.Effects of exogenous salicylic acid (SA),6-benzylaminopurine (6-BA),or abscisic acid (ABA) on the physiology of Rosa hybrida ‘Carolla under high-temperature stress[J].Horticulturae,2022,8(9):851.
[36]? ZHANG W J,WANG B B,ZHANG A M,et al.Exogenous 6-benzylaminopurine enhances waterlogging and shading tolerance after anthesis by improving grain starch accumulation and grain filling[J].Frontiers in Plant Science,2022,13:1-19.doi:10.3389/fp15.2022.1003920.
[37]? 張海娜,李存東,肖? 凱.外源6-BA對(duì)棉花光合和葉片衰老特性的調(diào)控效應(yīng)研究[J].棉花學(xué)報(bào),2007,19(6):467-471.
ZHANG H N,LI C D,XIAO K.Regulation effects of exogenous 6-BA on photosynthesis and leaf senescence in cotton[J].Acta Gossypii Sinica,2007,19(6):467-471.
[38]? ALI B,HASAN S A,AHMAD A,et al.A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.Wilczek)[J].Environmental and Experimental Botany,2007,62(2):153-159.
[39]? ALI B,HAYAT S,F(xiàn)ARIDUDDIN Q,et al.24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea[J].Chemosphere,2008,72(9):1387-1392.
[40]? 梁? 鵬,邢興華,周? 琴,等.α-萘乙酸對(duì)干旱和復(fù)水處理下大豆幼苗生長(zhǎng)和光合作用的影響[J].大豆科學(xué),2011,30(1):50-55.
LIANG P,XING X H,ZHOU Q,et al. Effect of NAA on growth and photosynthetic characteristic of soybean seedling under drought and rewatering[J].Soybean Science,2011,30(1):50-55.
[41]? 邢興華,徐澤俊,齊玉軍,等.外源α-萘乙酸對(duì)花期干旱大豆碳代謝的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2018,29(4):1215-1224.
XING X H XU Z J,QI Y J,et al. Effect of exogenous?? a-naphthaleneacetic acid on carbon metabolism of soybean under drought stress at flowering stage[J].Chinese Journal of Applied Ecology, 2018,29(4):1215-1224.
[42]? 李小玲,華智銳,王? 怡.油菜素內(nèi)酯和吲哚乙酸對(duì)黃芩生長(zhǎng)及品質(zhì)的影響[J].貴州農(nóng)業(yè)科學(xué),2018,46(7):121-125.
LI X L,HUA ZH R,WANG Y.Effects of brassinosteroid (BR) and indoleacetic acid (IAA) on growth and quality of Scutellaria baicalensis[J].Guizhou Agricultural Sciences,2018,46(7):121-125.
[43]? 胡兆平,李? 偉,陳建秋,等.復(fù)硝酚鈉、DA-6和α-萘乙酸鈉對(duì)茄子產(chǎn)量和品質(zhì)的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2013,? 29(25):168-172.
HU ZH P,LI W,CHEN J Q,et al.Effect of sodium nitrophenolate,DA-6 and NAA on the eggplant yield and quality[J].Chinese Agricultural Science Bulletin,2013,? 29(25):168-172.
[44]? 魏永霞,曹曉強(qiáng),冀俊超,等.不同灌溉方式下旱直播水稻光合特性與干物質(zhì)積累動(dòng)態(tài)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,? 52(10):358-368.
WEI Y X,CAO X Q,JI J CH,et al.Effects of different irrigation methods on photosynthetic characteristics and dry matter accumulation dynamics of dry direct seeding rice[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):358-368.
[45]? LOBATO M C,MACHINANDIARENA M F,TAMBASCIO C,et al. Effect of foliar applications of phosphite on post-harvest potato tubers[J].European Journal of Plant Pathology,2011,130(2):155-156.
[46]? 李寶玉,劉富強(qiáng),郭燕枝.亞磷酸鉀在馬鈴薯上的增產(chǎn)及抗病效果[J].中國(guó)蔬菜,2021(9):63-68.
LI B Y,LIU F Q,GUO Y ZH.Effects of potassium phosphite on potato yield increase and disease resistance[J].China Vegetables,2021(9):63-68.
[47]? MOOR U,PLDMA P,TNUTARE T,et al.Effect of phosphite fertilization on growth,yield and fruit composition of strawberries[J].Scientia Horticulturae,2008,119(3):264-269.
[48]? 李鵬兵,文? 明,王? 樂(lè),等.葉面噴施6-BA對(duì)棉花蕾鈴形成及產(chǎn)量的影響[J].新疆農(nóng)業(yè)科學(xué),2019,56(5):864-872.
LI P B,WEN? M,WANG L,et al.Effects of foliar spraying of 6-BA on the formation of bud,boll and yield of cotton (Gossypium hirsutum L.)[J].Xinjiang Agricultural Sciences,2019,56(5):864-872.
[49]? 王? 潔,華一帆,秦際遠(yuǎn),等.表油菜素內(nèi)酯噴施時(shí)期對(duì)寬幅播種小麥產(chǎn)量和氮素利用率的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2023,34(1):99-106.
WANG J,HUA Y F,QIN J Y,et al.Effects of the timing of epibrassinolide spraying on yield and nitrogen use efficiency of wide-belt sowing wheat[J].Chinese Journal of Applied Ecology,2023,34(1):99-106.
[50]? 李欣欣,趙? 靜,廖? 紅.吲哚乙酸、吲哚丁酸和萘乙酸對(duì)大豆幼根生長(zhǎng)的影響[J].植物生理學(xué)報(bào),2013,49(6):573-578.
LI X X,ZHAO J,LIAO H.Effects of indoleacetic acid,indolebutyric acid and naphthylacetic acid on soybean [Glycine max (L.) Merr] root growth[J].Plant Physiology Journal,2013,49(6):573-578.
[51] ?劉保軍,吳? 瓊,李? 慧,等.復(fù)硝酚鈉與胺鮮酯對(duì)棉花化肥吸收率的影響[J].新疆農(nóng)業(yè)科學(xué),2020,57(4):754-761.
LIU B J,WU Q,LI H,et al. Effects of compound sodium nitrophenolate and DA-6 on the chemical fertilizer absorption rate of cotton[J].Xinjiang Agricultural Sciences,2020,57(4):754-761.
[52]? 孫? 建,熊書(shū)敏,皮曉玲,等.不同時(shí)期葉面噴施萘乙酸對(duì)秋芝麻品種贛芝13號(hào)產(chǎn)量及種子質(zhì)量的影響[J].南方農(nóng)業(yè)學(xué)報(bào),2018,49(7):1318-1323.
SUN J,XIONG SH M,PI X L,et al.Effects of foliar spraying naphthylacetic acid at different periods on yield and seed quality of autumn sesame variety Ganzhi No.13[J].Journal of Southern Agriculture,2018,49(7):1318-1323.
[53]? 黃誠(chéng)梅,江? 文,吳建明,等.萘乙酸與多效唑?qū)岳虺苫靶律覂?nèi)源激素含量的影響[J].西北植物學(xué)報(bào),2009,? 29(4):742-748.
HUANG CH M,JIANG W,WU J M,et al.Floral bud formation and endogenous hormone changes of Jasminum sambac L.with NAA or PP333 treatments[J].Acta Botanica Boreali-Occidentalia Sinica,2009,29(4):742-748.
[54]? 段留生,韓碧文,何鐘佩.6-芐氨基嘌呤和乙烯利對(duì)小麥籽粒產(chǎn)量和品質(zhì)的影響[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),1998,? 3(S4):1-6.
DUAN L SH,HAN B W,HE ZH P.Effects of 6-benzylaminopurine and ethephon on grain yield and quality of winter wheat[J].Journal of China Agricultural University,1998,3(S4):1-6.
[55]? 宋偉豐,韋慶慧,劉? 凱,等.蕓苔素甾醇復(fù)配磷酸二氫鉀對(duì)耐鹽堿水稻產(chǎn)量影響的研究[J].現(xiàn)代農(nóng)藥,2022,? 21(2):62-64.
SONG W F,WEI Q H,LIU K,et al.Study on the effect of the mixture of brasszinoszteroid and potassium dihydngen phosphate on saline tolerant rice yield[J].Modern Agrochemicals,2022,21(2):62-64.
[56] ?王巖文,雒? 娜,王廣印.油菜素內(nèi)酯及配施外源鈣對(duì)日光溫室越冬茬番茄生長(zhǎng)、坐果及產(chǎn)量的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2021,37(4):43-48.
WANG Y W,LUO N,WANG G Y.Effects of combined application of brassinolide and exogenous calcium on growth,fruit setting and yield of over-winter tomato in solar greenhouse[J].Chinese Agricultural Science Bulletin,2021,37(4):43-48.
[57]? 殷夢(mèng)瑤,陳? 功,羅海華,等.外施吲哚乙酸對(duì)棉鈴蔗糖代謝及產(chǎn)量性狀的影響[J].核農(nóng)學(xué)報(bào),2021,35(8):1931-1940.
YIN M Y,CHEN G,LUO H H,et al.Effects of external IAA application on sucrose metabolism with cotton bolls and within-boll yield components[J].Journal of Nuclear Agricultural Sciences,2021,35(8):1931-1940.
Effect of Potassium Phosphite Compound with Different Exogenous Substances on Yield Formation of Chemically Topped Cotton
LI Xinxin,TIAN Yangqing ,ZHAO Qiang,MUNIRE·Abduaini,WU Gang,
WANG Wenqing,ZHANG Jiahao,ZHAN Dongxia? and? SONG? Xinghu
(College of Agriculture,Xinjiang Agricultural University/Engineering Research Centre of Cotton,
Ministry of Education,Urumqi? 830000,China )
Abstract? Through field experiments,the aim of this study was to identify the optimal combination of potassium phosphite compound,providing new ideas and a theoretical basis for enhancing cotton yield and developing high-yield and efficient cotton cultivation techniques in Xinjiang.The experiment,conducted in Shaya County,Aksu Region,Xinjiang,China in 2022,used the cotton variety ‘Xinluzhong No.84 as experimental material.A randomized group design was employed,with potassium phosphite applied at 750? mL/hm2 as the main treatment.It was compounded with either 6-benzylaminopurine 12 mL/hm2 (PHO1),14-hydroxyrutinol 150 mL/hm2 (PHO2),naphthalene acetic acid 0.18 g/hm2 (PHO3),indole-3-acetic acid 0.18 g/hm2 (PHO4),or diethyl aminoethyl hexanoate 20 g/hm2 (PHO5).The potassium phosphite applied at 750? mL/hm2 (CK1) and water (CK2) were applied as controls.Spraying was done at the time of chemical topping (July 5) and 7 days after topping.The analysis focused on cotton boll temporal and spatial distribution,dry matter accumulation and distribution,photosynthetic characteristics,and yield indicators under each treatment.The results showed that all treatments resulted in an increase in the leaf photosynthetic rate and aboveground dry matter accumulation,ultimately leading to an increase in the cotton plant's boll count and yield.Among the treatments,PHO4 and PHO5 demonstrated the ability to enhance the rate of boll formation in the initial fruiting node,resulting in a significant increase in boll count ranging from 3.09% to 17.89%.The quality of bolls in the PHO5 treatment was observed,with an increase of 1.35% compared to the control boll quality,while the PHO4 treatment increased the yield of seed cotton by 15.76% to 19.81% compared to the control.Therefore,after chemical topping,it is recommended to use 750? mL/hm2 potassium phosphite combined with 0.18 g/hm2 indole-3-acetic acid (PHO4) or 20 g/hm2 aminoglutethimide (PHO5) to increase cotton boll number and achieve yield increase.
Key words? Cotton; Potassium phosphite; Exogenous substances; Boll formation characteristics; Yield
Received ??2023-06-02??? Returned? 2023-09-07
Foundation item? Major Science and Technology Special Project of Xinjiang Uygur Autonomous Region (No.2020A01002-2).
First author? LI Xinxin,female,master student.Research area:principles and technologies of crop chemical control.E-mail:l1901023664@163.com
Corresponding?? author? ZHAO Qiang,male,Ph.D,professor.Research area:principles and technologies of crop chemical control.E-mail:qiangzhao99@163.com
ZHAN Dongxia,female,Ph.D,lecturer.Research area:high-yield crop cultivation technology.? E-mail:zhandongxia@sina.cn
(責(zé)任編輯:史亞歌? Responsible editor:SHI Yage)