牛會敏 楊蘭 邱抒倩 陳莉 張勝行
【摘要】細胞因子是由活化的免疫細胞或非免疫細胞合成并分泌的小分子蛋白質,其主要通過與特定受體結合并激活相應下游信號轉導通路,在免疫調控以及免疫性疾病的發(fā)生、發(fā)展過程中發(fā)揮廣泛的生物學作用。迄今為止,基于抗體的細胞因子和(或)細胞因子受體的靶向阻斷在免疫性疾病的治療中已取得令人鼓舞的效果,但其高昂的治療費用給患者帶來極大的經(jīng)濟負擔。適配體又稱化學抗體,是體外合成并經(jīng)人工篩選獲得的、能與諸多靶標分子特異并高親和結合的寡核苷酸片段。與抗體相比,適配體有著成本低廉、低免疫原性和易于修飾等諸多優(yōu)勢。因此,功能化適配體在免疫性疾病靶向治療中的潛在應用前景吸引了越來越多研究者的關注。文章綜述了在免疫調控中發(fā)揮重要作用的8種細胞因子[IL-1α、IL-6、IL-17、TNF-α、轉化生長因子- β、IFN-γ、單核細胞趨化蛋白-1(MCP-1)和IFN-α誘導蛋白10]相關的特異性適配體的化學修飾及其在免疫和免疫相關性疾病治療中應用的研究進展,并就未來適配體藥物在臨床特定免疫性疾病的精準靶向治療中的潛在應用進行展望。
【關鍵詞】適配體;細胞因子;信號通路;阻斷劑;免疫治療;炎癥
Application of aptamers in the targeted treatment of immunological diseases
NIU Huimin1,2, YANG Lan1, QIU Shuqian2, CHEN Li1,2, ZHANG Shenghang1,2
(1. Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China;2. Department of Clinical Laboratory Medicine, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China)
Corresponding author: ZHANG Shenghang, E-mail: fzzyyzsh@126.com
【Abstract】Cytokines are small molecular proteins released by activated immune cells or non-immune cells. Cytokines can play a wide range of biological roles in immune regulation and the incidence and progression of immune diseases by selectively binding with specific signals and activating the downstream immune signal transduction pathway. Encouraging efficacy has been achieved in the application of antibody-based cytokines or cytokine receptor monoclonal antibodies in the treatment of related immune diseases. Nevertheless, the high cost of administration based on monoclonal antibodies makes it unaffordable for patients. Aptamers, also known as chemical antibodies, are oligonucleotide fragments synthesized in vitro and obtained by artificial screening, which can specifically bind to multiple target molecules with high affinity. Compared with antibodies, aptamers have the advantages of low cost, low immunogenicity and convenient modification. Hence, the potential application prospect of functionalized aptamers in targeted therapy of immune diseases has attracted more and more attention from researchers. In this article, chemical modification of specific aptamers related to 8 types of cytokine aptamers (IL-1α, IL-6, IL-17, TNF-α, TGF-β, IFN-γ, MCP-1 and IP-10) which play critical roles in immune regulation was reviewed, the research progress in their application in the treatment for immune and immune-related diseases was summarized, and the potential application of aptamer drugs in precise targeted therapy for specific immune diseases was briefly predicted.
【Key words】Aptamer; Cytokine; Signaling pathway; Blocker; Immune treatment; Inflammation
為應對環(huán)境有害因素的感染及其對組織的損傷,機體建立了一系列由免疫細胞介導的細胞因子保護性生物反應[1]。眾多細胞因子在體內具有多效性、重疊性、拮抗性及協(xié)同性等多種生理特性,形成了復雜的細胞因子免疫調節(jié)網(wǎng)絡[2]。然而,不受控的急性嚴重感染會引發(fā)細胞因子風暴,最終導致ARDS及MODS。同時,多種慢性疾病如心血管疾病、癌癥、糖尿病、慢性腎臟病、非酒精性脂肪性肝病以及自身免疫性和神經(jīng)退行性疾病也與長期的促炎及抗炎平衡失調有著密切關系[3]。有研究顯示,90%以上的宮頸癌可歸因于人乳頭狀瘤病毒感染導致的慢性細胞因子紊亂[4]。
1 細胞因子概述
細胞因子主要有IL、集落刺激因子(colony stimulating factor,CSF)、IFN、TNF家族、生長因子
[如轉化生長因子(transforming growth factor,TGF)]和趨化因子[如單核細胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)、IFN-γ誘導蛋白10(interferon γ inducible protein-10,IP-10)]等,其主要信號通路見圖1。目前,細胞因子和細胞因子受體的單克隆抗體被廣泛用于免疫、感染及腫瘤相關疾病的臨床治療。部分已成為免疫治療二線藥物,如托珠單抗靶向IL-6受體,被FDA批準用于治療類風濕關節(jié)炎和細胞因子釋放綜合征等。單克隆抗體成本高昂,患者難以負擔。核酸適配體不僅具有靶向性、循環(huán)穩(wěn)定性及低免疫原性的優(yōu)點,還具有低成本的優(yōu)勢,有望替代單克隆抗體成為免疫調控的靶向藥物。
通過指數(shù)富集的配體系統(tǒng)進化技術(systematic evolution of ligands by exponential enrichment,SELEX)從大量不同序列組成的核酸文庫中篩選和分離出能與靶標結合的單鏈RNA或DNA寡聚體稱為適配體,篩選流程見圖2。為增加富集池的目標選擇性,一般設計加入關鍵干擾物進行反篩,減少體內應用的交叉反應性[13]。SELEX可以針對靶標樣品的基質進行反篩,如表面帶氰基的磁珠與血清孵育形成磁珠-血清蛋白進行反篩,以獲得適于在體應用且對目標高親和高特異的候選適配體[14]。本文闡述了上述8種信號通路相關特異性適配體阻斷劑的種類、性能優(yōu)化和治療應用研究現(xiàn)狀,通過總結目前細胞因子及其受體特異性適配體在免疫相關疾病治療方面的應用潛力,為新型治療制劑的研發(fā)提供指導。
2 IL-1α通路適配體抑制劑治療策略
IL-1α是多種全身性和急性期反應的早期誘導劑[15]。IL-1家族信號轉導由配體、受體和共受體組成異源三聚體復合物[16],復合物的形成激活Toll/IL-1結構域,活化MYD88觸發(fā)級聯(lián)激酶,導致細胞的促炎癥狀態(tài)[5]。IL-1α與炎癥誘導的癌變有關,靶向IL-1α的抗體MABp1已進入Ⅲ期臨床研究,結果顯示MABp1與晚期結直腸癌患者的抗腫瘤活性和衰弱癥狀的緩解有關,同時具有高水平的安全性和耐受性[17]。
抑制IL-1α可能是一種有前途的抗感染治療策略。因此,Ren 等[18]篩選出來的IL-1α的高親和力(KD=7.3 nmol,KD為解離常數(shù),其值越大代表親和力越小)及高特異性適配體SL1067,經(jīng)脫氧尿苷位的2-萘甲基取代形成的穩(wěn)定態(tài)DNA以代替抗體,在細胞實驗水平可抑制成纖維細胞生長,減少肝細胞引起急性期蛋白產(chǎn)生,調節(jié)T細胞和B細胞生長和分化,有望用于臨床免疫治療。
3 IL-6通路適配體抑制劑治療策略
IL-6是由IL-1與TNF-α誘導產(chǎn)生的、固有免疫系統(tǒng)對損傷和感染最初反應所表達的多效細胞因子,參與自身免疫性疾病、炎癥和部分癌癥的發(fā)病機制[19]。同時,IL-6是影響體內炎癥嚴重程度的激素樣細胞因子,被認為是臨床干預的重要靶點。IL-6介導的刺激誘導糖蛋白130(glycoprotein 130,GP130)同質二聚化,隨后磷酸化的Juns激酶(Juns kinase,JAK)激活信號轉導與轉錄激活因子1(signal transduction and transcription activation factors 1,STAT1)和STAT3形成同源二聚體或異源二聚體,誘導各種基因的激活[6, 20]。
針對IL-6受體抑制劑的托珠單抗已開展臨床應用研究[21],如在急性ST段抬高型心肌梗死(STEMI)心肌挽救中發(fā)揮作用[22]。為降低成本,Gupta等[23]篩選了針對人類IL-6的DNA適配體SL1025(KD=0.2 nmol),PEG化的適配體SL1026通過結合IL-6抑制T細胞中STAT3磷酸化,用于治療膠原誘導的關節(jié)炎[24]。針對IL-6受體位點的適配體阻斷劑也備受關注,如Mittelberger等[25]篩選了34 nt 的RNA適配體RAID3用于阻斷IL-6R。Ando等[26]獲得解離常數(shù)為200 nmol的IL-6信號通路拮抗劑,該拮抗劑可抑制新型冠狀病毒感染(corona virus disease 2019,COVID-19)導致的細胞因子釋放綜合征。除了RNA適配體,由32個氨基酸組成的肽適配體及其富二硫化物可代替IL-6R單克隆抗體[27] 。另外,Takamori等[28]進一步從隨機肽庫中篩選了一個新的13mer非天然的間(氯甲基)苯甲酸環(huán)化肽適配體,環(huán)化增加了肽的蛋白酶抗性,其可以結合IL-6R的胞外結構域,有望在IL-6/IL-6R信號轉導的多種診斷和治療方案中應用。
4 IL-17A通路適配體抑制劑治療策略
IL-17家族由6個具有強烈促炎作用的結構相關成分組成,分別是IL-17A~F,其中IL-17A是最重要的T細胞誘導炎癥反應的早期啟動因子[29]。IL-17A通過與相關受體IL-17RA和IL-17RC結合,胞內結構域編碼保守的SEFIR結構域與適配器Act1相互作用,Actl含有與TNF受體相關因子(TNF receptor related factor,TRAF)家族蛋白結合的位點,與TRAF6結合可激活MAPK或TGF-β激活激酶1(TGF-β activate kinase 1,TAK1),這些因子共同觸發(fā)靶基因轉錄[7]。該通路參與誘導趨化因子的表達以招募白細胞,同時通過刺激TNF-α、IL-1β和IL-6的釋放而發(fā)揮炎癥放大作用[30]。
IL-17A及其近親IL-17F在免疫性疾病的治療領域受到廣泛關注。30mer RNA適配體Apt21-2(KD=48.5 pmol)與IL-17A結合可抑制IL-6分泌[26, 31]。
其PEG化適配體PEG21-2idT以劑量依賴性的方式抑制關節(jié)炎或神經(jīng)癥狀的發(fā)展。后續(xù)研究者又分析了Apt21-2對銀屑病炎癥的效果,發(fā)現(xiàn)Apt21-2在成纖維細胞培養(yǎng)和成纖維T細胞培養(yǎng)中對IL-17A具有中和能力,然而適配體被上層皮膚角質形成細胞攝取,可能會導致其在真實皮膚治療中失效[32]。另有研究者報道,IL-17適配體覆蓋氧化鈰納米顆粒明膠對腦炎治療有顯著效果[33]。IL-17A和IL-17F常以同型二聚體或異型二聚體配合物存在于細胞膜,Adachi等[34]針對IL-17A/F的異質二聚體全局構象篩選適配體AptAF42,優(yōu)化后的衍生物AptAF42dope1有望成為首個針對IL-17A/F的抑制物。
5 TNF-α通路適配體抑制劑治療策略
TNF-α是TNF家族中最先確定的成員,激活的單核細胞和巨噬細胞是TNF-α的主要來源。TNF-α信號轉導是免疫系統(tǒng)的重要組成部分,具有抑制腫瘤發(fā)生、阻止病毒復制的作用,并且是誘導發(fā)熱和細胞凋亡的內源性熱原。TNF-α通過與Ⅰ型受體(TNF receptor 1,TNF-R1;p55)或Ⅱ型受體(TNF receptor 1,TNF-R2;p75)結合,激活不同的信號轉導途徑,平衡促炎或抗炎效應,其中以TNFR1信號轉導為主,啟動核轉錄因子-κB(nuclear factor-κB,NF-κB)、絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)途徑的激活及誘導死亡信號轉導[8]。
中和TNF的生物制劑是慢性炎癥和自身免疫性疾病最有效的治療藥物,菌血癥期間輸注抗TNF-α單克隆抗體,可抑制IL-1和IL-6釋放[35]。DNA適配體有潛力成為TNF單抗替代品。Orava等[36]首次用25堿基單鏈DNA適配體VR11特異性地與TNF-α結合,減少體外一氧化氮(nitric oxide,NO)產(chǎn)生,減輕炎癥反應。此外,Lai等[37]探究了篩選的TNF-α適配體聚乙二醇(polyethylene glycol,PEG)衍生物可減輕肝細胞的急性損傷程度并增強肝組織的早期再生能力。Mashayekhi 等[38]為增強免疫抑制作用,制備二聚體形式的DNA適配體(KD=67 nmol),其抑制效果達到40%,而融合蛋白依那西普為60%。類似地,Shobeiri等[39]構建了T1~T4適配體二聚體,探究了其在低濃度下實現(xiàn)治療小鼠銀屑病的作用。利用腺苷三磷酸(adenosine triphosphate,ATP)、TNF-α適配體和聚合物苯基硼酸構建的聚合物/適配體/金納米顆粒,能夠通過清除活性氧并捕獲TNF-α治療腹膜炎[40]。上述研究均驗證了阻斷TNF-α促炎信號通路可緩解相關疾病癥狀,然而TNF-α-TNFR2介導的生存和繁殖功能被中斷可能引起副作用。為此,Chu等[41]篩選了針對TNFR1的適配體,并驗證其二價核酸適配體有望作為抗RA候選藥。An等[42]進一步通過微針共遞送IL- 6R抑制劑托珠單抗和特異性抑制TNFR1的適配體Apt1-67,驗證了聯(lián)合用藥比單藥更有效緩解小鼠的類風濕關節(jié)炎。
6 TGF-β通路適配體抑制劑治療策略
轉化生長因子β1是一個25 kDa的同源二聚體蛋白,主要來源于調節(jié)性T細胞[43]。TGF-β信號轉導是通過膜蛋白多糖β聚糖作為一種共受體,收集TGF-β并提呈給受體即I型受體(transforming growth factor-β receptor 1,TGFBR1)和Ⅱ型受體(transforming growth factor-β receptor 2,TGFBR2),組裝形成復合物。隨后,TGFBR2磷酸化并激活TGFBR1激酶,而TGFBR1激酶結合轉錄因子SMAD2/3并磷酸化。這些SMAD與SMAD4形成三聚體復合物,并在細胞核內聚集,結合并轉錄激活靶基因座[9]。TGF-β通路異常可能導致多種疾病發(fā)生,如腫瘤、組織纖維化、心血管疾病和免疫性疾病等。
目前,多種抑制TGF-β信號通路的免疫療法已被提出用于癌癥治療[44],靶向TGF-β受體Ⅱ的適配體是一種有潛力的治療手段,多項研究證實其對青光眼濾過術后瘢痕形成具有抑制作用[45-47]。對于TGF-β1的結合抑制,Stejskalová等[48]利用細胞牽引力觸發(fā)響應創(chuàng)建了TGF-β1的調控海綿,實現(xiàn)選擇性地激活釋放藥物。Kang等[49]篩選分離出的一種TGF-β1硫代磷酸單鏈DNA適配體(T18-1-3)
具有較高穩(wěn)定性。而Takahashi等[50]進一步驗證了抗TGF-β1適配體具有增強酪氨酸激酶抑制劑吉非替尼對非小細胞肺癌異種移植模型的治療作用。
7 IFN-γ通路適配體抑制劑治療策略
IFN-γ在抗病毒免疫和炎癥條件下具有生物活性,是一種典型的1型輔助性T細胞(T helper cell 1,Th1)細胞因子,IFN-γ通過依附于其受體(Ⅰ和Ⅱ)并激活JAK/STAT信號通路發(fā)揮促炎癥作用,激活T細胞,增加TNF活性,刺激NO釋放[51]。失調的IFN反應在多種形式自身免疫性疾病的發(fā)展中起著至關重要的作用,SLE、系統(tǒng)性硬化癥、干燥綜合征和皮肌炎患者均可表現(xiàn)出IFN信號增強[10]。
目前多種IFN-γ特異性適配體被報道,且多種光學、電化學傳感器被開發(fā)[52]。在治療領域,Tuleuova等[53]篩選了一種DNA適配體(KD=3.44 nmol)代替IFN-γ抗體。在另一項研究中,特異性的59mer DNA適配體B1~B4可進入細胞識別IFN-γ(KD=74.5 nmol)[54]。近年研究者報道了一種針對促炎因子檢測和抗炎因子治療的新型一體化策略:基于結構轉換適配體的生物傳感器能夠在體內定量且動態(tài)檢測IFN-γ,同時依據(jù)IFN-γ濃度控制阿司匹林釋放,在大鼠模型中具有抑制炎癥的作用[55]。這種通用的治療平臺有望為患者提供個性化的抗感染治療。
8 趨化因子MCP-1通路適配體
抑制劑治療策略
阻斷促炎介質已被證實可成功治療慢性炎癥,趨化因子是介導炎性細胞聚集到病灶處的主要細胞因子,分為CXC、CC、CX3C和XC。CC趨化因子CCL2也被稱為MCP-1,可使白細胞與內皮細胞結合并聚集到炎癥部位。配體CCL2與其受體CCR2結合時,一系列下游信號被激活,如JAK/STAT、p38MAPK、PI3K/AKT等,調動多種轉錄因子和基因,導致腫瘤細胞的增殖和遷移[56-57]。此外,CCL2-CCR2軸與冠狀動脈粥樣硬化[58]、狼瘡性腎炎[59]也存在關聯(lián)。
Kulkarni等[59]報道了一種L-對映體RNA寡核苷酸適配體,稱為mNOX-E36,可在小鼠體內或體外與MCP-1高親和力結合并中和其作用,是目前針對MCP-1的唯一高親和力適配體,可以阻止白細胞與內皮細胞結合,并抑制白細胞外滲至炎癥部位,適配體mNOX-E36不僅在小鼠中顯示出療效,并在藥代動力學研究中證明了其適用性,且沒有免疫刺激的不良反應,為治療狼瘡性腎炎提供了一種新的有潛力的方法。此外,CCL2特異性mNOX-E36與CXCL12特異性阻斷劑NOX-A12聯(lián)用,對提高胰島移植和1型糖尿病小鼠模型的胰島存活率也具有良好效果[60]。近期研究將該適配體注射至小鼠原位4T1三陰性乳腺癌腫瘤,實現(xiàn)調節(jié)腫瘤相關巨噬細胞浸潤和極化,使血管正?;愿纳颇[瘤靶向藥物遞送[61]。
9 趨化因子 IP-10通路適配體抑制劑治療策略
趨化因子CXCL10是僅77個氨基酸的小型細胞因子,受IFN-γ刺激釋放,因此也稱為IP-10。IP-10可促進T細胞與內皮細胞的黏附,抑制骨髓細胞集落形成和血管生成。CXCL10通過結合CXCR3受體激活ERK、p38 MAPK和PI3K/Akt信號通路,其中p38、PI3K/Akt和cAMP依賴性蛋白激酶A(protein kinase A,PKA)信號通路調節(jié)人嗜酸性粒細胞、肺細胞和上皮細胞的趨化性[12]。
目前已經(jīng)篩選出一組針對IP-10的高親和力且具有核酸酶抗性的RNA適配體。Marro等[62]從中選擇了最高效的一條進行截短,并在3'-端進行聚乙二醇化(KD=1.6 nmol),將其修飾為穩(wěn)定的長度僅34 nt的RNA適配體,是迄今為止報道的CXCLI0/CXCR3信號通路最有效的拮抗劑,可有效抑制哮喘。
10 結論與展望
目前多種適配體已經(jīng)在體外進行測試以明確其治療效能,但其代替抗體用藥仍然達不到臨床期待,主要局限在于體循環(huán)的穩(wěn)定性和復雜基質環(huán)境影響結構而易導致脫靶效應。為提高在體給藥發(fā)揮效用的成功率,需在篩選過程中引入真實應用環(huán)境介質中的蛋白進行負篩,對SELEX過程進行質量控制,以優(yōu)化核酸適配體的親和力和特異性;通過改造糖環(huán)等修飾途徑防止核酸快速降解;同時靶標與單鏈RNA或DNA結合的微觀分子機制需明確才可實現(xiàn)適配體結構有效改造。本文總結了當前基于細胞因子或其作用受體的特異性核酸適配體作為免疫抑制劑的最新進展,并歸納了提高其應用穩(wěn)定性及親和力的方法,見表1。8種促炎細胞因子及相關受體特異性適配體可抑制信號轉導,從而減緩炎癥或自身免疫性疾病,核酸適配體可能會給生物科學帶來革命性的變化,有望作為一種低成本、易改造、低毒副作用、易保存的識別分子用于靶向治療,但推動適配體成藥仍然需要廣大科研人員深入探索。
參 考 文 獻
[1] NATHAN C. Points of control in inflammation[J]. Nature, 2002, 420(6917): 846-852. DOI: 10.1038/nature01320.
[2] FEEZOR R J, OBERHOLZER C, BAKER H V, et al. Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria[J]. Infect Immun, 2003, 71(10): 5803-5813. DOI: 10.1128/IAI.71.10.5803-5813.2003.
[3] FURMAN D, CAMPISI J, VERDIN E, et al. Chronic inflammation in the etiology of disease across the life span[J]. Nat Med, 2019, 25(12): 1822-1832. DOI: 10.1038/s41591-019-0675-0.
[4] BOGANI G, LEONE ROBERTI MAGGIORE U, SIGNORELLI M, et al. The role of human papillomavirus vaccines in cervical cancer: Prevention and treatment[J]. Crit Rev Oncol Hematol, 2018, 122: 92-97. DOI: 10.1016/j.critrevonc.2017.12.017.
[5] ALOMO J, DIETRICH D, MARTIN P, et al. The interleukin (IL)-1 cytokine family: balance between agonists and antagonists in inflammatory diseases[J]. Cytokine, 2015, 76(1): 25-37. DOI: 10.1016/j.cyto.2015.06.017.
[6] ROSE-JOHN S, JENKINS B J, GARBERS C, et al. Targeting IL-6 trans-signalling: past, present and future prospects[J]. Nat Rev Immunol, 2023, 23(10): 666-681. DOI: 10.1038/s41577-023-00856-y.
[7] MCGEACHY M J, CUA D J, GAFFEN S L. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4): 892-906. DOI: 10.1016/j.immuni.2019.03.021.
[8] VAN LOO G, BERTRAND M J M. Death by TNF: a road to inflammation[J]. Nat Rev Immunol, 2023, 23(5): 289-303. DOI: 10.1038/s41577-022-00792-3.
[9] DENG Z, FAN T, XIAO C, et al. TGF-β signaling in health, disease, and therapeutics[J]. Signal Transduct Target Ther, 2024, 9(1): 61. DOI: 10.1038/s41392-024-01764-w.
[10] FERNANDEZ-RUIZ R, NIEWOLD T B. Type I interferons in autoimmunity[J]. J Invest Dermatol, 2022, 142(3 Pt B): 793-803. DOI: 10.1016/j.jid.2021.11.031.
[11] ISHIGURO A, AKIYAMA T, ADACHI H, et al. Therapeutic potential of anti-interleukin-17A aptamer: suppression of interleukin-17A signaling and attenuation of autoimmunity in two mouse models[J]. Arthritis Rheum, 2011, 63(2): 455-466. DOI: 10.1002/art.30108.
[12] LIU M, GUO S, HIBBERT J M, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications[J]. Cytokine Growth Factor Rev, 2011, 22(3): 121-130. DOI: 10.1016/j.cytogfr.2011.06.001.
[13] KOHLBERGER M, GADERMAIER G. SELEX: critical factors and optimization strategies for successful aptamer selection[J]. Biotechnol Appl Biochem, 2022, 69(5): 1771-1792. DOI: 10.1002/bab.2244.
[14] TOLNAI Z J, ANDR?S J, SZEITNER Z, et al. Spiegelmer-based sandwich assay for cardiac troponin I detection[J]. Int J Mol Sci, 2020, 21(14): 4963. DOI: 10.3390/ijms21144963.
[15] MANTOVANI A, DINARELLO C A, MOLGORA M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778-795. DOI: 10.1016/j.immuni.2019.03.012.
[16] G?NTHER S, DEREDGE D, BOWERS A L, et al. IL-1 family cytokines use distinct molecular mechanisms to signal through their shared co-receptor[J]. Immunity, 2017, 47(3): 510-523.e4. DOI: 10.1016/j.immuni.2017.08.004.
[17] HICKISH T, ANDRE T, WYRWICZ L, et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2017, 18(2): 192-201. DOI: 10.1016/S1470-2045(17)30006-2.
[18] REN X, GELINAS A D, VON CARLOWITZ I, et al. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling[J]. Nat Commun, 2017, 8(1): 810. DOI: 10.1038/s41467-017-00864-2.
[19] HIRANO T. IL-6 in inflammation, autoimmunity and cancer[J]. Int Immunol, 2021, 33(3): 127-148. DOI: 10.1093/intimm/dxaa078.
[20] KISHIMOTO T. IL-6: from its discovery to clinical applications[J]. Int Immunol, 2010, 22(5): 347-352. DOI: 10.1093/intimm/dxq030.
[21] TANAKA T, NARAZAKI M, KISHIMOTO T. Immunotherapeutic implications of IL-6 blockade for cytokine storm[J]. Immunotherapy, 2016, 8(8): 959-970. DOI: 10.2217/imt-2016-0020.
[22] BROCH K, ANSTENSRUD A K, WOXHOLT S, et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2021, 77(15): 1845-1855. DOI: 10.1016/j.jacc.2021.02.049.
[23] GUPTA S, HIROTA M, WAUGH S M, et al. Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor[J]. J Biol Chem, 2014, 289(12): 8706-8719. DOI: 10.1074/jbc.M113.532580.
[24] HIROTA M, MURAKAMI I, ISHIKAWA Y, et al. Chemically modified interleukin-6 aptamer inhibits development of collagen-induced arthritis in cynomolgus monkeys[J]. Nucleic Acid Ther, 2016, 26(1): 10-19. DOI: 10.1089/nat.2015.0567.
[25] MITTELBERGER F, MEYER C, WAETZIG G H, et al. RAID3: an interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity[J]. RNA Biol, 2015, 12(9): 1043-1053. DOI: 10.1080/15476286.2015.1079681.
[26] ANDO T, YAMAMOTO M, TAKAMORI Y, et al. In vitro selection of an RNA aptamer yields an interleukin-6/interleukin-6 receptor interaction inhibitor[J]. Biosci Biotechnol Biochem, 2021, 85(5): 1170-1174. DOI: 10.1093/bbb/zbaa124.
[27] NEMOTO N, TSUTSUI C, YAMAGUCHI J, et al. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation[J]. Biochem Biophys Res Commun, 2012, 421(1): 129-133. DOI: 10.1016/j.bbrc.2012.03.130.
[28] TAKAMORI Y, ANDO T, FUJI D, et al. In vitro display evolution of IL-6R-binding unnatural peptides ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid[J]. Biochem Biophys Res Commun, 2021, 535: 47-53. DOI: 10.1016/j.bbrc.2020.11.123.
[29] MILLS K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1): 38-54. DOI: 10.1038/s41577-022-00746-9.
[30] KOLLS J K, LIND?N A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4): 467-476. DOI: 10.1016/j.immuni.2004.08.018.
[31] HARUTA K, OTAKI N, NAGAMINE M, et al. A novel PEGylation method for improving the pharmacokinetic properties of anti-interleukin-17A RNA aptamers[J]. Nucleic Acid Ther, 2017, 27(1): 36-44. DOI: 10.1089/nat.2016.0627.
[32] DOBLE R, MCDERMOTT M F, CESUR ?, et al. IL-17A RNA aptamer: possible therapeutic potential in some cells, more than we bargained for in others [J]. J Invest Dermatol, 2014, 134(3): 852-855. DOI: 10.1038/jid.2013.399.
[33] HEKMATIMOGHADDAM S, IMAN M, SHAHDADI SARDO H, et al. Gelatin hydrogel containing cerium oxide nanoparticles covered by interleukin-17 aptamar as an anti- inflammatory agent for brain inflammation[J]. J Neuroimmunol, 2019, 326: 79-83. DOI: 10.1016/j.jneuroim.2018.11.011.
[34] ADACHI H, ISHIGURO A, HAMADA M, et al. Antagonistic RNA aptamer specific to a heterodimeric form of human interleukin-17A/F[J]. Biochimie, 2011, 93(7): 1081-1088. DOI: 10.1016/j.biochi.2011.04.003.
[35] POPA, NETEA M G, VAN RIEL P L, et al. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk[J]. J Lipid Res, 2007, 48(4): 751-762. DOI: 10.1194/jlr.R600021-JLR200.
[36] ORAVA E W, JARVIK N, SHEK Y L, et al. A short DNA aptamer that recognizes TNFα and blocks its activity in vitro[J]. ACS Chem Biol, 2013, 8(1): 170-178. DOI: 10.1021/cb3003557.
[37] LAI W Y, WANG J W, HUANG B T, et al. A novel TNF-α-targeting aptamer for TNF-α-mediated acute lung injury and acute liver failure[J]. Theranostics, 2019, 9(6): 1741-1751. DOI: 10.7150/thno.30972.
[38] MASHAYEKHI K, GANJI A, SANKIAN M. Designing a new dimerized anti human TNF-α aptamer with blocking activity[J]. Biotechnol Prog, 2020, 36(4): e2969. DOI: 10.1002/btpr.2969.
[39] SHOBEIRI S S, DASHTI M, PORDEL S, et al. Topical anti-TNF-α ssDNA aptamer decreased the imiquimod induced psoriatic inflammation in BALB/c mice[J]. Cytokine, 2023, 172: 156406. DOI: 10.1016/j.cyto.2023.156406.
[40] KIM J, PARK H, SARAVANAKUMAR G, et al. Polymer/aptamer-integrated gold nanoconstruct suppresses the inflammatory process by scavenging ROS and capturing pro-inflammatory cytokine TNF-?。跩]. ACS Appl Mater Interfaces, 2021, 13(8): 9390-9401. DOI: 10.1021/acsami.0c15727.
[41] CHU X, DU X, YANG L, et al. Targeting tumor necrosis factor receptor 1 with selected aptamers for anti-inflammatory activity[J]. ACS Appl Mater Interfaces, 2023, 15(9): 11599-11608. DOI: 10.1021/acsami.3c00131.
[42] AN M, SHI M, SU J, et al. Dual-drug loaded separable microneedles for efficient rheumatoid arthritis therapy[J]. Pharmaceutics, 2022, 14(7): 1518. DOI: 10.3390/pharmaceutics14071518.
[43] LI M O, FLAVELL R A. TGF-beta: a master of all T cell trades[J]. Cell, 2008, 134(3): 392-404. DOI: 10.1016/j.cell.2008.07.025.
[44] HUANG C Y, CHUNG C L, HU T H, et al. Recent progress in TGF-β; inhibitors for cancer therapy[J]. Biomedecine Pharmacother, 2021, 134: 111046. DOI: 10.1016/j.biopha.
2020.111046.
[45] CAO J, ZHANG F, XIONG W. Discovery of aptamers and the acceleration of the development of targeting research in ophthalmology[J]. Int J Nanomedicine, 2023, 18: 4421-4430. DOI: 10.2147/IJN.S418115.
[46] LIN Q Y, LI X J, LENG Y, et al. Exosome-mediated aptamer S58 reduces fibrosis in a rat glaucoma filtration surgery model [J]. Int J Ophthalmol, 2022, 15(5): 690-700. DOI: 10.18240/ijo.2022.05.02.
[47] ZHU X, XU D, ZHU X, et al. Evaluation of chitosan/aptamer targeting TGF-β receptor II thermo-sensitive gel for scarring in rat glaucoma filtration surgery[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5465-5476. DOI: 10.1167/iovs.15-16683.
[48] STEJSKALOV? A, OLIVA N, ENGLAND F J, et al. Biologically inspired, cell-selective release of aptamer-trapped growth factors by traction forces[J]. Adv Mater, 2019, 31(7): e1806380. DOI: 10.1002/adma.201806380.
[49] KANG J, LEE M S, COPLAND J A 3rd, et al. Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-beta1 protein[J]. Bioorg Med Chem Lett, 2008, 18(6): 1835-1839. DOI: 10.1016/j.bmcl.2008.02.023.
[50] TAKAHASHI M, HASHIMOTO Y, NAKAMURA Y. Anti-TGF-β1 aptamer enhances therapeutic effect of tyrosine kinase inhibitor, gefitinib, on non-small cell lung cancer in xenograft model[J]. Mol Ther Nucleic Acids, 2022, 29: 969-978. DOI: 10.1016/j.omtn.2022.06.001.
[51] DINARELLO C A. Proinflammatory cytokines[J]. Chest, 2000, 118(2): 503-508. DOI: 10.1378/chest.118.2.503.
[52] MANJOOSHA Y R, MAMPALLIL D. Interferon-γ detection in point of care diagnostics: short review[J]. Talanta, 2022, 245: 123428. DOI: 10.1016/j.talanta.2022.123428.
[53] TULEUOVA N, JONES C N, YAN J, et al. Development of an aptamer beacon for detection of interferon-gamma[J]. Anal Chem, 2010, 82(5): 1851-1857. DOI: 10.1021/ac9025237.
[54] CAO B, HU Y, DUAN J, et al. Selection of a novel DNA aptamer for assay of intracellular interferon-gamma[J]. PLoS One, 2014, 9(5): e98214. DOI: 10.1371/journal.pone.0098214.
[55] CAO C, JIN R, WEI H, et al. Adaptive in vivo device for theranostics of inflammation: real-time monitoring of interferon-γ and aspirin[J]. Acta Biomater, 2020, 101: 372-383. DOI: 10.1016/j.actbio.2019.10.021.
[56] XU M, WANG Y, XIA R, et al. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting[J]. Cell Prolif, 2021, 54(10): e13115. DOI: 10.1111/cpr.
13115.
[57] HAO Q, VADGAMA J V, WANG P. CCL2/CCR2 signaling in cancer pathogenesis[J]. Cell Commun Signal, 2020, 18(1): 82. DOI: 10.1186/s12964-020-00589-8.
[58] CHARO I F, TAUBMAN M B. Chemokines in the pathogenesis of vascular disease[J]. Circ Res, 2004, 95(9): 858-866. DOI: 10.1161/01.RES.0000146672.10582.17.
[59] KULKARNI O, PAWAR R D, PURSCHKE W, et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice[J]. J Am Soc Nephrol, 2007, 18(8): 2350-2358. DOI: 10.1681/ASN.2006121348.
[60] CITRO A, PELLEGRINI S, DUGNANI E, et al. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse[J]. Am J Transplant, 2019, 19(11): 3131-3138. DOI: 10.1111/ajt.15518.
[61] M?CKEL D, BARTNECK M, NIEMIETZ P, et al. CCL2 chemokine inhibition primes the tumor vasculature for improved nanomedicine delivery and efficacy[J]. J Control Release, 2024, 365: 358-368. DOI: 10.1016/j.jconrel.2023.11.044.
[62] MARRO M L, DANIELS D A, MCNAMEE A, et al. Identification of potent and selective RNA antagonists of the IFN-gamma-inducible CXCL10 chemokine[J]. Biochemistry, 2005, 44(23): 8449-8460. DOI: 10.1021/bi048145w.
(責任編輯:林燕薇)