馮加其 劉雄青 黃鑫昱 劉璐 王甘露
【摘要】肝細(xì)胞癌(HCC)患者長(zhǎng)期生存率不佳,藥物療效是影響其預(yù)后的重要因素。N6-甲基腺嘌呤(m6A)修飾是真核生物RNA中最豐富的修飾,可通過(guò)調(diào)節(jié)與癌癥相關(guān)的生物學(xué)功能來(lái)影響癌癥的發(fā)生發(fā)展及藥物療效。然而,m6A修飾在HCC藥物治療中的作用尚未完全闡明,因此,文章通過(guò)m6A修飾過(guò)程的3種調(diào)節(jié)成員(甲基轉(zhuǎn)移酶、去甲基轉(zhuǎn)移酶和結(jié)合蛋白)來(lái)論述其在HCC藥物治療中發(fā)揮的生物學(xué)作用,進(jìn)而提出m6A修飾調(diào)節(jié)成員可作為HCC預(yù)后評(píng)估的生物標(biāo)志物以及具有成為治療靶點(diǎn)的潛力,為HCC精準(zhǔn)醫(yī)療提供新的見(jiàn)解。
【關(guān)鍵詞】肝細(xì)胞癌;m6A修飾;藥物;系統(tǒng)治療
Research progress in m6A methylation modification in the treatment of hepatocellular carcinoma
FENG Jiaqi 1,2, LIU Xiongqing1,2, HUANG Xinyu3, LIU Lu4, WANG Ganlu2
(1.The First Clinical Medical College of Guangdong Medical University, Zhanjiang 524023, China; 2.Shenzhen Baoan Clinical Medical College, Guangdong Medical University, Shenzhen 518101, China; 3.Department of Hepatobiliary Surgery, Fuyong People s Hospital, Baoan District, Shenzhen 518101, China; 4.Shenzhen Baoan District People s Hospital, Shenzhen 518101, China)
Corresponding author: WANG Ganlu,E-mail: wangganlu12@163.com
【Abstract】The long-term survival rate of patients with hepatocellular carcinoma (HCC) is poor, and drug efficacy is an important factor affecting clinical prognosis. N6-methyladenosine (m6A) modification is the most abundant modification in eukaryotic RNA, which can affect the occurrence and development of HCC and drug efficacy by regulating cancer-related biological functions. However, the role of m6A modification in HCC drug treatment has not been fully elucidated. Therefore, the biological functions of different regulatory members of the m6A modification process (methyltransferase, demethyltransferase and binding protein) in HCC drug treatment were illustrated, proposing that regulatory members of the m6A modification process can be used as biomarkers for HCC prognosis evaluation and have the potential to become therapeutic targets and providing novel insights for HCC precision medicine.
【Key words】Hepatocellular carcinoma; m6A modification; Drug; Systemic treatment
肝細(xì)胞癌(hepatocellular carcinoma,HCC)是最常見(jiàn)的惡性腫瘤之一,占所有原發(fā)性肝癌患者的75%以上,其發(fā)病率在全球惡性腫瘤中居第6位,病死率居第3位[1]。既往HCC的治療手段主要為局部措施,包括手術(shù)切除、肝移植、局部消融等。但大部分患者被發(fā)現(xiàn)時(shí)已處于中晚期,無(wú)法接受根治性治療,5年生存率小于20%[2]。近年來(lái),隨著生物醫(yī)學(xué)的進(jìn)步,系統(tǒng)治療為這一類(lèi)中晚期患者帶來(lái)了新的曙光,然而其總體生存率仍然不佳[3]。因此,為HCC患者開(kāi)發(fā)更有效的治療方法刻不容緩。
隨著表觀遺傳學(xué)研究的不斷深入,RNA修飾開(kāi)始受到人們的關(guān)注,成為近年來(lái)較為火熱的研究領(lǐng)域。RNA修飾中甲基化修飾是一種十分普遍的修飾,其中N6-甲基腺嘌呤(N6-methyladenosine,m6A)修飾已被證明是真核生物RNA中最豐富的修飾,其調(diào)節(jié)成員的異常與HCC等多種人類(lèi)惡性腫瘤有關(guān)[4]。研究表明,HCC中m6A的總體水平及調(diào)節(jié)成員的表達(dá)均為異常,且與臨床預(yù)后相關(guān),此外,m6A修飾調(diào)節(jié)成員可以上調(diào)肝臟脂肪生成基因表達(dá),在肝病中發(fā)揮著至關(guān)重要的作用[5]。
藥物耐受或缺乏有效預(yù)后標(biāo)記物是HCC患者長(zhǎng)期生存率不高的重要原因,但對(duì)于m6A修飾如何影響HCC治療在很大程度上仍未可知。因此,本文通過(guò)深入探索兩者關(guān)系,以期尋找有效的治療靶點(diǎn),并開(kāi)發(fā)新的靶向干預(yù)策略,為HCC患者的個(gè)體化治療方案提供更多可能性。
1 m6A修飾調(diào)節(jié)成員概述
m6A修飾調(diào)節(jié)成員包括甲基轉(zhuǎn)移酶、去甲基轉(zhuǎn)移酶及結(jié)合蛋白[6-7],成員相關(guān)信息見(jiàn)表1。
2 m6A修飾調(diào)節(jié)成員在HCC治療藥物中的作用
HCC治療藥物包括系統(tǒng)抗腫瘤治療(靶向治療、免疫治療、化學(xué)治療、中藥治療及基礎(chǔ)治療)、經(jīng)導(dǎo)管動(dòng)脈化療栓塞(transcatheter arterial chemoembolization,TACE)中的藥物及放射性核素[8],以下分別進(jìn)行介紹,見(jiàn)圖1。
2.1 m6A修飾調(diào)節(jié)成員在HCC靶向治療藥物中的作用
2.1.1 m6A修飾調(diào)節(jié)成員與索拉非尼
在肝癌的診療指南中,索拉菲尼長(zhǎng)期占據(jù)主導(dǎo)地位,是美國(guó)食品藥品監(jiān)督管理局批準(zhǔn)的治療晚期HCC的一種多靶點(diǎn)受體酪氨酸激酶抑制劑,可通過(guò)阻斷腫瘤細(xì)胞增殖、抑制血管生成以及誘導(dǎo)腫瘤細(xì)胞凋亡發(fā)揮作用[8],然而耐藥性限制其療效。既往Lin等[9]發(fā)現(xiàn)缺氧條件下,METTL3降低自噬相關(guān)基因叉頭框蛋白O3(forkhead box protein O3,F(xiàn)OXO3)mRNA的穩(wěn)定性以增加HCC中索拉非尼的耐藥,而過(guò)表達(dá)FOXO3可抑制HCC自噬來(lái)增強(qiáng)該藥療效。Xu等[10]發(fā)現(xiàn)METTL3/14水平增加,可通過(guò)修飾上調(diào)環(huán)狀RNA(circular RNA,circRNA)-SORE,競(jìng)爭(zhēng)性激活Wnt/β-catenin信號(hào)通路并促進(jìn)HCC患者對(duì)索拉非尼產(chǎn)生耐藥性。這兩項(xiàng)研究初步表明METTL3/14及其介導(dǎo)的信號(hào)因子可能是解決索拉非尼耐藥的重要靶點(diǎn)。隨著研究不斷深入,METTL3/14通過(guò)其他途徑促進(jìn)索拉非尼耐藥相繼被揭示。研究發(fā)現(xiàn)METTL14依賴(lài)的m6A甲基化可通過(guò)介導(dǎo)肝細(xì)胞核因子3γ(hepatocyte nuclear factor 3γ,HNF3γ)表達(dá)下調(diào),下調(diào)的HNF3γ轉(zhuǎn)錄激活腫瘤干細(xì)胞(cancer stem cell,CSC)以及下調(diào)OATP1B1和OATP1B3(影響索拉非尼吸收的兩種主要膜轉(zhuǎn)運(yùn)蛋白)的表達(dá)而致HCC進(jìn)展及索拉非尼耐藥[11]。相似的是,另一團(tuán)隊(duì)發(fā)現(xiàn)METTL3依賴(lài)的m6A甲基化調(diào)節(jié)長(zhǎng)鏈非編碼RNA(long noncoding RNA,lncRNA)NIFK-AS1在HCC組織和細(xì)胞中高表達(dá),亦可通過(guò)下調(diào)蛋白OATP1B1和OATP1B3致HCC患者對(duì)索拉非尼耐藥[12]。
自此,研究者們將目光集中于非編碼RNA。而后Kong等[13]研究表明,HCC中長(zhǎng)基因間非蛋白編碼RNA-1273(LINC01273)與METTL3形成的反饋軸失調(diào),該化合物過(guò)表達(dá)而致索拉非尼耐藥性增加并促進(jìn)腫瘤進(jìn)展。Wu等[14]揭示METTL3/14介導(dǎo)lncRNA SREBF2-AS1啟動(dòng)子處的DNA去甲基化和SREBF2的上調(diào),亦可促進(jìn)HCC進(jìn)展及對(duì)索拉非尼耐藥。這些研究進(jìn)一步豐富了METTL3/14形成索拉非尼耐藥的機(jī)制,除了上述調(diào)節(jié)成員之外,其他修飾調(diào)節(jié)成員也參與著索拉非尼的耐藥,與之相關(guān)研究較少。研究證實(shí)RBM15B被陰陽(yáng)蛋白1轉(zhuǎn)錄激活,并以m6A依賴(lài)的方式上調(diào)髓系細(xì)胞觸發(fā)受體2 mRNA的穩(wěn)定性,進(jìn)而促進(jìn)HCC細(xì)胞增殖和侵襲及對(duì)索拉非尼耐藥[15]。Liao等[16]研究表明熱休克蛋白90阻礙含STIP1同源性和U-box的蛋白1誘導(dǎo)的YTHDF2泛素化和降解,提高了YTHDF2的表達(dá)進(jìn)而增加HCC對(duì)索拉非尼耐藥。綜上所述,m6A引起索拉非尼的耐藥機(jī)制非常復(fù)雜,涉及自噬基因失活、藥物轉(zhuǎn)運(yùn)蛋白表達(dá)減少、細(xì)胞信號(hào)通路的異?;罨癈SC激活等,仍需對(duì)其調(diào)控網(wǎng)絡(luò)進(jìn)行深入研究。
2.1.2 m6A修飾調(diào)節(jié)成員與侖伐替尼
侖伐替尼是近期被授權(quán)的一線靶向藥物,與索拉非尼藥理作用相似,但對(duì)HCC患者具有更好的客觀療效及安全性,然而其耐藥機(jī)制未完全闡明。Wang等[17]通過(guò)誘導(dǎo)產(chǎn)生侖伐替尼抗藥性HCC細(xì)胞,發(fā)現(xiàn)與親代細(xì)胞相比,抗藥性細(xì)胞中METTL3水平顯著上調(diào),并促進(jìn)表皮生長(zhǎng)因子受體翻譯,從而引發(fā)侖伐替尼耐藥。Zhang等[18]發(fā)現(xiàn),METTL3可通過(guò)m6A-YTHDF2依賴(lài)性機(jī)制下調(diào)過(guò)氧化物酶體增殖激活受體γ共激活因子1α(PPARGC1A),該化合物及下游信號(hào)通路失調(diào)促進(jìn)HCC的進(jìn)展以及對(duì)侖伐替尼耐藥。CSC中卷曲類(lèi)受體10(frizzled class receptor 10,F(xiàn)ZD10)是由METTL3介導(dǎo)的,F(xiàn)ZD10可上調(diào)Wnt/β-catenin和Hippo信號(hào)通路,從而促進(jìn)CSC激活及致瘤性并減弱侖伐替尼的藥效,而靶向FZD10或使用β-連環(huán)蛋白抑制劑可以恢復(fù)侖伐替尼反應(yīng)[19];此外,YTHDF1亦可增強(qiáng)HCC的干細(xì)胞性,其通過(guò)增強(qiáng)NOTCH1基因表達(dá)促進(jìn)CSC更新,以及對(duì)靶向藥物產(chǎn)生耐藥,而使用靶向YTHDF1的脂質(zhì)納米顆粒顯著增強(qiáng)了侖伐替尼的療效[20]。因此,CSC激活至關(guān)重要,進(jìn)一步研究m6A修飾調(diào)節(jié)成員與該激活信號(hào)軸對(duì)于減緩HCC進(jìn)展轉(zhuǎn)移及提高靶向藥物療效意義重大。
2.1.3 m6A修飾調(diào)節(jié)成員與阿帕替尼
與索拉非尼及侖伐替尼藥物不同,阿帕替尼僅以血管內(nèi)皮生長(zhǎng)因子2為靶點(diǎn),其藥效為索拉非尼的10倍,但預(yù)后仍不樂(lè)觀;研究發(fā)現(xiàn)聯(lián)合抑制METTL3可進(jìn)一步增強(qiáng)其療效,p53激活劑RG7112和阿帕替尼組合減少M(fèi)ETTL3的表達(dá)進(jìn)而減少p53 mRNA的m6A修飾,從而增強(qiáng)HCC對(duì)阿帕替尼的敏感性[21]。但目前暫無(wú)更多對(duì)于該藥及其他HCC靶向藥物的研究,研究人員可于未來(lái)進(jìn)行相關(guān)探索,進(jìn)一步提高靶向藥物的使用價(jià)值。
2.2 m6A修飾調(diào)節(jié)成員在HCC免疫治療藥物中的作用
自2017年以來(lái),免疫檢查點(diǎn)抑制劑(immune checkpoint inhibitor,ICI),包括程序性細(xì)胞死亡蛋白1(programmed death-l,PD-1)/程序性細(xì)胞死亡蛋白配體1(programmed death-ligand 1,PD-L1)及細(xì)胞毒性T細(xì)胞相關(guān)抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)抑制劑,已成為HCC治療的關(guān)鍵組成部分,但人群選擇及耐藥現(xiàn)象成為當(dāng)前難題,迫切需要尋求有效途徑加以解決。
2.2.1 m6A修飾調(diào)節(jié)成員與ICI
腫瘤微環(huán)境(tumor micro-environment,TME)是ICI藥效的主要影響因素,m6A修飾單一調(diào)節(jié)成員可促進(jìn)HCC免疫抑制TME形成,包括增加免疫抑制細(xì)胞、抑制免疫殺傷細(xì)胞等,從而直接引起ICI產(chǎn)生耐藥。既往發(fā)現(xiàn)ALKBH5以m6A依賴(lài)的方式上調(diào)絲裂原活化蛋白激酶8(MAP3K8)的表達(dá),從而介導(dǎo)HCC細(xì)胞的增殖轉(zhuǎn)移以及PD-L1巨噬細(xì)胞的募集致PD-L1抑制劑藥效下降[22];LRPPRC亦可通過(guò)上調(diào)HCC中PD-L1表達(dá)促進(jìn)腫瘤進(jìn)展和免疫耐藥,抑制LRPPRC觀察到腫瘤減緩并改善CD4+ 和CD8+ T細(xì)胞的浸潤(rùn)[23]。近期Wang等[24]研究表明YTHDF1通過(guò)調(diào)節(jié)增強(qiáng)子同源物2(EZH2)-IL-6信號(hào)軸引起抑制CD8+ T功能障礙致PD-1抑制劑藥效降低;與此類(lèi)似,Pan等[25]揭示METTL3介導(dǎo)甾醇調(diào)節(jié)元件結(jié)合蛋白(SREBP)裂解激活蛋白mRNA的m6A修飾并促進(jìn)其翻譯,同樣損害HCC中的CD8+ T細(xì)胞引起PD-1抑制劑耐藥。此外,有學(xué)者發(fā)現(xiàn)circRNA可抑制ICI藥物療效,m6A修飾調(diào)節(jié)成員可對(duì)其調(diào)控間接引起耐藥。如YTHDF1可與circRHBDD1相互作用,并加速磷酸肌醇3-激酶調(diào)節(jié)亞基1的翻譯,以增強(qiáng)有氧糖酵解并抑制HCC的PD-1抑制劑治療[26]。WTAP通過(guò)結(jié)合IGF2BP3可增強(qiáng)circCCAR1的穩(wěn)定性,并由HCC細(xì)胞以HNRNPA2B1依賴(lài)的方式進(jìn)行分泌,穩(wěn)定PD-1蛋白并引起CD8+ T細(xì)胞功能障礙,進(jìn)而增加PD-1抑制劑的抗性[27]。METTL3介導(dǎo)circ_0027791的m6A修飾并穩(wěn)定其表達(dá),通過(guò)促進(jìn)PD-L1的表達(dá)及M2型巨噬細(xì)胞極化,進(jìn)而降低PD-L1抑制劑療效[28]。以上證據(jù)表明,m6A修飾可能是免疫逃逸的調(diào)節(jié)因子,在免疫耐藥中發(fā)揮重要作用。對(duì)其進(jìn)一步研究,不僅可以提高我們對(duì)HCC免疫治療的理解,還可以為個(gè)體化免疫治療方案的制定提供支持和指導(dǎo),促進(jìn)免疫治療的長(zhǎng)遠(yuǎn)發(fā)展和應(yīng)用。
2.2.2 m6A修飾調(diào)節(jié)成員模型評(píng)分與ICI
ICI預(yù)后標(biāo)記物及人群選擇是影響其療效的另一重要因素,m6A修飾調(diào)節(jié)成員所構(gòu)建的預(yù)后模型及風(fēng)險(xiǎn)評(píng)分可成為潛在的免疫治療預(yù)測(cè)因子。研究通過(guò)YTHDF1、YTHDF2、METTL3、KIAA1429和ZC3H13的表達(dá)模型構(gòu)建風(fēng)險(xiǎn)評(píng)分,發(fā)現(xiàn)其可預(yù)測(cè)HCC預(yù)后,且風(fēng)險(xiǎn)評(píng)分與HCC患者總生存期、對(duì)索拉非尼及PD-1免疫治療的反應(yīng)呈負(fù)相關(guān)[29]。另有研究進(jìn)一步建立YTHDF1、YTHDF2、METTL3、IGF2BP3、KIAA1429和ZC3H13模型并評(píng)分,包括免疫表型評(píng)分(immunophenoscore,IPS)、IPS-CTLA4阻斷劑評(píng)分、IPS-PD-1/PD-L1阻斷劑評(píng)分,同樣發(fā)現(xiàn)低評(píng)分的患者更適合免疫治療,其中ZC3H13的表達(dá)水平與免疫檢查點(diǎn)顯著正相關(guān),揭示ZC3H13在ICI治療中發(fā)揮著關(guān)鍵作用[30]。另外一些使用更多數(shù)量的HCC患者以及m6A修飾調(diào)節(jié)成員所構(gòu)建的模型相繼出現(xiàn)并持有同樣見(jiàn)解。如Liu等[31]、Zhao等[32]使用多種m6A修飾調(diào)節(jié)成員建立模型及評(píng)分,表明高m6A評(píng)分者總生存期較低,低評(píng)分的HCC患者更受益于ICI藥物治療。然而,也有研究顯示與之相反的結(jié)論,在Du等[33]、Zhou等[34]研究中發(fā)現(xiàn)高評(píng)分HCC患者單獨(dú)使用ICI或兩種ICI藥物療效更強(qiáng)。以上結(jié)論不一可能基于不同來(lái)源及數(shù)目的HCC患者、不同數(shù)量的m6A修飾調(diào)節(jié)成員所建立模型和評(píng)分,以及不同工作者判斷標(biāo)準(zhǔn)差異導(dǎo)致。而m6A修飾調(diào)節(jié)成員自身不僅可預(yù)測(cè)預(yù)后,與之相關(guān)的lncRNA也可進(jìn)行預(yù)測(cè)。一項(xiàng)研究鑒定出14個(gè)m6A相關(guān)lncRNA模型,并根據(jù)風(fēng)險(xiǎn)評(píng)分將HCC患者分為高低組,發(fā)現(xiàn)低風(fēng)險(xiǎn)組的IPS、IPS-PD-1/PD-L1阻斷劑、IPS-CTLA4阻斷劑評(píng)分顯著較高[35]。更進(jìn)一步研究鑒定出82個(gè)m6A相關(guān)lncRNA,基于此將HCC患者分為3種亞型,發(fā)現(xiàn)C1亞類(lèi)表現(xiàn)出活躍的免疫反應(yīng)以及對(duì)ICI藥物的高敏感性,預(yù)后最佳;C2亞類(lèi)表現(xiàn)出高代謝活性和無(wú)免疫浸潤(rùn)狀態(tài),預(yù)后良好;C3亞類(lèi)與衰竭的免疫環(huán)境及不良預(yù)后有關(guān)[36]??傊?,這些研究表明m6A修飾在重塑多樣化和復(fù)雜的TME中發(fā)揮了不可忽視的作用,繼續(xù)量化HCC的m6A修飾模式可增強(qiáng)對(duì)TME特征的理解,以便對(duì)患者危險(xiǎn)分層并向精準(zhǔn)治療方向發(fā)展。
2.3 m6A修飾調(diào)節(jié)成員在HCC化學(xué)及放射治療藥物中的作用
若患者不適合或不耐受靶向或免疫治療,化學(xué)及放射治療也許能帶來(lái)一定幫助。然而化學(xué)治療藥物對(duì)HCC患者的療效較低,持續(xù)時(shí)間有限,且耐藥現(xiàn)象較常發(fā)生,因此很多藥物的臨床價(jià)值有限。
2.3.1 m6A修飾調(diào)節(jié)成員與化學(xué)治療藥物
HCC常見(jiàn)的化學(xué)治療藥物包括順鉑、5-氟尿嘧啶(5-FU)、阿霉素及奧沙利鉑等[8],m6A修飾調(diào)節(jié)成員對(duì)其作用呈兩面性。如Wang等[37]發(fā)現(xiàn)ZC3H13通過(guò)m6A-丙酮酸激酶M2型(pyruvate kinase M2,PKM2)途徑抑制糖酵解以減慢HCC的進(jìn)展,可加強(qiáng)HCC細(xì)胞對(duì)順鉑敏感性。而Duan等[38]發(fā)現(xiàn)IGF2BP1識(shí)別并促進(jìn)circMAP3K4翻譯,其產(chǎn)物可以保護(hù)HCC細(xì)胞免受順鉑暴露,致使HCC患者的預(yù)后更差。以上研究揭示不同的m6A修飾調(diào)節(jié)成員可以產(chǎn)生相反的作用,但具體機(jī)制尚不清楚,需要進(jìn)一步探索。另一項(xiàng)研究發(fā)現(xiàn)METTL3/IGF2BP1介導(dǎo)的m6A修飾參與LNCAROD穩(wěn)定性并維持其上調(diào),可在缺氧微環(huán)境下誘導(dǎo)PKM2增加,從而增加HCC細(xì)胞有氧糖酵解以增加5-FU耐藥性[39]。這表明同一修飾調(diào)節(jié)成員對(duì)不同的藥物會(huì)產(chǎn)生相似的作用,更加證明HCC發(fā)生發(fā)展的復(fù)雜性及難治性。而這些研究局限于單一藥物,無(wú)法同時(shí)進(jìn)行藥物之間比較,有學(xué)者進(jìn)一步對(duì)此研究,補(bǔ)充了相關(guān)結(jié)論。研究報(bào)道HNRNP家族成員RALY-RNA結(jié)合蛋白樣基因,可與FTO協(xié)同上調(diào)轉(zhuǎn)化生長(zhǎng)因子-β2(transforming growth factor-β2,TGF-β2)mRNA的穩(wěn)定性,在其研究中使用順鉑和5-FU以不同濃度處理后,發(fā)現(xiàn)RALY-RNA結(jié)合蛋白樣基因過(guò)表達(dá)細(xì)胞的細(xì)胞活力顯著高于對(duì)照,從而增加HCC細(xì)胞的化學(xué)治療耐藥性[40]。另一項(xiàng)研究發(fā)現(xiàn)METTL3在高嘌呤合成代謝的HCC細(xì)胞中可上調(diào)無(wú)齒E3泛素蛋白連接酶同系物(DTL)促進(jìn)HCC生長(zhǎng)、引起DNA損傷修復(fù)功能障礙,并增加順鉑及5-FU耐藥性[41]。
m6A修飾調(diào)節(jié)成員及其相關(guān)基因構(gòu)建的預(yù)后模型不僅可預(yù)測(cè)ICI療效,在化學(xué)治療中亦可發(fā)揮類(lèi)似功能。RBM15、LRPPRC、YTHDC2、IGFBP2被用于建立模型,該模型可預(yù)測(cè)HCC患者對(duì)TACE治療的反應(yīng),并且研究中還開(kāi)發(fā)了該模型的內(nèi)源性RNA網(wǎng)絡(luò),進(jìn)一步揭示了模型的分子機(jī)制[42]。另一項(xiàng)研究采用m6A相關(guān)血管生成基因構(gòu)建預(yù)后模型并定義風(fēng)險(xiǎn)組,發(fā)現(xiàn)與低危組患者相比,高危組的HCC患者預(yù)后較差,且準(zhǔn)確度高于臨床指標(biāo),在其研究中進(jìn)行藥物篩選發(fā)現(xiàn)阿霉素在高危組更敏感,奧沙利鉑在低危組更有效[43]。綜上,m6A修飾調(diào)節(jié)成員與HCC常見(jiàn)化學(xué)治療藥物關(guān)系繁雜,在不同情況下采取相對(duì)應(yīng)的靶向藥物進(jìn)行抑制,才能增強(qiáng)該藥療效以及減少藥物副作用,實(shí)現(xiàn)更加精準(zhǔn)的治療目標(biāo)。
2.3.2 m6A修飾調(diào)節(jié)成員與放射治療
HCC放射治療包括內(nèi)照射及外照射,內(nèi)照射使用90釔、131碘、碘化油等核素藥物,外照射僅采用輻射治療[8]。研究顯示HCC中ALKBH5上調(diào),介導(dǎo)單核細(xì)胞募集和M2型巨噬細(xì)胞極化,形成正反饋促進(jìn)肝纖維化并降低放射治療敏感性,揭示ALKBH5具有TME調(diào)節(jié)因子和放射增敏靶點(diǎn)的雙重作用[44]。其他消化道腫瘤,如胃癌靶向WTAP,胰腺癌靶向METTL3或HNRNPC,可增加放射治療敏感性[45];然而目前關(guān)于m6A修飾與HCC放射敏感性的研究較少且不夠詳細(xì),因此需要進(jìn)行深入研究,以確定更多m6A放射增敏靶點(diǎn)。
2.4 m6A修飾調(diào)節(jié)成員在HCC中藥及基礎(chǔ)治療藥物中的作用
2.4.1 m6A修飾調(diào)節(jié)成員與中醫(yī)藥物
近年來(lái),中藥活性成分調(diào)控m6A修飾調(diào)節(jié)成員治療HCC的潛力已被醫(yī)學(xué)界認(rèn)可。丹參在肝癌中藥治療中發(fā)揮重要功能,其有效成分之一丹參酮ⅡA,被證明可上調(diào)METTL14依賴(lài)的m6A修飾,增加促凋亡蛋白表達(dá)同時(shí)降低抑凋亡蛋白表達(dá),從而抑制HCC[46];另外,還有諸多中藥的抗癌功效已在治療應(yīng)用處進(jìn)行歸納總結(jié)。
2.4.2 m6A修飾調(diào)節(jié)成員與基礎(chǔ)藥物
HCC患者往往伴隨著肝炎、肝纖維化、肝硬化等基礎(chǔ)肝病,并因一系列抗腫瘤治療加重上述肝損傷。從肝炎到肝硬化再到HCC的致病過(guò)程涉及m6A的調(diào)節(jié),其中HBx蛋白是HBV致癌潛力的主要因素,通過(guò)向腫瘤抑制因子添加m6A修飾來(lái)發(fā)揮其促腫瘤潛力,研究發(fā)現(xiàn)抑制FTO、ALKBH5顯著減少HBV蛋白的產(chǎn)生,而抑制METTL3、METTL14、YTHDF2和YTHDF3會(huì)增加HBV蛋白水平[47]。對(duì)以上m6A修飾調(diào)節(jié)成員進(jìn)行靶向和/或聯(lián)合抗病毒藥物對(duì)于進(jìn)一步減少病毒復(fù)制具有極大潛力。一些靶向m6A修飾調(diào)節(jié)成員對(duì)肝病發(fā)揮治療作用的藥物也已被驗(yàn)證[48-49]:如甜菜堿對(duì)非酒精性脂肪性肝病有保護(hù)作用,部分原因是通過(guò)降低FTO的表達(dá)和肝臟m6A水平介導(dǎo)的;苓桂術(shù)甘湯通過(guò)降低細(xì)胞因子信號(hào)傳導(dǎo)抑制因子2的m6A水平來(lái)降低其表達(dá),成為改善非酒精性脂肪性肝病的有效配方;膳食姜黃素通過(guò)調(diào)節(jié)METTL3、METTL14、FTO、ALKBH5和YTHDF2表達(dá),從而改善脂多糖誘導(dǎo)的肝損傷和脂質(zhì)代謝失調(diào);艾塞那肽、甲氯芬酸、恩他卡彭為FTO抑制劑,可改善肝病患者的肝脂肪變性,減輕脂肪量??傊琺6A修飾在HCC的發(fā)生和發(fā)展中起著重要作用,但關(guān)于m6A修飾與代謝性或病毒性肝病的研究仍處于起步階段,迫切需要大量的探索,根據(jù)HCC患者的病因和發(fā)病機(jī)制定制治療方案,將更加優(yōu)化個(gè)體化治療。
3 m6A修飾調(diào)節(jié)成員在HCC治療中的應(yīng)用
m6A修飾與HCC的發(fā)生發(fā)展、治療及預(yù)后密切相關(guān),異常的m6A調(diào)節(jié)成員已被確定為新型抗癌藥物靶點(diǎn),在此簡(jiǎn)要進(jìn)行闡述。
3.1 天然藥物
天然藥物即為中藥,與化學(xué)藥物相比,這些藥物的活性成分在具有療效的基礎(chǔ)上毒性相對(duì)較低,對(duì)于身體衰弱的HCC患者更為適用,因此開(kāi)發(fā)其抗癌潛力很有必要。目前研究已揭示黃芩苷可通過(guò)調(diào)節(jié)METTL3/m6A/HKDC1軸抑制HCC的進(jìn)展[50];龍血竭乙醇提取物可通過(guò)下調(diào)METTL3表達(dá)及降低METTL3與凋亡抑制基因Survivin mRNA的結(jié)合率,從而發(fā)揮抗HCC作用[51];槲皮素已被鑒定為METTL3抑制劑,它可以填充S-腺苷蛋氨酸的腺苷部分,降低其酶活性,從而抑制HCC細(xì)胞增殖[52]。白藜蘆醇可通過(guò)降低YTHDF2表達(dá)水平進(jìn)而調(diào)控肝癌細(xì)胞的脂質(zhì)和能量代謝,抑制HCC增殖[53]。大黃酸為第一個(gè)確定的FTO抑制劑,與阿霉素相互作用可進(jìn)一步減低耗氧率,抑制線粒體能量代謝而發(fā)揮協(xié)同抗HCC作用[54]。人參皂苷Rh2具有廣泛的抗腫瘤效果,通過(guò)影響甲基轉(zhuǎn)移酶ZC3H13/CBLL1 的核定位,降低IGFBP1表達(dá)而抑制腫瘤細(xì)胞生長(zhǎng)[55];黃連堿可通過(guò)促進(jìn)IGF2BP1泛素化抑制HCC發(fā)展和轉(zhuǎn)移[56]。葫蘆素B可以靶向IGF2BP1發(fā)揮變構(gòu)抑制作用,從而誘導(dǎo)HCC細(xì)胞凋亡、增加免疫細(xì)胞浸潤(rùn)并抑制PD-L1表達(dá)提高ICI療效[57]。
3.2 合成藥物
合成藥物經(jīng)歷了從單純化學(xué)合成到將人工智能和化學(xué)合成集成到藥物領(lǐng)域的現(xiàn)代技術(shù),并且人工智能可能在未來(lái)持續(xù)引領(lǐng)藥物研發(fā)。ALK-04為靶向ALKBH5的小分子抑制劑,可通過(guò)調(diào)節(jié)腫瘤浸潤(rùn)淋巴細(xì)胞改善免疫抑制TME,將其與ICI藥物聯(lián)合應(yīng)用可緩解耐藥,增強(qiáng)多種癌癥的免疫療效[58]。Huang等[59]于2019年開(kāi)發(fā)了2種有前景的FTO抑制劑,即FB23和FB23-2,并指出FB23-2對(duì)急性髓性白血病細(xì)胞有明顯的抑瘤作用;而后研究人員通過(guò)人工納米平臺(tái),將FB23-2和腫瘤相關(guān)抗原遞送到腫瘤浸潤(rùn)樹(shù)突狀細(xì)胞(DC)中,發(fā)現(xiàn)其可以促進(jìn)DC成熟及CD8+ T細(xì)胞浸潤(rùn),從而抑制HCC細(xì)胞增殖并提高ICI療效[60]。STM2457是一種高效、選擇性的METTL3抑制劑,可增強(qiáng)HCC對(duì)侖伐替尼的敏感性[17]。納米顆粒小干擾RNA,為一種新型METTL3靶向藥物,其聯(lián)合PD-1抑制劑可協(xié)同激活CD8+ T細(xì)胞并介導(dǎo)HCC消退[25]。
4 結(jié)論與展望
越來(lái)越多的證據(jù)表明m6A修飾對(duì)HCC的治療及預(yù)后具有重要意義。m6A修飾調(diào)節(jié)成員在HCC藥物治療中起著至關(guān)重要的作用,我們可以通過(guò)現(xiàn)有或研發(fā)更新的藥物靶向失調(diào)的m6A修飾調(diào)節(jié)成員,以及將其與HCC治療藥物進(jìn)行聯(lián)合應(yīng)用均具有可觀的潛力。但目前m6A修飾在HCC診斷和治療中的應(yīng)用仍處于早期階段,以下問(wèn)題有待進(jìn)一步研究:① m6A修飾調(diào)節(jié)成員間關(guān)系錯(cuò)綜復(fù)雜,其修飾過(guò)程動(dòng)態(tài)可逆,在不同研究中甚至顯示作用相互矛盾,如何明確三者功能需要進(jìn)一步探索;② m6A修飾調(diào)節(jié)成員對(duì)HCC治療藥物主要產(chǎn)生抑制作用,但在某些情況下亦可表現(xiàn)出“雙刃劍”功效,需要深入探索相關(guān)機(jī)制并細(xì)致分類(lèi)以便更好利用;③ 本文列舉靶向失調(diào)的m6A調(diào)節(jié)成員藥物可能冰山一角,其特異性差及不良反應(yīng)大等缺點(diǎn)亦不容忽視,將其與抗腫瘤藥物聯(lián)合應(yīng)用可能發(fā)揮更大潛力,期待在未來(lái)研究中找到更優(yōu)藥物或?qū)崿F(xiàn)老藥新用。相信將會(huì)有更多關(guān)于HCC發(fā)生發(fā)展的調(diào)控機(jī)制和治療靶點(diǎn)被開(kāi)發(fā),以造福更多的患者。
參 考 文 獻(xiàn)
[1] RUMGAY H, FERLAY J, MARTEL C D, et al. Global, regional and national burden of primary liver cancer by subtype[J]. Eur J Cancer, 2022, 161: 108-118. DOI: 10.1016/j.ejca.
2021.11.023.
[2] 段建平, 杜鐳, 宋霆, 等. 甲胎蛋白、AFP-L3%和DCP在HBV相關(guān)肝細(xì)胞癌早期診斷中的臨床價(jià)值[J]. 新醫(yī)學(xué), 2023, 54(8): 564-568. DOI: 10.3969/j.issn.0253-9802.2023.
08.007.
DUAN J P, DU L, SONG T, et al. Clinical value of alpha-fetoprotein: alpha-fetoprotein-L3 isoform ratio and des-γ-carboxyprothrombin in early diagnosis of HBV-related hepatocellular carcinoma[J]. J New Med, 2023, 54(8): 564-568. DOI: 10.3969/j.issn.0253-9802.2023.08.007.
[3] ALSHAREEFY Y, SHEN C Y, PREKASH R J. Exploring the molecular pathogenesis, diagnosis and treatment of fibrolamellar hepatocellular carcinoma: a state of art review of the current literature[J]. Pathol Res Pract, 2023, 248: 154655. DOI: 10.1016/j.prp.2023.154655.
[4] HUANG H, BAI Y, LU X, et al. N6-methyladenosine associated prognostic model in hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(10): 633. DOI: 10.21037/atm-20-2894.
[5] WANG S, GAO S, YE W, et al. The emerging importance role of m6A modification in liver disease[J]. Biomedecine Pharmacother, 2023, 162: 114669. DOI: 10.1016/j.biopha.
2023.114669.
[6] LIU L, LI H, HU D, et al. Insights into N6-methyladenosine and programmed cell death in cancer[J]. Mol Cancer, 2022, 21(1): 32. DOI: 10.1186/s12943-022-01508-w.
[7] QU N, BO X, LI B, et al. Role of N6-methyladenosine (m6A) methylation regulators in hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 755206. DOI: 10.3389/fonc.2021.755206.
[8] 中華人民共和國(guó)國(guó)家衛(wèi)生健康委員會(huì)醫(yī)政醫(yī)管局. 原發(fā)性肝癌診療指南(2022年版)[J]. 中國(guó)實(shí)用外科雜志, 2022, 42(3): 241-273.DOI: 10.19538/j.cjps.issn1005-2208.2022.03.01.
Medical Abministration Bureau of National Health Commission of the Peoples Republic of China. Standardization for diagnosis and treatment of hepatocellular carcinoma(2022 edition)[J]. Chin J Pract Surg, 2022, 42(3): 241-273. DOI: 10.19538/j.cjps.issn1005-2208.2022.03.01.
[9] LIN Z, NIU Y, WAN A, et al. RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12): e103181. DOI: 10.15252/embj.2019103181.
[10] XU J, WAN Z, TANG M, et al. N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling[J]. Mol Cancer, 2020, 19(1): 163. DOI: 10.1186/s12943-020-01281-8.
[11] ZHOU T, LI S, XIANG D, et al. m6A RNA methylation-mediated HNF3γ reduction renders hepatocellular carcinoma dedifferentiation and sorafenib resistance[J]. Signal Transduct Target Ther, 2020, 5(1): 296. DOI: 10.1038/s41392-020-00299-0.
[12] CHEN Y T, XIANG D, ZHAO X Y, et al. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m6A methylation promotes disease progression and sorafenib resistance[J]. Hum Cell, 2021, 34(6): 1800-1811. DOI: 10.1007/
s13577-021-00587-z.
[13] KONG H, SUN J, ZHANG W, et al. Long intergenic non-protein coding RNA 1273 confers sorafenib resistance in hepatocellular carcinoma via regulation of methyltransferase 3[J]. Bioengineered, 2022, 13(2): 3108-3121. DOI: 10.1080/
21655979.2022.2025701.
[14] WU X, ZENG M, WEI Y, et al. METTL3 and METTL14-mediated N6-methyladenosine modification of SREBF2-AS1 facilitates hepatocellular carcinoma progression and sorafenib resistance through DNA demethylation of SREBF2[J]. Sci Rep, 2024, 14(1): 6155. DOI: 10.1038/s41598-024-55932-7.
[15] TAN C, XIA P, ZHANG H, et al. YY1-targeted RBM15B promotes hepatocellular carcinoma cell proliferation and sorafenib resistance by promoting TRAM2 expression in an m6A-dependent manner[J]. Front Oncol, 2022, 12: 873020. DOI: 10.3389/fonc.2022.873020.
[16] LIAO Y, LIU Y, YU C, et al. HSP90β impedes STUB1-induced ubiquitination of YTHDF2 to drive sorafenib resistance in hepatocellular carcinoma[J]. Adv Sci, 2023, 10(27): e2302025. DOI: 10.1002/advs.202302025.
[17] WANG L, YANG Q, ZHOU Q, et al. METTL3-m6A-EGFR-axis drives lenvatinib resistance in hepatocellular carcinoma[J]. Cancer Lett, 2023, 559: 216122. DOI: 10.1016/j.canlet.
2023.216122.
[18] ZHANG Q, XIONG L, WEI T, et al. Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma[J]. Oncogene, 2023, 42(19): 1509-1523. DOI: 10.1038/s41388-023-02665-y.
[19] WANG J, YU H, DONG W, et al. N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells properties and lenvatinib resistance through WNT/β-catenin and hippo signaling pathways[J]. Gastroenterology, 2023, 164(6): 990-1005. DOI: 10.1053/j.gastro.2023.01.041.
[20] ZHANG X, SU T, WU Y, et al. N6-methyladenosine reader YTHDF1 promotes stemness and therapeutic resistance in hepatocellular carcinoma by enhancing NOTCH1 expression[J]. Cancer Res, 2024, 84(6): 827-840. DOI: 10.1158/0008-5472.CAN-23-1916.
[21] KE W, ZHANG L, ZHAO X, et al. p53 m6A modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis[J]. Apoptosis, 2022, 27(5/6): 426-440. DOI: 10.1007/s10495-
022-01728-x.
[22] YOU Y, WEN D, ZENG L, et al. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression[J]. Int J Biol Sci, 2022, 18(13): 5001-5018. DOI: 10.7150/ijbs.70149.
[23] WANG H, TANG A, CUI Y, et al. LRPPRC facilitates tumor progression and immune evasion through upregulation of m6A modification of PD-L1 mRNA in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1144774. DOI: 10.3389/fimmu.
2023.1144774.
[24] WANG L, ZHU L, LIANG C, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis[J]. J Hepatol, 2023, 79(5): 1185-1200. DOI: 10.1016/j.jhep.
2023.06.021.
[25] PAN Y, CHEN H, ZHANG X, et al. METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy[J]. Cell Rep Med, 2023, 4(8): 101144. DOI: 10.1016/j.xcrm.2023.101144.
[26] CAI J, CHEN Z, ZHANG Y, et al. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m6A modification in hepatocellular carcinoma[J]. Mol Ther Oncolytics, 2022, 24: 755-771. DOI: 10.1016/j.omto.
2022.02.021.
[27] HU Z, CHEN G, ZHAO Y, et al. Exosome-derived circCCAR1 promotes CD8+ T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma[J]. Mol Cancer, 2023, 22(1): 55. DOI: 10.1186/s12943-023-01759-1.
[28] YU F, FANG P, FANG Y, et al. Circ_0027791 contributes to the growth and immune evasion of hepatocellular carcinoma via the miR-496/programmed cell death ligand 1 axis in an m6A-dependent manner[J]. Environ Toxicol, 2024. DOI: 10.1002/tox.24188.
[29] JIANG H, NING G, WANG Y, et al. Identification of an m6A-related signature as biomarker for hepatocellular carcinoma prognosis and correlates with sorafenib and anti-PD-1 immunotherapy treatment response[J]. Dis Markers, 2021,2021: 5576683.DOI: 10.1155/2021/5576683.
[30] XU Q, XU H, DENG R, et al. Landscape of prognostic m6A RNA methylation regulators in hepatocellular carcinoma to aid immunotherapy[J]. Front Cell Dev Biol, 2021, 9: 669145. DOI: 10.3389/fcell.2021.669145.
[31] LIU F, ZHANG X, LIU Z, et al. M6A modifier-mediated methylation characterized by diverse prognosis, tumor microenvironment, and immunotherapy response in hepatocellular carcinoma[J]. J Oncol, 2022, 2022: 2513813. DOI: 10.1155/
2022/2513813.
[32] ZHAO K, WEI B, ZHANG Y, et al. M6A regulator-mediated immune infiltration and methylation modification in hepatocellular carcinoma microenvironment and immunotherapy[J]. Front Pharmacol, 2022, 13: 1052177. DOI: 10.3389/fphar.2022.1052177.
[33] DU Y, MA Y, ZHU Q, et al. An m6A-related prognostic biomarker associated with the hepatocellular carcinoma immune microenvironment[J]. Front Pharmacol, 2021, 12: 707930. DOI: 10.3389/fphar.2021.707930.
[34] ZHOU D, WANG Y, WEI W, et al. m6A regulator-mediated methylation modification highlights immune infiltration patterns for predicting risk in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(7): 3661-3680. DOI: 10.1007/s00432-022-04255-z.
[35] SONG D, TIAN Y, LUO J, et al. An N6-methyladenosine-associated lncRNA signature for predicting clinical outcome and therapeutic responses in hepatocellular carcinoma[J]. Ann Transl Med, 2022, 10(8): 464. DOI: 10.21037/atm-22-1583.
[36] XIE X, LIANG H, RUAN Q, et al. Comprehensive analysis of N6-methyladenosine-related lncRNAs reveals distinct hepatocellular carcinoma subtypes with immunotherapeutic implications[J]. Am J Transl Res, 2022, 14(9): 6504-6520.
[37] WANG Q, XIE H, PENG H, et al. ZC3H13 inhibits the progression of hepatocellular carcinoma through m6A-PKM2-mediated glycolysis and enhances chemosensitivity[J]. J Oncol, 2021, 2021: 1328444. DOI: 10.1155/2021/1328444.
[38] DUAN J L, CHEN W, XIE J J, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma[J]. Mol Cancer, 2022, 21(1): 93. DOI: 10.1186/s12943-022-01537-5.
[39] JIA G, WANG Y, LIN C, et al. LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2[J]. J Exp Clin Cancer Res, 2021, 40(1): 299. DOI: 10.1186/s13046-021-02090-7.
[40] WANG X, WANG J, TSUI Y M, et al. RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2[J]. Nat Commun, 2021, 12(1): 1518. DOI: 10.1038/s41467-021-21828-7.
[41] HUNG M H, CHANG C W, WANG K C, et al. Purine anabolism creates therapeutic vulnerability in hepatocellular carcinoma through m6A-mediated epitranscriptomic regulation[J]. Hepatology, 2023, 78(5): 1462-1477. DOI: 10.1097/HEP.
0000000000000420.
[42] HUANG D, HUANG D. Relationship between M6A methylation regulator and prognosis in patients with hepatocellular carcinoma after transcatheter arterial chemoembolization[J]. Heliyon, 2022, 8(10): e10931. DOI: 10.1016/j.heliyon.2022.e10931.
[43] QU X, ZHANG L, LI S, et al. m6A-related angiogenic genes to construct prognostic signature, reveal immune and oxidative stress landscape, and screen drugs in hepatocellular carcinoma[J]. Oxid Med Cell Longev, 2022, 2022: 8301888. DOI: 10.1155/2022/8301888.
[44] CHEN Y, ZHOU P, DENG Y, et al. ALKBH5-mediated m6A demethylation of TIRAP mRNA promotes radiation-induced liver fibrosis and decreases radiosensitivity of hepatocellular carcinoma[J]. Clin Transl Med, 2023, 13(2): e1198. DOI: 10.1002/ctm2.1198.
[45] ZHANG Y, GU W, SHAO Y. The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance[J]. Discov Oncol, 2023, 14(1): 141. DOI: 10.1007/s12672-023-00759-3.
[46] 徐鑫. 丹參酮ⅡA通過(guò)METTL14介導(dǎo)miR-125a-5p促進(jìn)肝癌細(xì)胞凋亡的作用機(jī)制研究[D]. 上海:上海中醫(yī)藥大學(xué), 2020.
XU X. Study on the mechanism of tanshinone ⅡA promoting hepatoc-ellular carcinoma cell apoptosis via METTL14-mediated MiR-125a-5p[D]. Shanghai:Shanghai University of Traditional Chinese Medicine,2020.
[47] KOSTYUSHEVA A, BREZGIN S, GLEBE D, et al. Host-cell interactions in HBV infection and pathogenesis: the emerging role of m6A modification[J]. Emerg Microbes Infect, 2021, 10(1): 2264-2275. DOI: 10.1080/22221751.2021.2006580.
[48] YANG L, TIAN S, ZHENG X, et al. N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment[J]. J Gastroenterol, 2023, 58(8): 718-733. DOI: 10.1007/s00535-023-02008-4.
[49] LU J, QIAN J, YIN S, et al. Mechanisms of RNA N6-methyladenosine in hepatocellular carcinoma: from the perspectives of etiology[J]. Front Oncol, 2020, 10: 1105. DOI: 10.3389/fonc.2020.01105.
[50] JIANG H, YAO Q, AN Y, et al. Baicalin suppresses the progression of type 2 diabetes-induced liver tumor through regulating METTL3/m6A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway[J]. Phytomedicine, 2022, 94: 153823. DOI: 10.1016/j.phymed.2021.153823.
[51] ZHANG L, KE W, ZHAO X, et al. Resina Draconis extract exerts anti-HCC effects through METTL3-m6A-Survivin axis[J]. Phytother Res, 2022, 36(6): 2542-2557. DOI: 10.1002/ptr.7467.
[52] DU Y, YUAN Y, XU L, et al. Discovery of METTL3 small molecule inhibitors by virtual screening of natural products[J]. Front Pharmacol, 2022, 13: 878135. DOI: 10.3389/fphar.2022.878135.
[53] 李毅. 白藜蘆醇對(duì)肝臟脂代謝和能量代謝及RNA甲基化修飾影響的研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2019.
LI Y. Study of resveratrol on liver lipid metabolism, energy metabolism and RNA methylation modification[D]. Nanjing: Nanjing Agricultural University, 2019.
[54] WU L, LIU X, CAO K X, et al. Synergistic antitumor effects of Rhein and doxorubicin in hepatocellular carcinoma cells[J]. J Cell Biochem, 2020, 121(10): 4009-4021. DOI: 10.1002/jcb.27514.
[55] HU C, YANG L, WANG Y, et al. Ginsenoside Rh2 reduces m6A RNA methylation in cancer via the KIF26B-SRF positive feedback loop[J]. J Ginseng Res, 2021, 45(6): 734-743. DOI: 10.1016/j.jgr.2021.05.004.
[56] 范金花. 黃連堿通過(guò)促進(jìn)IGF2BP1泛素化抑制肝細(xì)胞癌增殖和轉(zhuǎn)移的機(jī)制研究[D].重慶:西南大學(xué), 2022.
FAN J H. The mechanism of coptisine inhibiting the proliferation and metastasis of hepatocellular carcinoma by promoting the ubiquitination of IGF2BP1[D]. Chongqing:Southwest University, 2022.
[57] LIU Y, GUO Q, YANG H, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment[J]. ACS Cent Sci, 2022, 8(8): 1102-1115. DOI: 10.1021/acscentsci.2c00107.
[58] LI N, KANG Y, WANG L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment[J]. Proc Natl Acad Sci U S A, 2020, 117(33): 20159-20170. DOI: 10.1073/pnas.1918986117.
[59] HUANG Y, SU R, SHENG Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia[J]. Cancer Cell, 2019, 35(4): 677-691.e10. DOI: 10.1016/j.ccell.2019.03.006.
[60] XIAO Z, LI T, ZHENG X, et al. Nanodrug enhances post-ablation immunotherapy of hepatocellular carcinoma via promoting dendritic cell maturation and antigen presentation[J]. Bioact Mater, 2023, 21: 57-68. DOI: 10.1016/j.bioactmat.
2022.07.027.
(責(zé)任編輯:楊江瑜)