劉青青 李宜薔 石玉士 陸海頌 程緯民
基金項目:廣西中醫(yī)藥管理局資助項目(GZZC2019058)
作者單位:1廣西中醫(yī)藥大學(xué)研究生學(xué)院(郵編530001);2廣西中醫(yī)藥大學(xué)第一附屬醫(yī)院血液內(nèi)科
作者簡介:劉青青(1996),女,碩士在讀,主要從事血液系統(tǒng)疾病相關(guān)機制方面研究。E-mail:571230817@qq.com
△通信作者 E-mail:cheng5min@126.com
摘要:骨髓增生異常綜合征(MDS)是一種細胞遺傳學(xué)與分子遺傳學(xué)高度異質(zhì)性的惡性克隆性疾病,且進展為急性髓系白血?。ˋML)的風險極高。轉(zhuǎn)化生長因子-β(TGF-β)與MDS的發(fā)病密切相關(guān),是免疫穩(wěn)態(tài)及免疫耐受的關(guān)鍵執(zhí)行者,可抑制免疫系統(tǒng)許多組成部分的擴張和功能。TGF-β信號通路能調(diào)控微環(huán)境中的造血細胞及免疫細胞,抑制其發(fā)揮正常生物學(xué)功能,從而加快MDS的疾病進展。就近年來TGF-β信號通路對MDS紅細胞、T淋巴細胞、自然殺傷細細胞、巨噬細胞的調(diào)控作用進行綜述,以期為MDS的發(fā)病機制及治療提供新的視角。
關(guān)鍵詞:骨髓增生異常綜合征;轉(zhuǎn)化生長因子β;信號傳導(dǎo);免疫細胞;作用機制
中圖分類號:R552文獻標志碼:ADOI:10.11958/20231620
Research progress on the mechanism of the TGF-β signaling pathway in
myelodysplastic syndrome
LIU Qingqing1, LI Yiqiang1, SHI Yushi1, LU Haisong2, CHENG Weimin2△
1 Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning 530001, China; 2 Department of
Hematology, First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine
△Corresponding Author E-mail: cheng5min@126.com
Abstract: Myelodysplastic syndrome (MDS) is a malignant clonal disease with high heterogeneity in cytogenetics and molecular genetics, and the risk of progression to acute myeloid leukemia (AML) is extremely high. Transforming growth factor-β (TGF-β) is closely related to the pathogenesis of MDS. It is a key executor of immune homeostasis and immune tolerance, and can inhibit the expansion and function of many components of? immune system. TGF-β signaling pathway can regulate hematopoietic cells and immune cells in microenvironment, inhibit their normal biological functions, and thus accelerate the progression of MDS. This study reviews regulatory effects of TGF-β signaling pathway on MDS blood cells, T lymphocytes, natural killer cells and macrophages in recent years, and provides a new perspective for the pathogenesis and treatment of MDS.
Key words: myelodysplastic syndromes; transforming growth factor beta; signal transduction; immune cells; mechanism of action
骨髓增生異常綜合征(myelodysplastic syndromes,MDS)是以骨髓形態(tài)異常、全血細胞減少、免疫功能紊亂等為主要表現(xiàn)的異質(zhì)性克隆性造血系統(tǒng)疾?。?]。目前針對MDS的治療研究取得了一定的成果,但仍缺乏治愈MDS的有效方法。MDS涉及多種信號通路的調(diào)控,如轉(zhuǎn)化生長因子-β(transforming growth factor β,TGF-β)[2]、核因子κB(nuclear factor kappa-B,NF-κB)[3]、絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)[4]等信號通路。TGF-β信號通路已被證實是紅細胞生成的潛在調(diào)節(jié)通路,其通過上調(diào)細胞周期蛋白激酶抑制劑的活性,抑制造血干細胞的增殖分化,引起造血功能障礙[2]。羅特西普是一種新型TGF-β拮抗劑,已被美國食品藥品監(jiān)督管理局批準用于治療MDS,其通過抑制TGF-β信號通路促進晚期紅細胞生成,改善無效造血,提高血紅蛋白水平,從而有效改善貧血癥狀并減少輸血需求[5]。然而TGF-β信號通路在紅細胞生成晚期調(diào)節(jié)紅細胞成熟中的作用尚不明確,且有關(guān)其在MDS中作用機制的研究尚少見。本文以TGF-β信號通路對MDS紅細胞、T淋巴細胞、自然殺傷(natural killer,NK)細胞、巨噬細胞調(diào)控作用的研究進展進行綜述。
1 TGF-β信號通路的功能及構(gòu)成
TGF-β信號通路在癌癥、心血管疾病、免疫性疾病等疾病中被廣泛研究,具有抑制造血、調(diào)控免疫細胞活性、調(diào)節(jié)腫瘤微環(huán)境等作用[6]。TGF-β是一種多功能細胞因子,是生長因子中的一個大型超家族,在維持造血干細胞的增殖和分化方面發(fā)揮重要作用。根據(jù)TGF-β結(jié)構(gòu)和信號轉(zhuǎn)導(dǎo)分子的差異,其大致可分為TGF-β和骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)2個亞家族。TGF-β亞家族包括TGF-β1/2/3、激活素、節(jié)點,BMP亞家族包括BMP、生長和分化因子(growth and differentiation factor,GDF)及抗繆勒管激素(anti-müllerianhormone,AMH),目前有關(guān)TGF-β亞家族的研究最為廣泛[7]。TGF-β在干細胞分化及T細胞調(diào)節(jié)和分化中亦發(fā)揮至關(guān)重要的作用。
2 TGF-β信號通路對MDS紅細胞的調(diào)控作用
MDS早期主要特征是造血干細胞的無效造血,而TGF-β在調(diào)節(jié)造血干細胞的增殖及分化過程中發(fā)揮著重要作用[8]。造血是原始造血干細胞(hematopoietic stem cells,HSCs)的一個高度復(fù)雜分化過程,HSCs主要存在于成年人的骨髓中,既可以長期自我更新以維持干細胞庫,又可以長期分化為造血系統(tǒng)的所有成熟譜系,是所有造血細胞和免疫細胞的來源[9]。TGF-β是一種骨髓抑制性細胞因子,具有抑制骨髓造血的功能。體外研究表明,TGF-β1通過抑制人類造血干細胞和原始祖細胞的增殖分化,從而抑制造血干細胞的功能,導(dǎo)致造血功能障礙[10]。TGF-β信號介導(dǎo)的造血干細胞作用可能與細胞周期基因轉(zhuǎn)錄失控有關(guān),如通過下調(diào)c-Myc基因或細胞周期蛋白依賴性激酶基因的表達水平,對HSCs增殖產(chǎn)生抑制作用,從而有效抑制造血功能。由于TGF-β1可以通過抑制正常HSCs生長促進惡性細胞的增殖,故阻斷TGF-β信號可有效減緩這一過程[11]。TGF-β可調(diào)控果蠅母體抗截癱蛋白(drosophila mothers against decapentaplegic protein,SMAD)信號通路,其通過調(diào)控造血細胞的增殖、凋亡、分化和遷移來參與調(diào)節(jié)造血[12]。研究表明,TGF-β信號通路可抑制紅細胞增殖,使用TGF-β抑制劑可有效增強紅細胞生成能力,且不會損害紅細胞的成熟度[13]。Luspatercept(ACE-536)是一種結(jié)構(gòu)類似于TGF-β家族受體的可溶性融合蛋白,其通過與TGF-β超家族分子競爭性結(jié)合TGF-β配體,抑制TGF-β超家族分子的表達及SMAD的激活,從而減少無效紅細胞生成[14]。可見,TGF-β超家族信號傳導(dǎo)在MDS造血方面具有重要調(diào)節(jié)作用,過度激活的TGF-β信號會抑制患者的正常造血及腫瘤免疫功能,促進MDS患者病情發(fā)展。
3 TGF-β信號通路對MDS免疫細胞的調(diào)控作用
TGF-β信號通路對免疫細胞應(yīng)答具有調(diào)控作用。免疫細胞功能障礙、異常細胞因子產(chǎn)生和基質(zhì)細胞破壞是免疫微環(huán)境功能障礙的3個核心方面,也是MDS發(fā)生和發(fā)展的核心。有研究顯示,免疫系統(tǒng)的異常是MDS發(fā)病機制的重要因素,而突變的造血細胞從免疫監(jiān)視中逃逸可能是高風險MDS進展為急性髓系白血病(acute myeloid leukemia,AML)的重要原因之一[15]。另有研究表明,免疫系統(tǒng)失調(diào)對MDS的疾病進展有重要作用,免疫抑制性腫瘤微環(huán)境可誘導(dǎo)MDS病灶的免疫耐受,這可能導(dǎo)致突變負荷的進一步積累,并促進MDS進展[16]。研究TGF-β在免疫系統(tǒng)的調(diào)控機制,將有助于開發(fā)有效的TGF-β拮抗劑和生物標志物,以促進MDS治療的研究。
3.1 TGF-β信號通路對T淋巴細胞的調(diào)控作用 T淋巴細胞通過調(diào)控機體免疫在MDS發(fā)生發(fā)展中發(fā)揮重要作用。有研究顯示,在MDS中CD8+ T細胞具有直接的細胞毒性作用,其可通過表達CD39引起T細胞衰竭,促進繼發(fā)性AML中抑制性免疫微環(huán)境的形成[17]。調(diào)節(jié)性T細胞(regulatory T cell,Treg)是自身免疫耐受的關(guān)鍵調(diào)節(jié)細胞,通過抑制反應(yīng)性T細胞功能來維持自身的免疫耐受性。在MDS早期,因C-X-C趨化因子受體4(C-X-C chemokine receptor type 4,CXCR4)表達下調(diào),骨髓中通過C-X-C趨化因子配體12(C-X-C motif chemokine ligand 12,CXCL12)/CXCR4軸歸巢的Tregs嚴重下降,引起免疫調(diào)節(jié)功能受損,從而導(dǎo)致MDS進展。在MDS晚期,因腫瘤相關(guān)抗原的驅(qū)動,腫瘤特異性Tregs大量生成,可有效抑制腫瘤相關(guān)抗原的免疫反應(yīng),從而導(dǎo)致MDS進展[18]。有研究發(fā)現(xiàn),MDS患者程序性死亡受體配體1(programmed death ligand 1,PD-L1)表達上調(diào),PD-L1表達與高風險國際預(yù)后評分系統(tǒng)(International Prognostic Scoring System,IPSS)類別有關(guān)[19]。抑制程序性死亡受體1(programmed cell death 1,PD-1)/PD-L1通路是一種免疫檢查點阻斷療法,已被證明可在MDS免疫逃逸和細胞毒性T細胞衰竭中發(fā)揮作用[20]。阻斷免疫檢查點可能是一種治療晚期MDS的可行性策略,但相關(guān)藥物的高耐藥率嚴重限制了其臨床應(yīng)用,如PD-1抑制劑。TGF-β信號的異常激活可能會增加免疫檢查點阻斷藥物的抗藥性,而抑制TGF-β信號則能有效降低免疫檢查點阻斷藥物耐藥的發(fā)生[21]。有研究發(fā)現(xiàn),TGF-β可通過調(diào)節(jié)腫瘤成纖維細胞增加腫瘤微環(huán)境中的膠原纖維含量,抑制T細胞對腫瘤細胞的免疫浸潤,從而引起免疫逃逸[22]。PD-1抑制劑對TGF-β信號異常激活患者的治療效果甚微,但抑制TGF-β信號后,T細胞能有效浸潤至腫瘤發(fā)生部位,使PD-1抑制劑發(fā)揮顯著的抗腫瘤作用[23]。另有研究顯示,抗TGF-β抗體可以選擇性阻斷Tregs產(chǎn)生TGF-β1,增加腫瘤細胞對PD-1抑制劑的敏感性[24]。帕博利珠單抗是一種人源化單克隆抗體,可阻斷PD-1與PD-L1之間的相互作用,其聯(lián)合阿扎胞苷治療MDS的Ⅱ期臨床試驗顯示,兩藥合用對高危MDS患者具有一定的抗腫瘤作用,且帕博利珠單抗毒性在可控范圍內(nèi)[25]。因此,通過干預(yù)TGF-β表達調(diào)控T細胞介導(dǎo)的免疫反應(yīng)能抑制腫瘤細胞的免疫逃逸。
3.2 TGF-β信號通路對NK細胞的調(diào)控作用 NK細胞是先天免疫系統(tǒng)的細胞毒性淋巴細胞,能夠非特異性地識別靶細胞,包括部分腫瘤細胞和病毒感染的細胞等。MDS患者NK細胞功能嚴重失調(diào),通過NK細胞免疫療法或激活內(nèi)源性NK細胞可有效改善其功能失調(diào)[26]。據(jù)報道,整合素可以通過激活TGF-β引起NK細胞與膠質(zhì)母細胞瘤干細胞直接接觸,導(dǎo)致NK細胞裂解功能和溶細胞功能受損,從而引起腫瘤干細胞的免疫逃避,而采用整合素抑制劑、TGF-β抑制劑或?qū)Ξ愺wNK細胞上的TGF-βⅡ型受體進行CRISPR基因編輯,可有效阻斷膠質(zhì)母細胞瘤干細胞移植小鼠的腫瘤生長[27]。另有研究表明,TGF-β可通過下調(diào)白血病細胞表面CD48表達及NK細胞表面細胞間黏附分子-1的結(jié)合活性來抑制NK細胞免疫活性,達到免疫逃逸的目的,從而促進白血病的進展[28]。TGF-β是干擾素γ的負調(diào)節(jié)因子,可以通過降低NK細胞活化受體NKG2D和NKp30的表達水平,從而降低NK細胞的細胞毒力,抑制其抗腫瘤功能。研究顯示,缺乏TGF-βⅡ型受體的NK細胞表現(xiàn)出更強的腫瘤轉(zhuǎn)移和生長抑制特性,同時TGF-β對NK細胞的募集及細胞遷移亦具有調(diào)控作用[29],且TGF-β的調(diào)節(jié)作用可被MAPK途徑增強[30]。在腫瘤微環(huán)境中,TGF-β可以誘導(dǎo)NK細胞轉(zhuǎn)化為先天性淋巴細胞-1(innate lymphoid cell-1,ILC-1);與NK細胞相比,ILC-1無法有效地抑制腫瘤生長和調(diào)控腫瘤轉(zhuǎn)移,這有利于腫瘤細胞逃避免疫監(jiān)視[29]。因此,探討TGF-β誘導(dǎo)NK細胞轉(zhuǎn)化為ILC的生物學(xué)機制,以及如何通過調(diào)控TGF-β信號傳導(dǎo)發(fā)揮NK細胞的抗腫瘤作用可能是研發(fā)MDS治療方法的重要方向之一。Lee等[31]研究發(fā)現(xiàn),使用galunisertib(TGF-βⅠ型受體激酶抑制劑)處理肺癌細胞后,可以逆轉(zhuǎn)TGF-β介導(dǎo)的免疫抑制狀態(tài),并可通過上調(diào)NKG2DLs表達以恢復(fù)NK細胞介導(dǎo)的抗腫瘤免疫反應(yīng)。另有研究顯示,TGF-βⅡ型受體經(jīng)基因修飾后功能異常,NK細胞對神經(jīng)母細胞瘤表現(xiàn)出更高的細胞毒力[32]。目前以上治療手段對MDS的治療效果尚罕見,有待進一步研究驗證。
3.3 TGF-β信號通路對巨噬細胞的調(diào)控作用 腫瘤相關(guān)巨噬細胞是腫瘤組織中浸潤的巨噬細胞,其作為腫瘤微環(huán)境的重要組成部分,在血管生成、細胞外基質(zhì)重塑、癌細胞增殖、癌細胞轉(zhuǎn)移和免疫抑制的協(xié)調(diào)中發(fā)揮作用[33]。CD47是一種細胞表面配體,在人體大多數(shù)細胞中均處于低表達水平,在各種免疫反應(yīng)中發(fā)揮著不可或缺的作用,其通過與巨噬細胞上的信號調(diào)節(jié)蛋白α(signal regulatory protein α,SIRPα)結(jié)合抑制巨噬細胞的吞噬作用,從而使癌細胞逃避先天免疫系統(tǒng)的監(jiān)測[34]。研究發(fā)現(xiàn),在中高風險MDS患者骨髓樣本中CD47表達上調(diào),但在低風險MDS患者骨髓樣本中CD47表達無明顯變化,提示CD47可能是低風險MDS進展為中高風險MDS的一個關(guān)鍵因子[35]。因此,阻斷CD47/SIRPα途徑有望成為MDS免疫治療的方法之一。研究顯示,抑制集落刺激因子1(colony-stimulating factor 1,CSF1)/CSF1R傳導(dǎo)途徑可以引起巨噬細胞耗竭,抑制M2巨噬細胞的分化、增殖和存活,促進巨噬細胞向M1極化,增強巨噬細胞的抗原提呈能力,增強T細胞抗腫瘤功能[36]。盡管巨噬細胞的靶向療法獲得了一定的療效,但由于單藥治療具有較高的不良反應(yīng)發(fā)生率,因此尚需進一步探索巨噬細胞的靶向療法與其他藥物或方法聯(lián)合治療方案,從而改善單藥治療的缺點。研究顯示,TGF-β具有刺激巨噬細胞向M2巨噬細胞極化的作用,不利于巨噬細胞的存活和增殖[37]。因此,抑制TGF-β的表達也許是降低巨噬細胞單藥治療不良反應(yīng)發(fā)生率的研究方向。
4 小結(jié)
TGF-β可通過影響免疫微環(huán)境中NK細胞、T細胞、巨噬細胞等免疫細胞的功能調(diào)控MDS相關(guān)基因及細胞因子的表達,調(diào)節(jié)骨髓造血功能、免疫細胞活性及功能,參與MDS的發(fā)生發(fā)展,并影響MDS的轉(zhuǎn)歸及預(yù)后。近年來TGF-β信號通路被廣泛研究,目前通過調(diào)控該通路治療腫瘤已獲得一定的療效,但其在MDS發(fā)生發(fā)展過程中的具體作用機制尚不明確。探討TGF-β信號通路在MDS中的作用機制可能為MDS的靶向精準防治提供新的研究方向。
參考文獻
[1] BUCKSTEIN R,CHODIRKER L,YEEK W L,et al. The burden of red blood cell transfusions in patients with lower-risk myelodysplastic syndromes and ring sideroblasts:an analysis of the prospective MDS-CAN registry[J]. Leuk Lymphoma,2023,64(3):651-661. doi:10.1080/10428194.2022.2156793.
[2] VEGIVINTI C T R,KEESARI P R,VEERABALLI S,et al. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML:a narrative review[J]. Exp Hematol Oncol,2023,12(1):1-12. doi:10.1186/s40164-023-00422-1.
[3] PELLAGATTI A,BOULTWOOD J. Splicing factor mutations in the myelodysplastic syndromes:role of key aberrantly spliced genes in disease pathophysiology and treatment[J]. Adv Biol Regul,2023,87:100920. doi:10.1016/j.jbior.2022.100920.
[4] FENG Y,LIANG H,LUO X,et al. Analysis of core mutation and TET2/ASXL1 mutations DNA methylation profile in myelodysplastic syndrome[J]. Hematology,2023,28(1):2220222. doi:10.1080/16078454.2023.2220222.
[5] FATTIZZO B,VERSINO F,BORTOLOTTI M,et al. Luspatercept in combination with recombinant erythropoietin in patients with myelodysplastic syndrome with ring sideroblasts:stimulating early and late-stage erythropoiesis[J]. Eur J Haematol,2023,110(5):571-574. doi:10.1111/ejh.13933.
[6] TIE Y,TANG F,PENG D,et al. TGF-beta signal transduction:biology,function and therapy for diseases[J]. Mol Biomed,2022,3(1):45. doi:10.1186/s43556-022-00109-9.
[7] DELANGHE S,NGUYEN T Q,MAZURE D,et al. Immune complex glomerulonephritis in a patient with myelodysplastic syndrome with ring sideroblasts treated with luspatercept[J]. Diagnostics,2022,13(1):11. doi:10.3390/diagnostics13010011.
[8] MUENCH D E,F(xiàn)ERCHEN K,VELU C S,et al. SKI controls MDS-associated chronic TGF-β signaling,aberrant splicing,and stem cell fitness[J]. Blood,2018,132(21):e24-e34. doi:10.1182/blood-2018-06-860890.
[9] 韓冰,李紅敏,陳芳菲,等. 骨髓增生異常綜合征貧血原因及治療策略[J]. 天津醫(yī)藥,2018,46(8):794-798. HAN B,LI H M,CHENG F F,et al. Etiology and treatment strategies of anemia in myelodysplastic syndromes[J]. Tianjin Med J,2018,46(8):794-798. doi:10.11958/20180561.
[10] CANAANI J. Emerging therapies for the myelodysplastic syndromes.[J]. Clinical hematology international,2020,2(1):13-17. doi:10.2991/chi.d.191202.001.
[11] LECOMTE S,DEVREUX J,de STREEL G,et al. Therapeutic activity of GARP:TGF-β1 blockade in murine primary myelofibrosis[J]. Blood,2023,141(5):490-502. doi:10.1182/blood.2022017097.
[12] ZHANG Y, YE T, GONG S, et al. RNA-sequencing based bone marrow cell transcriptome analysis reveals the potential mechanisms of E'jiao against blood-deficiency in mice[J]. Biomed Pharmacother,2019,118:109291. doi: 10.1016/j.biopha.2019.109291.
[13] SURAGANI R N V S, CADENA S M, CAWLEY S M, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis[J]. Nature medicine,2014,20(4):408-414. doi:10.1038/nm.3512.
[14] BRUZZESE A,VIGNA E,MARTINO E A,et al. Myelodysplastic syndromes with ring sideroblasts[J]. Hematol Oncol,2023,41(4):612-620. doi:10.1002/hon.3125.
[15] KOUROUKLI O,SYMEONIDIS A,F(xiàn)OUKAS P,et al. Bone marrow immune microenvironment in myelodysplastic syndromes[J]. Cancers,2022,14(22):5656. doi:10.3390/cancers14225656.
[16] NAKAJIMA H. Pathogenesis and treatment of immune dysregulation associated with myelodysplastic syndromes[J]. Rinsho Ketsueki,2023,64(8):753-763. doi:10.11406/rinketsu.64.753.
[17] SUWABE T,SHIBASAKI Y,SATO H,et al. WT1-specific CD8+ cytotoxic T cells with the capacity for antigen-specific expansion accumulate in the bone marrow in MDS[J]. Int J Hematol,2021,113:723-734. doi:10.1007/s12185-021-03083-0.
[18] ZHANG X,YANG X,MA L,et al. Immune dysregulation and potential targeted therapy in myelodysplastic syndrome[J]. Ther Adv Hematol,2023,14:20406207231183330. doi:10.1177/20406207231183330.
[19] YI M,NIU M,XU L,et al. Regulation of PD-L1 expression in the tumor microenvironment[J]. J Hematol Oncol,2021,14(1):10.
[20] CHOKR N,PATEL R,WATTAMWAR K,et al. The rising era of immune checkpoint inhibitors in myelodysplastic syndromes[J]. Adv Hematol,2018,2018:2458679. doi:10.1155/2018/2458679.
[21] VAN DORP J,VAN DER HEIJDEN M S. The bladder cancer immune micro-environment in the context of response to immune checkpoint inhibition[J]. Front Immunol,2023,14:1235884. doi:10.3389/fimmu.2023.1235884.
[22] GULLEY J L,SCHLOM J,BARCELLOS-HOFF M H,et al. Dual inhibition of TGF-β and PD-L1:a novel approach to cancer treatment[J]. Molecular oncology,2022,16(11):2117-2134. doi:10.1002/1878-0261.13146
[23] YI M,LI T,NIU M,et al. TGF-β:a novel predictor and target for anti-PD-1/PD-L1 therapy[J]. Front Immunol,2022,13:1061394. doi:10.3389/fimmu.2022.1061394.
[24] DE STREEL G,BERTRAND C,CHALON N,et al. Selective inhibition of TGF-β1 produced by GARP-expressing tregs overcomes resistance to PD-1/PD-L1 blockade in cancer[J]. Nat Commun,2020,11(1):4545. doi:10.1038/s41467-020-17811-3.
[25] CHIEN K S,KIM K,NOGUERAS-GONZALEZ G M,et al. Phase II study of azacitidine with pembrolizumab in patients with intermediate-1 or higher-risk myelodysplastic syndrome[J]. Br J Haematol,2021,195(3):378-387. doi:10.1111/bjh.17689.
[26] ARELLANO-BALLESTERO H,SABRY M,LOWDELL M W. A killer disarmed:natural killer cell impairment in myelodysplastic syndrome[J]. Cells,2023,12(4):633. doi:10.3390/cells12040633.
[27] SHAIM H,SHANLEY M,BASAR R,et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells[J]. J Clin Invest,2021,131(14):e142116. doi:10.1172/JCI142116.
[28] HUANGC H,LIAO Y J,CHIOU T J,et al. TGF-β regulated leukemia cell susceptibility against NK targeting through the down-regulation of the CD48 expression[J]. Immunobiology,2019,224(5):649-658. doi:10.1016/j.imbio.2019.07.002.
[29] REGIS S,DONDERO A,CALIENDO F,et al. NK cell function regulation by TGF-β-induced epigenetic mechanisms[J]. Front Immunol,2020,11:311. doi:10.3389/fimmu.2020.00311.
[30] CASU B,DONDERO A,REGIS S,et al. Novel immunoregulatory functions of IL-18,an accomplice of TGF-β1[J]. Cancers,2019,11(1):75. doi:10.3390/cancers11010075.
[31] LEE Y S,CHOI H,CHO H R,et al. Downregulation of NKG2DLs by TGF-β in human lung cancer cells[J]. BMC Immunol,2021,22(1):44. doi:10.1186/s12865-021-00434-8.
[32] BURGA R A,YVON E,CHORVINSKY E,et al. Engineering the TGF-β receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma[J]. Clin Cancer Res,2019,25(14):4400-4412. doi:10.1158/1078-0432.CCR-18-3183.
[33] PITTET M J,MICHIELIN O,MIGLIORINI D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol,2022,19(6):402-421. doi:10.1038/s41571-022-00620-6.
[34] ELADL E,TREMBLAY-LEMAY R,RASTGOO N,et al. Role of CD47 in hematological malignancies[J]. J Hematol Oncol,2020,13(1):96. doi:10.1186/s13045-020-00930-1.
[35] CHAO M P,TAKIMOTO C H,F(xiàn)ENG D D,et al. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies[J]. Front Oncol,2020,9:1380. doi:10.3389/fonc.2019.01380.
[36] LI W,WANG F,GUO R,et al. Targeting macrophages in hematological malignancies:recent advances and future directions[J]. J Hematol Oncol,2022,15(1):110. doi:10.1186/s13045-022-01328-x.
[37] TAJBAKHSH A,MOVAHEDPOUR A,SAVARDASHTAKI A,et al. The complex roles of efferocytosis in cancer development,metastasis,and treatment[J]. Biomed Pharmacother,2021,140:111776.
(2023-11-09收稿 2024-01-11修回)
(本文編輯 陳麗潔)