摘要: 為研究離心泵在變頻調(diào)節(jié)過(guò)程中葉輪的受力特性,以某一單級(jí)雙吸泵離心泵為研究對(duì)象,對(duì)其在“線性”及“非線性”2種變轉(zhuǎn)速調(diào)節(jié)規(guī)律下泵內(nèi)流場(chǎng)進(jìn)行數(shù)值模擬,分析變轉(zhuǎn)速過(guò)程中葉輪所受徑向力及其流道內(nèi)壓力變化.結(jié)果表明:不同的變轉(zhuǎn)速過(guò)程,轉(zhuǎn)速變化率對(duì)徑向力變化出現(xiàn)差異起主導(dǎo)作用;2種變轉(zhuǎn)速過(guò)程中徑向力在圓周方向的矢量分布呈現(xiàn)略微差異,非線性變化時(shí)各方向受力更加均勻,更利于設(shè)備穩(wěn)定運(yùn)行;相比不同時(shí)刻所對(duì)應(yīng)的定轉(zhuǎn)速工況,變速工況下徑向力均偏大,在0.11 s時(shí)刻最為明顯,且非線性變化過(guò)程徑向力值增幅更大,達(dá)到534 N;在變頻調(diào)節(jié)過(guò)程中,徑向力的脈動(dòng)頻率以低頻為主;相比于其他部位,葉輪出口的壓力變化較明顯,引起葉輪出口受力變化,是影響徑向力大小的直接因素.
關(guān)鍵詞: 雙吸離心泵;變頻調(diào)速;徑向力;數(shù)值模擬
中圖分類號(hào): TH311;TK284.7" 文獻(xiàn)標(biāo)志碼: A" "文章編號(hào): 1674-8530(2024)08-0757-07
DOI:10.3969/j.issn.1674-8530.22.0171
收稿日期: 2022-07-06; 修回日期: 2022-11-03; 網(wǎng)絡(luò)出版時(shí)間: 2024-07-13
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240710.0947.010
基金項(xiàng)目: 四川省科技計(jì)劃項(xiàng)目(2020ZHCG0018, 2022JDZH0011);2020年四川省工業(yè)發(fā)展基金資助項(xiàng)目
第一作者簡(jiǎn)介: 何川(1997—),男,四川德陽(yáng)人,碩士研究生(1948574073@qq.com),主要從事流體機(jī)械內(nèi)部流動(dòng)研究.
通信作者簡(jiǎn)介: 賴喜德(1962—),男,四川綿陽(yáng)人,教授(laixd@mail.xhu.edu.cn),主要從事流體機(jī)械及工程研究.
何川,賴喜德,陳小明, 等. 雙吸離心泵變頻調(diào)速過(guò)程中葉輪的徑向力特性[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(8):757-763.
HE Chuan, LAI Xide, CHEN Xiaoming,et al. Radial force characteristics of impeller during variable frequency speed regulation process of double-suction centrifugal pump[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2024, 42(8): 757-763.(in Chinese)
Radial force characteristics of impeller during variable frequency
speed regulation process of double-suction centrifugal pump
HE Chuan1, LAI Xide1*, CHEN Xiaoming1, LIU Xueyin2, SONG Dongmei2
(1. School of Energy and Power Engineering, Xihua University, Chengdu, Sichuan 610039, China; 2. Sichuan Provincial Machinery Research amp; Design Institute Group Co., Ltd., Chengdu, Sichuan 610063, China)
Abstract: In order to study the force characteristics of the impeller in the variable frequency regulation(VFR) process of a centrifugal pump, a single-stage double-suction centrifugal pump was taken as the research object. The flow field inside the pump was numerically simulated under two types of variable speed regulation laws of linear and nonlinear. The radial force on the impeller and the pressure changes in the flow channel during the variable speed process were analyzed. The results indicate that the rate of change in rotational speed plays a dominant role in the variation of radial force under different rotational speed processes. There is a slight difference in the vector distribution of radial force in the circumferential direction during the two types of variable speed processes. When subjected to non-linear changes, the force in each direction is more uniform, which is more conducive to the stable operation of the equipment. Compared to the constant speed operating conditions corresponding to different times, the radial force under variable speed conditions is relatively large, with the most obvious effect at 0.11 s. Moreover, the nonlinear change process shows a greater increase in radial force value, reaching 534 N. In the process of variable frequency regulation, the pulsation frequency of radial force is mainly low frequency. Compared to other parts, the pressure change at the outlet of the impeller is more signifi-cant, which causes the force change at the outlet of the impeller and is a direct factor affecting the magnitude of radial force.
Key words: double-suction centrifugal pump;variable frequency regulation;radial force;numerical simulation
雙吸離心泵由2個(gè)等同直徑的單級(jí)葉輪背靠組合而成,與單吸葉輪相比,具有流量大、軸向力平衡等優(yōu)點(diǎn),被廣泛應(yīng)用于循環(huán)水、城市給排水等領(lǐng)域[1-2].在城市供水工程中,水泵流量需要根據(jù)實(shí)際需求進(jìn)行調(diào)節(jié).考慮節(jié)能需求,變頻調(diào)速在節(jié)能方面具有顯著優(yōu)勢(shì),即通過(guò)改變水泵轉(zhuǎn)速調(diào)整運(yùn)行工況,從一個(gè)初始工況過(guò)渡到另一個(gè)工況,采用變頻調(diào)速可節(jié)約電能20%~60%.但此類變工況的瞬態(tài)流動(dòng)易引起非穩(wěn)定流體動(dòng)態(tài)載荷、軸頻激振力等[3],這將嚴(yán)重影響泵的使用壽命或造成設(shè)備損壞,因此有必要對(duì)變頻調(diào)節(jié)過(guò)程中泵內(nèi)部瞬態(tài)流動(dòng)進(jìn)行研究.
目前對(duì)離心泵運(yùn)轉(zhuǎn)特性的研究主要集中在穩(wěn)定工況的流動(dòng)特性方面[4-7],對(duì)變工況運(yùn)行的研究主要涉及啟動(dòng)過(guò)程、停機(jī)過(guò)程等[8-9],而變頻調(diào)速過(guò)程的動(dòng)態(tài)特性研究相對(duì)較少.顧延?xùn)|等[10]采用數(shù)值模擬與試驗(yàn)相結(jié)合的方法,研究了轉(zhuǎn)速變化對(duì)離心泵外特性及內(nèi)流特性的影響,發(fā)現(xiàn)轉(zhuǎn)速變化主要影響蝸殼內(nèi)的壓力分布.RAKIBUZZA等[11]通過(guò)試驗(yàn)和數(shù)值模擬研究了離心泵在不同轉(zhuǎn)速下的振動(dòng)特性與非定常流動(dòng)之間的關(guān)系,發(fā)現(xiàn)隔舌處非定常流動(dòng)引起的水力激振會(huì)顯著影響泵的效率.孫?。?2]對(duì)離心泵變轉(zhuǎn)速調(diào)節(jié)等多種調(diào)節(jié)方式進(jìn)行數(shù)值模擬,探究了離心泵在不同調(diào)節(jié)方式下水力性能表現(xiàn)所對(duì)應(yīng)的內(nèi)流場(chǎng)響應(yīng)及壓力脈動(dòng)特性.趙燕娟等[13]、張玉良等[14]分別通過(guò)數(shù)值模擬對(duì)離心泵轉(zhuǎn)速在波動(dòng)過(guò)程中的流動(dòng)特性進(jìn)行了預(yù)測(cè),得到了各參數(shù)隨轉(zhuǎn)速的變化規(guī)律.TANG等[15]對(duì)不同轉(zhuǎn)速加速度的調(diào)節(jié)過(guò)程進(jìn)行數(shù)值計(jì)算,并對(duì)流量、揚(yáng)程、轉(zhuǎn)矩及葉輪內(nèi)壓力變化進(jìn)行分析,得到轉(zhuǎn)速加速度對(duì)調(diào)節(jié)過(guò)程的影響規(guī)律.目前轉(zhuǎn)子系統(tǒng)可靠性的研究越發(fā)受到重視,張飛等[16]結(jié)合相關(guān)理論,利用數(shù)值模擬對(duì)一雙吸離心泵的轉(zhuǎn)子可靠性進(jìn)行研究,但是其計(jì)算工況局限于穩(wěn)定工況,對(duì)于變化工況引起的動(dòng)態(tài)載荷,并未作為可靠性判斷的依據(jù).
綜上所述,影響泵變化工況的因素較穩(wěn)定工況下更多,因此變頻調(diào)速過(guò)程更為復(fù)雜,也更能反映真實(shí)的流動(dòng)狀況.變頻調(diào)速的基本原理是通過(guò)改變電流頻率f實(shí)現(xiàn)的,為避免磁通量增大引起轉(zhuǎn)子系統(tǒng)過(guò)熱,還需同時(shí)降低電壓V,這類方式稱為變頻-變壓調(diào)速,可通過(guò)變頻器實(shí)現(xiàn).根據(jù)文獻(xiàn)[17],V/f變頻器的控制曲線主要包括線性及非線性2大類,擬合發(fā)現(xiàn)調(diào)節(jié)的電壓隨頻率平方成非線性關(guān)系減小,而交流電動(dòng)機(jī)的轉(zhuǎn)速與頻率成線性正比關(guān)系.因此,文中對(duì)XDS500-400-435T型雙吸離心泵變頻調(diào)速呈直線和拋物線的變轉(zhuǎn)速工況進(jìn)行數(shù)值模擬,分析變頻調(diào)速過(guò)程中葉輪徑向力的變化特性,為雙吸離心泵變頻調(diào)速過(guò)程研究提供一定參考,為后續(xù)轉(zhuǎn)子可靠性設(shè)計(jì)等方面研究提供依據(jù).
1" 數(shù)值計(jì)算
1.1" 計(jì)算模型及網(wǎng)格劃分
XDS500-400-435T型雙吸離心泵葉輪葉片呈交錯(cuò)排列,其三維模型如圖1所示.該雙吸離心泵基本設(shè)計(jì)參數(shù)分別為流量Qd=2 800 m3/h,揚(yáng)程H=37 m,轉(zhuǎn)速n=1 400 r/min,功率P=350 kW,葉輪進(jìn)口直徑D1=327 mm,葉輪出口直徑D2=435 mm,葉片數(shù)Z=6.
對(duì)該雙吸離心泵流體域進(jìn)行非結(jié)構(gòu)網(wǎng)格劃分,如圖2所示,其中對(duì)葉輪、蝸殼網(wǎng)格進(jìn)行局部加密.共劃分5套網(wǎng)格方案,以額定轉(zhuǎn)速下的揚(yáng)程、效率為判據(jù),對(duì)網(wǎng)格進(jìn)行無(wú)關(guān)性驗(yàn)證.對(duì)比發(fā)現(xiàn),當(dāng)總網(wǎng)格數(shù)達(dá)到288萬(wàn)(此時(shí)吸入室、葉輪、蝸殼、出口段網(wǎng)格數(shù)分別為1 123 575,738 938,901 623,113 400)后,揚(yáng)程與效率變化值均小于1%,說(shuō)明網(wǎng)格數(shù)繼續(xù)增大不再影響計(jì)算精度,因此選取網(wǎng)格總數(shù)約為288萬(wàn)進(jìn)行后續(xù)數(shù)值計(jì)算.
1.2" 數(shù)值計(jì)算方法及邊界條件設(shè)置
應(yīng)用ANSYS - CFX軟件進(jìn)行非定常數(shù)值計(jì)算,采用 RNG k-ε 湍流模型,該模型考慮了平均流動(dòng)中的旋轉(zhuǎn)及旋流流動(dòng)情況,可以較好地處理強(qiáng)旋流和彎曲壁面流動(dòng)[7-8].
以雷諾時(shí)均N-S方程為基本控制方程,即
(ρui)xi=0,(1)
uit+(uiuj)xj=fi-1ρpxi+υ2uixixj,(2)
式中:t為時(shí)間;ρ為密度;ui,uj分別表示與坐標(biāo)軸xi,xj平行的速度分量;fi為體積力;υ為運(yùn)動(dòng)黏度;p為壓強(qiáng).
RNG k-ε湍流模型為
ρdkdt=xjαkμeffkxj+2μtSijuixj-ρε,(3)
ρdεdt=xjαεμeffεxj+2C1εεkμtSijuixj-C2ερε2k-R,(4)
式中:Sij=12uixj+ujxi;μeff=μ+μt,μt=Cμk2ε;Sij為應(yīng)變率張量;R為ε方程中的附加源項(xiàng),表示平均應(yīng)變率ε的影響,R=Cμλ3(1-λ/λ0)1+βλ3ε2k,λ=Sk/ε;Cμ=0.084 5;C1ε=1.420;C2ε=1.680;αk=1.000;αε=0.769;β=0.012.
考慮黏性因素,壁面采用無(wú)滑移邊界條件.“壓力-速度”的耦合求解采用SIMPLE算法,并選用高階格式.以恒定轉(zhuǎn)速的定常計(jì)算結(jié)果作為變轉(zhuǎn)速過(guò)程非定常計(jì)算的初始條件,以穩(wěn)態(tài)計(jì)算結(jié)果作為瞬態(tài)數(shù)值計(jì)算的初始值,時(shí)間采用二階隱式格式.收斂殘差設(shè)為1.0×10-4,參考?jí)毫υO(shè)為0.
變頻調(diào)速過(guò)程中,0.05 s前轉(zhuǎn)速恒定1 400 r/min,0.05 s之后轉(zhuǎn)速分別按式(5)和(6)變化至1 000 r/min,即
n1=-400t+1 400,(5)
n2=400t2-800t+1 400,(6)
式中:n1為線性變化的轉(zhuǎn)速;n2為非線性變化的轉(zhuǎn)速.
計(jì)算的時(shí)間步長(zhǎng)設(shè)為轉(zhuǎn)速1 000 r/min時(shí)葉輪每旋轉(zhuǎn)3°所需時(shí)間,即0.50 ms,總時(shí)長(zhǎng)為1.50 s.通過(guò)CFX軟件提供的二次開(kāi)發(fā)接口,輸入不同時(shí)刻的轉(zhuǎn)速值,圖3為擬合得到的轉(zhuǎn)速隨時(shí)間的變化曲線.
對(duì)模型計(jì)算域進(jìn)行邊界條件設(shè)置:采用壓力進(jìn)口邊界條件,壓力值設(shè)為1.01×105 Pa;采用質(zhì)量流量出口邊界條件,根據(jù)相似律,流量與轉(zhuǎn)速比成正比關(guān)系,可求得流量隨轉(zhuǎn)速比(時(shí)間)的變化規(guī)律.
QQ′=nn′,(7)
式中:Q,Q′分別為轉(zhuǎn)速變化前、后的流量;n,n′分別為變化前、后的轉(zhuǎn)速.
1.3" 數(shù)值計(jì)算方法可靠性驗(yàn)證
為驗(yàn)證數(shù)值計(jì)算方法的可靠性,以常溫清水為試驗(yàn)介質(zhì),在四川新達(dá)泵閥股份有限公司流體機(jī)械試驗(yàn)臺(tái)上對(duì)原型泵在0.4Qd~1.2Qd的9種流量工況進(jìn)行外特性試驗(yàn).
圖4為試驗(yàn)系統(tǒng)示意圖,其中流量計(jì)、進(jìn)出口壓力表、扭矩儀分別用來(lái)測(cè)試流量、進(jìn)出口壓力和轉(zhuǎn)軸扭矩,可進(jìn)一步計(jì)算求得揚(yáng)程及效率值.
分別對(duì)9種流量工況進(jìn)行數(shù)值計(jì)算,并將計(jì)算結(jié)果與試驗(yàn)結(jié)果進(jìn)行對(duì)比,如圖5所示.
由圖5可以看出:雙吸離心泵揚(yáng)程H和效率η的計(jì)算值與試驗(yàn)值變化趨勢(shì)基本一致;由于數(shù)值計(jì)算未考慮各類損失,因此數(shù)值計(jì)算的揚(yáng)程值、效率值略大于試驗(yàn)值,揚(yáng)程的最大誤差為3.8%,效率最大誤差為2.4%,滿足工程實(shí)際要求,這表明文中所采用的數(shù)值計(jì)算方法是可靠的.
2" 計(jì)算結(jié)果及分析
2.1" 徑向力分析
利用CFX對(duì)雙吸離心泵葉輪壁面靜壓在x,y方向的徑向分力進(jìn)行監(jiān)測(cè),求得各時(shí)刻的徑向力合力Fr值,即
Fr=(Fx2+Fy2)1/2,(8)
式中:Fx,F(xiàn)y分別為徑向力在x軸、y軸方向的分量.
2.1.1" 矢量分布
為了直觀地反映雙吸離心泵葉輪徑向力隨時(shí)間(轉(zhuǎn)速)的變化規(guī)律,提取2類變轉(zhuǎn)速過(guò)程中的徑向力矢量分布,如圖6所示.可以看出:在0~0.30 s時(shí)間段,2類轉(zhuǎn)速變化過(guò)程中葉輪周向的徑向力矢量分布在1 400 r/min時(shí)呈現(xiàn)以軸心為中心的六邊形,轉(zhuǎn)速開(kāi)始減小后徑向力增大,形狀由六邊形過(guò)渡為圓形;隨著轉(zhuǎn)速逐漸減小,在0.70~1.05 s時(shí)間段,2類變轉(zhuǎn)速工況下的徑向力方向出現(xiàn)差異,線性變化工況下保持正六邊形分布,但非線性變化工況下已經(jīng)從六邊形分布變?yōu)閳A形分布;當(dāng)轉(zhuǎn)速降至1 000 r/min且保持恒定后,2類變化工況徑向力在圓周方向的分布并不一致,這說(shuō)明不同的轉(zhuǎn)速變化方式對(duì)變速過(guò)程中及變速后的徑向力分布均存在影響.非線性變化工況的徑向力分布在圓周方向更趨近于圓形,相比于線性變化工況的六邊形分布,引起設(shè)備振動(dòng)的可能性更小.
2.1.2" 時(shí)域分析
圖7為雙吸離心泵整個(gè)變轉(zhuǎn)速過(guò)程中徑向力的時(shí)域分布,可以看出:2類變轉(zhuǎn)速過(guò)程的徑向力大小變化趨勢(shì)相似;線性變化工況的徑向力在0.25,0.48 s時(shí)分別出現(xiàn)局部最小值400 N,在0.60~1.00 s時(shí)間段均值保持410 N,相比于0.60 s前,波動(dòng)幅度明顯減小,這是因?yàn)檗D(zhuǎn)速開(kāi)始變化時(shí),流道內(nèi)壓力突然變得不穩(wěn)定,使得徑向力波動(dòng)較劇烈,由于轉(zhuǎn)速變化率恒定為-400 r/(min·s),壓力變化逐漸平緩,所以在變轉(zhuǎn)速過(guò)程的后0.40 s內(nèi)徑向力值相對(duì)穩(wěn)定,在轉(zhuǎn)速降至1 000 r/min后,徑向力有0.05 s滯后;非線性變化工況的徑向力值迅速增至最大值后,持續(xù)下降至規(guī)律波動(dòng),整個(gè)過(guò)程中局部最小值數(shù)量明顯多于線性變化工況,最小值也各不相同,這是因?yàn)榉蔷€性變化時(shí)的轉(zhuǎn)速變化率不恒定,流道內(nèi)壓力變化需要不斷適應(yīng)不同的轉(zhuǎn)速變化率,在0.55 s時(shí)刻,非線性工況的轉(zhuǎn)速變化率等于-400 r/(min·s),在此時(shí)刻前后0.01 s內(nèi)的徑向力平均值為409 N,與線性變化工況0.60~1.00 s內(nèi)徑向力平均值誤差為0.24%,這說(shuō)明當(dāng)轉(zhuǎn)速變化率相同時(shí),對(duì)應(yīng)時(shí)刻的徑向力值相等.
由于轉(zhuǎn)速變化方式不同,初始變化時(shí)徑向力的增大值差異較大.因此,實(shí)際工程中常采用不同變速曲線方案進(jìn)行組合控制(見(jiàn)圖8),避免徑向力在變速過(guò)程中出現(xiàn)較大的峰值,以減小設(shè)備振動(dòng)的可能性.轉(zhuǎn)速先線性減小,避免轉(zhuǎn)速突然減小引起徑向力強(qiáng)烈變化,隨后采用非線性變化,使徑向力更快下降至較小值.
2.1.3" 頻域分析
對(duì)葉輪所受徑向力進(jìn)行時(shí)頻轉(zhuǎn)換,得到2類變轉(zhuǎn)速方式對(duì)應(yīng)的徑向力頻域圖,如圖9所示.變速過(guò)程中轉(zhuǎn)速變化為1 000~1 400 r/min,對(duì)應(yīng)的軸頻為16.7~23.3 Hz,葉頻區(qū)間為100.0~140.0 Hz.根據(jù)幅值大小將頻率分為3部分:主頻存在的0~47.0 Hz區(qū)間,該區(qū)間對(duì)應(yīng)軸頻及其倍頻,線性及非線性工況對(duì)應(yīng)主頻分別為0.06和0.25倍軸頻;100.0~140.0 Hz區(qū)間,該區(qū)間對(duì)應(yīng)葉頻;47.0~100.0 Hz各頻率所對(duì)應(yīng)的徑向力幅值均較小.所以在整個(gè)變頻調(diào)節(jié)中,徑向力的脈動(dòng)主要以低頻為主.
2.1.4" 對(duì)比分析
變工況運(yùn)行過(guò)程中的數(shù)據(jù)變化相比于穩(wěn)定工況更復(fù)雜,為了確定變轉(zhuǎn)速過(guò)程中不同時(shí)刻徑向力值的相對(duì)大小,分別對(duì)0,0.11,0.68,1.02,1.50 s時(shí)刻的工況進(jìn)行定轉(zhuǎn)速瞬態(tài)計(jì)算,求得最后1.00 s內(nèi)徑向力的平均值,與變轉(zhuǎn)速過(guò)程中各時(shí)刻附近0.01 s內(nèi)徑向力平均值進(jìn)行比較,結(jié)果如圖10所示.可以看出:在變轉(zhuǎn)速過(guò)程之前,徑向力的大小基本保持在490 N左右;在變轉(zhuǎn)速過(guò)程的0.11 s時(shí)刻,2類變化過(guò)程中徑向力均明顯增大,相比于定轉(zhuǎn)速工況,線性變化工況下徑向力增大為245 N,非線性變化工況下增大達(dá)到534 N;直到1.05 s時(shí)刻變速過(guò)程結(jié)束,變轉(zhuǎn)速工況下的徑向力均比定轉(zhuǎn)速工況下的大,且轉(zhuǎn)速降至1 000 r/min后,變轉(zhuǎn)速工況的徑向力與定轉(zhuǎn)速工況的并不相等,差值約為50 N.因此可以認(rèn)為,變頻調(diào)速過(guò)程不僅在調(diào)節(jié)過(guò)程中使得徑向力呈現(xiàn)整體先增大后減小的趨勢(shì),調(diào)節(jié)過(guò)程結(jié)束后一段時(shí)間內(nèi)所引起的壓力波動(dòng)使得徑向力略高于定轉(zhuǎn)速工況.
2.2" 葉輪壓力變化分析
根據(jù)文獻(xiàn)[18-19],變工況運(yùn)行時(shí)泵內(nèi)壓力分布變化是設(shè)備產(chǎn)生振動(dòng)的主要原因.葉輪流道內(nèi)壓力分布直接反映葉輪的受力,因此對(duì)2類變轉(zhuǎn)速過(guò)程中的壓力變化進(jìn)行分析,如圖11所示,圖(i)—(v)分別對(duì)應(yīng)變速過(guò)程的0,0.11,0.68,1.02,1.50 s這5個(gè)時(shí)刻.可以看出:在開(kāi)始變速過(guò)程之前,即0時(shí)刻,葉輪出口處高壓區(qū)約占整個(gè)流道面積的1/3,在葉輪進(jìn)口靠近吸力面處,存在面積大小不等的低壓區(qū);進(jìn)入變轉(zhuǎn)速過(guò)程之后,壓力分布與初始時(shí)刻相似;到0.68 s時(shí)刻,相比于線性變化,非線性變化工況的轉(zhuǎn)速下降更多,葉輪出口的壓力明顯更低;0.68 s時(shí)刻之后,葉輪出口處的高壓區(qū)基本消失,進(jìn)口處低壓區(qū)面積基本保持不變,說(shuō)明變頻調(diào)速過(guò)程中,葉輪出口處壓力變化較大,這是影響徑向力大小的直接原因.
3" 結(jié)" 論
以某雙吸離心泵為研究對(duì)象,對(duì)線性及非線性2類轉(zhuǎn)速變化過(guò)程中葉輪所受徑向力及葉輪截面壓力分布進(jìn)行數(shù)值計(jì)算,得到結(jié)論如下:
1) 轉(zhuǎn)速的變化率與徑向力整體變化趨勢(shì)及大小相關(guān),不同變轉(zhuǎn)速方式的轉(zhuǎn)速變化率相等時(shí),對(duì)應(yīng)時(shí)刻徑向力值基本相等,非線性變化工況的徑向力在葉輪周向受力更均勻,更有利于設(shè)備穩(wěn)定運(yùn)行.
2) 相比各時(shí)刻對(duì)應(yīng)的定轉(zhuǎn)速工況,2類變轉(zhuǎn)速過(guò)程中徑向力值均更大,徑向力的脈動(dòng)頻率以低頻為主.
3) 變頻調(diào)速過(guò)程中,相比于線性變化工況,非線性變化工況的轉(zhuǎn)速下降更快,壓力減小也更迅速,壓力變化最為明顯的部位均出現(xiàn)在葉輪出口處,這是引起徑向力變化的直接原因.
參考文獻(xiàn)(References)
[1]" 鄧起凡, 裴吉, 王文杰. 半螺旋形吸入室隔舌對(duì)大型雙吸泵性能影響數(shù)值模擬研究[C]//第十六屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第三十二屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集(下冊(cè)), 2021:130-140.
[2]" 朱榮生, 李揚(yáng), 王秀禮,等. 偏心距和偏心角對(duì)雙吸泵徑向力影響的數(shù)值分析[J]. 流體機(jī)械, 2019, 47(3): 20-25.
ZHU Rongsheng, LI Yang, WANG Xiuli, et al. Nume-rical analysis on effects of double-suction pump radial force under different eccentricities and angles[J]. Fluid machinery, 2019, 47(3): 20-25. (in Chinese)
[3]" 楊廣勝, 楊帥, 朱品諭,等. 旋轉(zhuǎn)葉輪動(dòng)態(tài)載荷測(cè)量傳感器的設(shè)計(jì)與分析[J]. 流體機(jī)械, 2023, 51(4): 44-50.
YANG Guangsheng, YANG Shuai, ZHU Pinyu,et al. Design and analysis of dynamic load measuring sensor for rotating impeller[J]. Fluid machinery, 2023, 51(4): 44-50. (in Chinese)
[4]" KANG D, YAMAZAKI S, KAGAWA S, et al. Flow characteristics in a V-shaped region of a suction performance curve in a double-suction centrifugal pump[J]. International journal of fluid machinery and systems, 2019,12(1):89-98.
[5]nbsp; SONG Y, LUO Y. Influence of impeller vane arrange-ment on efficiency performance and pressure fluctuations of a double-suction centrifugal pump[J]. Earth and environmental science, 2019, 240(3):032015.
[6]" WEI Z, YANG W, XIAO R. Pressure fluctuation and flow characteristics in a two-stage double-suction centri-fugal pump[J]. Symmetry, 2019:11010065.
[7]" 邢冬燕.大型雙吸泵水力性能及內(nèi)部流動(dòng)研究[D]. 鎮(zhèn)江:江蘇大學(xué), 2020.
[8]" 周潤(rùn)澤. 雙蝸殼離心泵啟動(dòng)過(guò)程流動(dòng)特性和徑向力研究[D].鎮(zhèn)江:江蘇大學(xué),2020.
[9]" FENG J, GE Z, ZHANG Y, et al. Numerical investigation on characteristics of transient process in centrifugal pumps during power failure[J]. Renewable energy, 2021,170:267-276.
[10]" 顧延?xùn)|, 袁壽其, 裴吉,等. 調(diào)速對(duì)低比轉(zhuǎn)數(shù)離心泵外特性和內(nèi)流場(chǎng)的影響[J]. 工程熱物理學(xué)報(bào), 2020, 41(12): 2950-2956.
GU Yandong, YUAN Shouqi, PEI Ji, et al. Effects of rotating speeds on performances and flow characteristics for a low-specific-speed pump[J]. Journal of enginee-ring thermophysics, 2020, 41(12): 2950-2956. (in Chinese)
[11]" RAKIBUZZA M, SANG H S, KIM K W,et al. A study on multistage centrifugal pump performance characteris-tics for variable speed drive system-science direct[J]. Procedia engineering, 2015, 105: 270-275.
[12]" 孫健. 離心泵變工況瞬態(tài)過(guò)程內(nèi)流特性研究[D].楊凌:西北農(nóng)林科技大學(xué), 2021.
[13]" 趙燕娟, 張玉良. 離心泵轉(zhuǎn)速劇烈波動(dòng)時(shí)的瞬時(shí)響應(yīng)特性研究[J]. 熱能動(dòng)力工程, 2016, 31(5): 106-112.
ZHAO Yanjuan, ZHANG Yuliang. Study of the transient response characteristics of a centrifugal pump undergoing a drastic fluctuation in the rotating speed[J]. Journal of engineering for thermal energy and power, 2016, 31(5): 106-112. (in Chinese)
[14]" 張玉良, 肖俊建, 崔寶玲,等. 離心泵快速變工況瞬態(tài)過(guò)程特性模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(11): 8-15.
ZHANG Yuliang, XIAO Junjian, CUI Baoling, et al. Simulation of transient behavior in prototype centrifugal pump during rapid regulating flow rate[J]. Transactions of the CSAE, 2014, 30(11): 8-15. (in Chinese)
[15]" TANG Y, LIU E H, TANG L D, et al. Numerical simulation of the transient flow in a centrifugal pump during regulating period[J]. Advanced materials research, 2011, 268/269/270: 1407-1410.
[16]" 張飛, 權(quán)麗君. 單級(jí)雙吸離心泵轉(zhuǎn)子系統(tǒng)的可靠性分析[J]. 機(jī)電工程, 2021, 38(9): 1207-1211.
ZHANG Fei, QUAN Lijun. Reliability analysis of single-stage double-suction centrifugal pump rotor system[J]. Journal of mechanical & electrical engineering, 2021, 38(9): 1207-1211. (in Chinese)
[17]" 楊東進(jìn). 變頻器V/f曲線的合理設(shè)定[J]. 電氣傳動(dòng), 2001(4): 21-23.
YANG Dongjin. Properly adjusting V/f curves of frequency converter[J]. Electricdrive, 2001(4):21-23. (in Chinese)
[18]" 劉建瑞, 付登鵬, 何小可. ES250-370型雙蝸殼雙吸泵隔板優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2014, 45(5): 96-100.
LIU Jianrui, FU Dengpeng, HE Xiaoke. Optimization design of double-volute splitter in ES250-370 double-suction pump[J]. Transactions of the CSAM, 2014, 45(5): 96-100. (in Chinese)
[19]" 莊法坤, 周昌靜, 李曉鵬,等. 單級(jí)雙吸雙層蝸殼離心泵變工況運(yùn)行特性研究[J]. 石油化工設(shè)備, 2019, 48(1): 7-12.
ZHUANG Fakun, ZHOU Changjing, LI Xiaopeng, et al. Study on the variable operation characteristics of single stage double suction double volute centrifugal pump[J]. Petro-chemical equipment, 2019, 48(1): 7-12. (in Chinese)
(責(zé)任編輯" 陳建華)