国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同飼養(yǎng)方式對南江黃羊腸道菌群結(jié)構(gòu)及血清免疫指標(biāo)的影響

2024-08-24 00:00:00張小明張婷婷張貞貞李菁菁趙旺生
南方農(nóng)業(yè)學(xué)報 2024年2期
關(guān)鍵詞:腸道菌群

摘要:【目的】探究不同飼養(yǎng)方式對南江黃羊腸道菌群結(jié)構(gòu)和血清免疫指標(biāo)的影響,為開展南江黃羊集約化舍飼養(yǎng)殖提供參考依據(jù)?!痉椒ā窟x取體重相近、健康狀況良好的3月齡南江黃羊公羊32只,隨機分為2組,每組16只,分別進行放牧飼養(yǎng)(FMGF)和圈舍飼養(yǎng)(SSGF),預(yù)飼期7 d,正飼期60 d。正飼期第60 d每組隨機選取6只南江黃羊,無菌采集直腸糞便樣品,通過Ilumina HiSeq探析不同飼養(yǎng)方式下南江黃羊腸道菌群結(jié)構(gòu)差異;同時采集頸靜脈血樣,通過ELISA檢測血清免疫球蛋白(IgA、IgG和IgM)和血清免疫因子(IL-2、IL-4、JL-6和TNF-α)?!窘Y(jié)果]FMGF組南江黃羊血清中的IgM含量顯著高于SSGF組南江黃羊(Plt;0.05,下同),而TNF-α含量顯著低于SSGF組南江黃羊。FMGF組南江黃羊腸道菌群的Chaol指數(shù)顯著低于SSGF組南江黃羊。在門分類水平上,F(xiàn)MGF組和SSGF組的優(yōu)勢菌門均為厚壁菌門和擬桿菌門;髕骨細(xì)菌門和浮酶菌門在FMGF組的相對豐度極顯著高于SSGF組(Plt;0.01,下同),彎曲菌門、梭桿菌門和纖維桿菌門則表現(xiàn)為FMGF組的相對豐度顯著低于SSGF組。在屬分類水平上,F(xiàn)MGF組和SSGF組的優(yōu)勢菌屬分別是理研菌科_RC9_菌群和克里斯滕森菌科_R-7_菌群;FMGF組相對豐度極顯著高于SSGF組的菌屬有念珠菌屬、丁酸弧菌屬、厭氧支原體屬及假丁酸弧菌屬等;FMGF組相對豐度極顯著低于SSGF組的菌群有大腸桿菌一志賀菌屬、阿克曼西亞屬及擬桿菌屬等。IgM含量與乳桿菌屬相對豐度呈極顯著負(fù)相關(guān),與奈瑟菌屬和擬桿菌屬的相對豐度呈顯著負(fù)相關(guān);TNF-a含量與單桿菌屬和p-1088-a5_gut_group的相對豐度呈極顯著負(fù)相關(guān)?!窘Y(jié)論】與舍飼相比,放牧能促使南江黃羊血清中IgM含量升高及TNF-α含量降低,并顯著提高腸道中疣微菌門和脫硫桿菌門等有益菌群豐度,同時抑制彎曲菌門和梭桿菌門等有害菌群繁殖。可見,放牧對南江黃羊的免疫性能和腸道有益菌群結(jié)構(gòu)有明顯的正向影響。

關(guān)鍵詞:南江黃羊;飼養(yǎng)方式;血清免疫指標(biāo);腸道菌群;相對豐度

中圖分類號:S827.4文獻標(biāo)志碼:A文章編號:2095-1191(2024)02-0334-12

Effects of different feeding methods on the intestinal flora struc-ture and serum immune indexes of Nanjiang yellow goat

ZHANG Xiao-ming',ZHANG Ting-ting2,ZHANG Zhen-zhen',LI Jing-jing', ZHAO Wang-sheng\"

('School of Life Science and Engineering,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China;2Key DisciplineLaboratory of National Defense for Nuclear Waste and Environmental Security,Southwest University of Science and Technology,Mianyang,Sichuan 621000,China)

Abstract:[Objective]To explore the effects of different feeding methods on the intestinal microbiota structure and se-rum immune indexes of Nanjiang yellow goat,this study aimed to offer insights for the optimal managementand breeding practices of Nanjiang yellow goat.【Method]Thirty-two 3-month-old Nanjiang yellow goat,matched in body weight and health status,were randomly divided into 2 groups of 16 goats in each group,and subjected to either free-range grazing(FMGF)or enclosure feeding(SSGF).A pre-feeding period of 7 dwas followed by a 60-day normal feding period.On the 60#d of the normal feeding period,6 Nanjiang yellow goat were randomly selected from each group,and rectal fecal samples were collected aseptically.Illumina HiSeq was used to analyze the variations in intestinal flora structure of Nan-iang yellow goat under different feeding methods.Blood samples were obtained from the jugular vein to detect serum im-munoglobulins(IgA,IgG and IgM)and serum immune factors(IL-2,IL-4,IL-6 and TNF-α)using ELISA method.[Result]The IgM content in serum of FMGF group was significantly higher than that of the SSGF group(Plt;0.05,the same below),and the TNF-a content was significantly lower in SSGF group compared to the SSGF group.The Chaol in-dex of intestinal flora of Nanjiang yellow goat in FMGF group was significantly lower than that in SSGF group.At the phyla classification level,F(xiàn)irmicutes and Bacteroidota were identified as the dominant phylum in both the FMGF group and SSGF group.The relative abundances of Patescibacteria and Planctomycetota were extremely significantly higher in FMGF group compared to the SSGF group(Plt;0.01,the same below),whereas the relative abundances of Campylobacte-rota,F(xiàn)usobacteriota and Fibrobacterota in FMGF group weresignificantly lower than those in SSGF group.At the level of genus classification,the dominant bacterial genera in FMGF group and SSGF group were Rikenellaceae_RC9_gut_group and the Christensenellaceae_R-7_group,respectively.The relative abundance of bacteria inFMGF group was found to be extremely significantly higherthan that in the SSGF group,with genera such as Andidatis_Saccharimonas,Butyrivibrio, Anaeroplasma and Pseudobutyrivibrio.Conversely,therelative abundance of bacteria in the FMGF group was extremely significantly lower than that in the SSGF group,with genera such as Escherichia-Shigella,Akkermansia and Bacteroides IgM content wasextremely significantly negativelycorrelated with the relative abundance of Lactiplantibacillus,and was significantly negatively correlated with the relative abundance of Neiseria and Bacteroides.TNF-a content was extremely significantly negatively correlated with the relative abundance of Solobacterium and p-1088-a5_gut_group.【Conclusion】In comparison to house feeding,grazing can elevate IgM contents and reduce TNF-a contents in the serum of Nanjiang yellowgoat.Additionally,grazing enhances the presence of beneficial bacteria,such as Errucmicrobiota and Desulfobac-terota,in the intestinal tract,while simultaneously inhibiting the growth of harmful bacteria,such as Campylobacterota and Fusobacteriota.In conclusion,grazing has demonstrated substantial positive impacts on the immune function and in-testinalbeneficial microbiota compositionof Nanjiang yellow goat.

Key words:Nanjiang yellow goat;feeding method;serum immune index;intestinal flora;relative abundance Foundation items:National Natural ScienceFoundation Project(32260824)

0引言

【研究意義】南江黃羊是我國第一個經(jīng)多年雜交選育而成的肉用山羊品種(何佳檜等,2022),因肉質(zhì)蛋白含量高、脂肪和膽固醇含量低,而深受消費者青睞(何向東等,2023)。腸道微生物群是存在于腸道中數(shù)百萬種微生物的集合體,可影響宿主的生理、免疫和健康狀況,反之,宿主的健康狀況及活動也會導(dǎo)致腸道微生物組成發(fā)生變化(Lynch and Pedersen,2016;Shapira,2016;Kurilshikov et al.,2017)。腸道微生物包括各種病毒、細(xì)菌、真菌和原生動物,以共生、共棲或寄生的關(guān)系與宿主相互作用,從而維持和穩(wěn)定腸道環(huán)境平衡(Aziz et al.,2012;John and Mul-lin,2016;Dabke et al.,2019;裴利君等,2021)。不同飼養(yǎng)管理方式會導(dǎo)致動物腸道菌群的多樣性和功能存在差異,并影響其健康狀況(Dande et al.,2015;Song et al.,2020)。因此,探討不同飼養(yǎng)方式下的南江黃羊腸道菌群結(jié)構(gòu)及血清免疫指標(biāo),可為擴大南江黃羊養(yǎng)殖規(guī)模提供基礎(chǔ)數(shù)據(jù)?!厩叭搜芯窟M展】已有研究表明,放牧反芻動物的腸道微生物多樣性明顯高于舍飼反芻動物(Fu et al.,2022;Wen et al.,2022),如放牧牦牛胃腸道中擬桿菌門在瘤胃到十二指腸部位的相對豐度升高,而厚壁菌門在空腸到直腸部位的相對豐度升高(Han et al.,2021),舍飼牦牛糞便微生物在門分類水平上表現(xiàn)為擬桿菌門豐度升高、厚壁菌門豐度下降(Zhu et al.,2022)。Sun等(2020)研究發(fā)現(xiàn),野生麝糞便微生物中的厚壁菌豐度高于舍飼麝,而擬桿菌和螺旋體的豐度低于舍飼麝;Wang等(2020)研究表明,放牧蒙古綿羊的腸道擬桿菌屬豐度高于舍飼蒙古綿羊,而普雷沃氏菌屬豐度低于舍飼蒙古綿羊;張星星等(2021)研究發(fā)現(xiàn),舍飼組和放牧組的夏洛萊牛腸道微生物結(jié)構(gòu)與組成存在顯著差異,放牧組夏洛萊牛腸道微生物具有更強的纖維消化能力;譚占坤等(2022)研究證實,放牧藏豬腸道部分菌群在屬分類水平上的豐度顯著高于舍飼藏豬。此外,腸道菌群通過參與各種形式的宿主反應(yīng),在腸道屏障、營養(yǎng)代謝和免疫力等方面發(fā)揮重要作用(Tremaroli and B?ckhed,2012;舒迎霜等,2020;Wang et al.,2022)。賈立軍等(2018)研究發(fā)現(xiàn),放養(yǎng)松遼黑豬血清免疫球蛋白及細(xì)胞因子水平均顯著高于圈養(yǎng)松遼黑豬;王柏輝等(2018)研究表明,放牧條件下腸道菌群結(jié)構(gòu)更有利于短鏈脂肪酸的產(chǎn)生和多不飽和脂肪酸的沉積,從而提高羊肉的營養(yǎng)價值;Li等(2021)研究證實,增加膳食纖維攝入量可調(diào)節(jié)腸道菌群結(jié)構(gòu)及降低血清促炎因子水平。綜上所述,不同飼養(yǎng)方式對畜禽的腸道微生物結(jié)構(gòu)、生長狀態(tài)及血清免疫指標(biāo)均會產(chǎn)生極大影響?!颈狙芯壳腥朦c】至今,有關(guān)南江黃羊腸道微生物的研究鮮見報道,不同飼養(yǎng)方式對南江黃羊腸道菌群和血清免疫指標(biāo)的影響也尚未明確?!緮M解決的關(guān)鍵問題】以3月齡的南江黃羊公羊為研究對象,對比分析不同飼養(yǎng)方式下的腸道菌群結(jié)構(gòu)及血清免疫指標(biāo),為開展南江黃羊集約化舍飼養(yǎng)殖提供參考依據(jù)。

1材料與方法

1.1試驗動物

從四川巴中南江黃羊原種場選取體重(10.78±0.96 kg)相近、健康狀況良好的3月齡南江黃羊公羊,共32只,隨機分為放牧飼養(yǎng)(FMGF)組和圈舍飼養(yǎng)(SSGF)組,每組16只。FMGF組南江黃羊每天7:00—19:00期間進行放牧,放牧期間自由采食(槐樹葉、榆樹葉、紫穗槐及苜蓿草等)和飲水。SSGF組南江黃羊分為2個獨立圈舍,每個圈舍隨機分配8只,每日飼喂全混合日糧(TMR),其配方參照何向東等(2023)的研究方法;每日分2次(8:00和17:00)飼喂,自由飲水。試驗預(yù)飼期7d,正飼期60 d。除飼養(yǎng)方式不同外,溫度、濕度等其他飼養(yǎng)管理條件基本一致。動物試驗由西南科技大學(xué)實驗動物倫理委員會批準(zhǔn),批準(zhǔn)號L2022030。

1.2樣品采集與處理

正飼期第60d早上7:00,分別從每組中隨機選取6只南江黃羊,使用一次性無菌手套從直腸采集糞便樣品,裝入凍存管,編號后立即投入液氮中冷凍保存,運回實驗室轉(zhuǎn)存于-80℃冰箱。同時,以無添加劑采血管采集頸靜脈血樣10 mL,放入冰盒靜置30 min后,3500r/min離心10 min,收集血清,-20℃保存?zhèn)溆谩?/p>

1.3血清免疫指標(biāo)測定

血清免疫球蛋白(IgA、IgG和IgM)和血清免疫因子(IL-2、IL-4、IL-6和TNF-a)測定采用購自南京建成生物工程研究所的ELISA試劑盒,按照試劑盒說明進行操作。

1.416S rRNA擴增測序及多樣性分析

將糞便樣品送至杭州聯(lián)川生物技術(shù)股份有限公司完成16S rRNA測序分析。通過十六烷基三甲基溴化銨(CTAB)法提取糞便樣本微生物組總DNA,采用1.0%瓊脂糖凝膠電泳檢測DNA提取質(zhì)量,并以紫外分光光度計進行定量分析。選用引物341F(5-CCTACGGGNGGCWGCAG-3')和805R(5-GAC TACHVGGGTATCTAATCC-3)擴增微生物16SrRNA序列V3~V4可變區(qū),PCR反應(yīng)體系25.0μL:DNA模板50 ng,Phusion Hot Start Flex 2×緩沖液12.5μL,上、下游引物各2.5μL,dH?O補足至25.0μL。擴增程序:98℃預(yù)變性30 s;98℃10 s,54℃30 s,72℃45s,進行27個循環(huán);72℃延伸10 min。PCR擴增產(chǎn)物經(jīng)2.0%瓊脂糖凝膠電泳檢測后,采用AMPure XT Beads回收試劑盒進行純化回收。純化后的PCR擴增產(chǎn)物采用Agilent 2100生物分析儀(美國Agilent公司)和Illumina文庫定量試劑盒(美國Kapa Biosciences公司)進行評估,合格的文庫濃度應(yīng)在2 nmoVL以上。合格的測序文庫(Index序列不可重復(fù))進行梯度稀釋,經(jīng)NaOH處理變性為單鏈后使用NovaSeq 6000測序儀進行2×250 bp的雙端測序。對測序獲得的原始數(shù)據(jù)進行拆分、拼接、過濾和DADA2去噪,獲得擴增子序列變異體(Amplicon sequence variants,ASVs)特征序列和豐度表格,然后用R語言(v3.6.0)進行Alpha多樣性和Beta多樣性分析。根據(jù)ASVs序列文件,基于SILVA數(shù)據(jù)庫進行物種注釋,依據(jù)ASVs豐度表統(tǒng)計各物種在各樣本中的相對豐度,并以曼—惠特尼U檢驗(Mann-Whitney UTest)進行兩組間的差異分析。

1.5統(tǒng)計分析

試驗數(shù)據(jù)以Excel 2020進行統(tǒng)計整理,采用SPSS 26.0進行單因素方差分析(One-way ANOVA)并以GraphPad Prism 9繪圖。同時,選取部分血清免疫指標(biāo)與屬分類水平上命名準(zhǔn)確且相對豐度顯著差異的前30個菌群,通過Spearman檢驗進行關(guān)聯(lián)分析。

2結(jié)果與分析

2.1南江黃羊血清免疫指標(biāo)測定結(jié)果

通過SPSS 26.0對FMGF組和SSGF組的南江黃羊血清免疫指標(biāo)進行顯著性分析,結(jié)果(圖1)表明,F(xiàn)MGF組南江黃羊血清中的IgM含量顯著高于SSGF組南江黃羊(Plt;0.05,下同)、TNF-a含量則顯著低于SSGF組南江黃羊;FMGF組南江黃羊血清中的IgA、IgG、L-2和IL-4含量低于SSGF組南江黃羊,IL-6含量則高于SSGF組南江黃羊,但差異均不顯著(Pgt;0.05,下同)。

2.2南江黃羊糞便16S rRNA測序分析結(jié)果

2.2.1樣品測序深度及菌群Alpha多樣性分析結(jié)果Alpha多樣性分析結(jié)果如圖2-A和圖2-B所示,Goods coverage和Observed-ASVs稀釋曲線趨向平緩并最終進入平臺期,說明此次測序深度達(dá)到研究標(biāo)準(zhǔn),測序結(jié)果能充分反映當(dāng)前樣本所包含的菌群多樣性,樣品測序深度能覆蓋腸道中的大部分菌種,測序結(jié)果可用于后續(xù)數(shù)據(jù)分析。此外,F(xiàn)MGF組南江黃羊腸道菌群Chaol指數(shù)顯著低于SSGF組南江黃羊(圖2-C),而Shannon指數(shù)低于SSGF組南江黃羊,但差異不顯著(圖2-D)。

2.2.2樣品組間Beta多樣性分析結(jié)果根據(jù)糞便樣品測序結(jié)果分別進行主成分分析(PCA)和主坐標(biāo)分析(PCoA),坐標(biāo)中不同顏色代表不同分組,2個樣品間距離越近說明樣品間的微生物組成結(jié)構(gòu)越相似,距離越遠(yuǎn)則說明樣品間的微生物組成結(jié)構(gòu)差異越大,通過PCA分析和PCoA分析可判斷樣品組內(nèi)和組間的差異。由圖3可知,F(xiàn)MGF組和SSGF組南江黃羊腸道菌群分別在圖中的不同位置發(fā)生聚類,且2組菌群組成結(jié)構(gòu)差異極顯著(Plt;0.01)。

2.2.3腸道菌群Venn分析結(jié)果根據(jù)測序結(jié)果,對南江黃羊腸道菌群ASVs進行聚類分析并繪制Venn圖。在門分類水平上,F(xiàn)MGF組和SSGF組共含有27個ASVs,其中,共有ASVs為22個,SSGF組特有ASVs為5個(圖4-A)。在屬分類水平上,F(xiàn)MGF組和SSGF組共含有482個ASVs,其中,共有ASVs為246個,F(xiàn)MGF組特有ASVs為47個,SSGF組特有ASVs為189個(圖4-B)。

2.2.4樣品菌群組成分析結(jié)果在門分類水平上(圖5-A),厚壁菌門(Firmicutes)和擬桿菌門(Bacte-roidota)在FMGF組(52.93%+32.21%)和SSGF組(62.34%+27.31%)中的總相對豐度均超過80.00%,是南江黃羊腸道的主要菌群,其他相對豐度較高的菌群還有變形菌門(Roteobacteria)(FMGF組1.86%,SSGF組3.08%)、髕骨細(xì)菌門(Patescibacteria)(FMGF組4.50%,SSGF組0.61%)、疣微菌門(Errucmicro-biota)(FMGF組2.27%,SSGF組1.11%)、脫硫桿菌門(Desulfobacterota)(FMGF組2.85%,SSGF組0.87%)和放線菌門(Ctinobacteriota)(FMGF組1.06%,SSGF組1.29%)。FMGF組的厚壁菌門與擬桿菌門比值為1.64,低于SSGF組的2.64。

在屬分類水平上(圖5-B),F(xiàn)MGF組和SSGF組中相對豐度均大于5.00%的菌屬有理研菌科_RC9_菌群(Rikenellaceae_RC9_gut_group)(FMGF組8.14%,SSGF組6.83%)和克里斯滕森菌科_R-7_菌群(Chris-tensenellaceae_R-7_group)(FMGF組5.69%,SSGF組7.32%),在2組中相對豐度均較高的菌屬還有NK4A214_group(FMGF組3.72%,SSGF組6.12%)、普雷沃氏菌屬(Reotella)(FMGF組5.82%,SSGF組4.60%)、奎因氏菌屬(Uinella)(FMGF組2.91%,SSGF組3.54%)和脫硫弧菌屬(Esulfovibrio)(FMGF組3.25%,SSGF組1.06%)。

2.2.5樣品菌群豐度差異分析結(jié)果在門分類水平上(圖6),F(xiàn)MGF組相對豐度極顯著高于SSGF組的菌門有髕骨細(xì)菌門和浮酶菌門(Planctomyce-tota),F(xiàn)MGF組相對豐度顯著高于SSGF組的菌門有裝甲菌門(Armatimonadota)、疣微菌門和脫硫桿菌門,而FMGF組相對豐度顯著低于SSGF組的菌門有彎曲菌門(Campylobacterota)、梭桿菌門(Fusobac-teriota)和纖維桿菌門(Fibrobacterota)。

在屬分類水平上(圖7),F(xiàn)MGF組相對豐度極顯著高于SSGF組的菌屬有念珠菌屬(Andidatus_Sac-charimonas)、丁酸弧菌屬(Butyrivibrio)、厭氧支原體屬(Anaeroplasma)、假丁酸弧菌屬(Pseudobutyrivi-brio)、p-1088-a5_gut_group、普雷沃氏菌科_NK3B31_群(Prevotellaceae_NK3B31_group)、單桿菌屬(Solo-bacterium)和毛螺菌科_AC2044_群(Lachnospira-ceae_AC2044_group),相對豐度顯著高于SSGF組的菌屬有脫硫弧菌屬和普雷沃氏菌科_UCG-003(Prevotellaceae_UCG-003);FMGF組相對豐度極顯著低于SSGF組的菌屬有乳桿菌屬(Lactiplantibacil-lus)、單球?qū)伲∕onoglobus)、大腸桿菌一志賀菌屬(Escherichia-Shigella)、阿克曼西亞屬(Akkermansia)、擬桿菌屬(Bacteroides)和雙歧桿菌屬(Bifidobacte-rium),相對豐度顯著低于SSGF組的菌屬有NK4A214_group、鏈球菌屬(Streptococcus)、Family_XIII_AD3011_group、奈瑟菌屬(Neisseria)、潘托亞屬(Pantoea)和纖維桿菌屬(Fibrobacter)。

2.3腸道菌群豐度與血清免疫指標(biāo)的相關(guān)性

根據(jù)腸道微生物測序結(jié)果,選取在屬分類水平上相對豐度呈顯著差異的前30個菌屬,去除未分類的菌屬后,與血清免疫指標(biāo)進行相關(guān)分析。由圖8可知,IgM含量與乳桿菌屬在腸道中的相對豐度呈極顯著負(fù)相關(guān),與奈瑟菌屬和擬桿菌屬在腸道中的相對豐度呈顯著負(fù)相關(guān);TNF-α含量與單桿菌屬和p-1088-a5_gut_group在腸道中的相對豐度呈極顯著負(fù)相關(guān),與普雷沃氏菌科_NK3B31_群和丁酸弧菌屬在腸道中的相對豐度呈顯著負(fù)相關(guān),與擬桿菌屬、雙歧桿菌屬、大腸桿菌一志賀菌屬、乳桿菌屬、單球?qū)僭谀c道中的相對豐度呈顯著正相關(guān);IL-6含量與奈瑟菌屬在腸道中的相對豐度呈極顯著負(fù)相關(guān),與念珠菌屬和毛螺菌科_AC2044_群在腸道中的相對豐度呈顯著正相關(guān)。

3討論

3.1不同飼養(yǎng)方式對南江黃羊血清免疫指標(biāo)的影響

免疫球蛋白由機體免疫系統(tǒng)中的淋巴細(xì)胞產(chǎn)生,是參與體液免疫的重要物質(zhì),其中IgA、IgG和IgM等3種免疫球蛋白是免疫應(yīng)答反應(yīng)中發(fā)揮主要作用的抗體,其在血清中的濃度可間接反映機體抵抗外源刺激或病菌入侵的能力(趙曉雅等,2022)。細(xì)胞因子由多種細(xì)胞產(chǎn)生,在非特異性免疫調(diào)節(jié)和炎癥反應(yīng)中發(fā)揮重要作用,其中,IL-2誘導(dǎo)T淋巴細(xì)胞增殖和分化,IL-4增強體液免疫應(yīng)答,而IL-6和TNF-a是促炎性細(xì)胞因子,能增強細(xì)胞免疫應(yīng)答(Veldhoen and Ferreira,2015;馬麗娜等,2022;趙曉雅等,2022)。環(huán)境因素和飲食結(jié)構(gòu)會影響機體免疫結(jié)構(gòu)及細(xì)胞的成熟與功能(Veldhoen and Ferreira, 2015)。李勤等(2011)研究表明運動量是影響血液免疫指標(biāo)的主要因素;苑妞妞等(2023)通過研究舍飼與半舍飼對娟姍牛血清生化指標(biāo)的影響,結(jié)果發(fā)現(xiàn)半舍飼娟姍牛血清中的IgM含量顯著高于舍飼娟姍牛。本研究結(jié)果也表明,F(xiàn)MGF組南江黃羊血清中的IgM含量顯著高于SSGF組南江黃羊,究其原因可能是FMGF組南江黃羊血清中IL-6含量增加,促進機體免體系統(tǒng)產(chǎn)生IgM;也可能是FMGF組南江黃羊的營養(yǎng)水平相對于SSGF組南江黃羊更豐富且其運動量相對于圈舍飼養(yǎng)更大,從而促使南江黃羊血清中IgM含量升高。TNF-α具有多種免疫系統(tǒng)功能,但其作為機體應(yīng)激反應(yīng)過程產(chǎn)生和釋放最早的炎癥介質(zhì)過量分泌時,不僅造成組織損傷,還會誘導(dǎo)其他炎癥因子釋放,最終損傷機體免疫功能(石璐璐等,2020)。魏鳳仙等(2013)研究表明,圈舍空氣中氨氣及硫化氫等有害氣體含量高于室外環(huán)境,易引起機體產(chǎn)生免疫代償而引起機體炎性因子增多。在本研究中,SSGF組南江黃羊血清中的TNF-α含量顯著高于FMGF組南江黃羊,可能是SSGF組南江黃羊圈舍內(nèi)空氣中的有害氣體高于圈舍外,南江黃羊長期吸入有害氣體導(dǎo)致體內(nèi)炎癥發(fā)生,而引起TNF-α含量升高。

3.2不同飼養(yǎng)方式對南江黃羊腸道微生物組成結(jié)構(gòu)和豐度的影響

腸道菌群是一個開放的生態(tài)系統(tǒng),與宿主以互利共生的形式相互作用、協(xié)同進化,其特有的群落結(jié)構(gòu)及代謝產(chǎn)物對調(diào)節(jié)宿主的新陳代謝和免疫力,以及抵抗病原體等功能至關(guān)重要(Kuziel and Rakoff-Nahoum,2022)。已有研究表明,腸道菌群結(jié)構(gòu)受飲食習(xí)慣、年齡、宿主健康狀態(tài)及宿主所處環(huán)境等共同影響(Lynch and Pedersen,2016;Shapira,2016;Kurilshikov et al.,2017)。本研究通過對FMGF組和SSGF組南江黃羊的腸道菌群結(jié)構(gòu)進行對比,結(jié)果發(fā)現(xiàn)不同飼養(yǎng)模式對腸道菌群結(jié)構(gòu)和豐度的影響明顯,與張星星等(2021)的研究結(jié)果一致。厚壁菌門和擬桿菌門是反芻動物胃腸道菌群中含量最高的優(yōu)勢菌門。胃腸道中的厚壁菌門可有效分解纖維素和木質(zhì)素,而擬桿菌門具有分解非纖維復(fù)合多糖和維持腸道平衡的功能,二者均與宿主纖維和非纖維食物成分的代謝密切相關(guān)(Martinez-Garcia et al.,2012;Gharechahi et al.,2020)。此外,南江黃羊腸道菌群中厚壁菌門和擬桿菌門的總相對豐度超過80.00%,且在FMGF組和SSGF組間的相對豐度無顯著差異,表明放牧和舍飼不會影響南江黃羊腸道中厚壁菌門和擬桿菌門的豐度。

在門分類水平上,本研究發(fā)現(xiàn)浮游菌門在FMGF組中的相對豐度極顯著高于SSGF組。浮游菌門生活在動物腸道中,在碳和氮循環(huán)中發(fā)揮關(guān)鍵作用(Wang et al.,2021),其相對豐度越高說明腸道對營養(yǎng)物質(zhì)的吸收利用率越高。疣微菌門在木質(zhì)纖維素降解方面具有獨特作用(Martinez-Garcia et al.,2012),能分泌多種碳水化合物降解酶、肽酶和硫酸酯酶,其中Lentisphaeria和Kiritimatiellae對碳水化合物具有超強的利用能力(Gharechahiet al.,2022)。脫硫桿菌門分解的產(chǎn)物如丁酸鹽、硫化氫等可保護胃腸道,并促進食物消化(Zhang et al.,2018)。本研究中,疣微菌門和脫硫桿菌門在FMGF組南江黃羊腸道中的相對豐度顯著高于SSGF組南江黃羊,說明放牧能增強南江黃羊腸道菌群對營養(yǎng)物質(zhì)的分解,促進機體對營養(yǎng)物質(zhì)的消化吸收及保護腸道健康。彎曲菌門是人類細(xì)菌性胃腸炎最常見的病原之一(Sheppard and Maiden,2015),也能引起綿羊、山羊和牛等反芻動物流產(chǎn)(Sahin et al.,2017)。梭桿菌門可在體內(nèi)外誘導(dǎo)正常上皮細(xì)胞發(fā)生炎癥,也可分泌外膜囊泡而促進腸道炎癥(Engevik et al.,2021)。纖維桿菌門會產(chǎn)生一系列纖維素分解酶,將纖維素降解并生成乙酸、丙酸和丁酸,通過三羧酸循環(huán)為宿主提供能量(Gharechahi et al.,2020)。本研究中,彎曲菌門和梭桿菌門在FMGF組南江黃羊腸道中的相對豐度顯著低于SSGF組南江黃羊,說明放牧對南江黃羊腸道中有害菌群的抑制效果優(yōu)于舍飼。

在屬分類水平上,念珠菌屬、丁酸弧菌屬、厭氧支原體屬、假丁酸弧菌屬、普雷沃氏菌科_NK3B31群、單桿菌屬和毛螺菌科_AC2044_菌群在FMGF組南江黃羊腸道中的相對豐度極顯著高于SSGF組南江黃羊。已有研究表明,念珠菌屬在維持正常的腸道功能方面發(fā)揮重要作用(Chen et al.,2017);丁酸弧菌屬能降解半纖維素,有助于人類和動物完成纖維消化,同時參與蛋白分解和脂肪酸生物氫化(Palevich et al.,2019);厭氧支原體屬與腸道的IgA和TGF-β分泌密切相關(guān),并調(diào)節(jié)腸道炎癥(Beller et al.,2020);假丁酸弧菌屬在消化道中的功能作用尚未完全了解,但其大量參與碳水化合物、蛋白和脂質(zhì)的代謝,還具有將復(fù)雜多糖分解和重組的功能,是反芻動物獲能的主要途徑(Pidcock et al.,2021);毛螺菌科能改善腸道炎癥,在腸道穩(wěn)態(tài)中發(fā)揮重要作用(Zhao et al.,2017)。由此推測,放牧對提高南江黃羊腸道菌群中有益菌屬的豐度有顯著影響。此外,大腸桿菌一志賀菌屬、阿克曼西亞屬、鏈球菌屬和奈瑟菌屬在FMGF組南江黃羊腸道中的相對豐度極顯著低于SSGF組南江黃羊,推測舍飼會增加南江黃羊腸道菌群中有害微生物的豐度,進而損害機體健康。其中,大腸桿菌一志賀菌屬是一種致病菌,在酒精性肝硬化患者腸道中常見大腸桿菌—志賀菌屬豐度顯著增加(Baltazar-Diaz et al.,2022);阿克曼西亞屬隸屬于疣微菌門,定殖于胃腸道黏液層而刺激黏膜微生物網(wǎng)絡(luò),在宿主免疫應(yīng)答中起重要作用(Macchione et al.,2019);鏈球菌屬與奶牛臨床乳腺炎、流產(chǎn)、死產(chǎn)等病變有關(guān)(Pan et al.,2018);奈瑟菌屬包括致病的淋病奈瑟菌,主要寄生于生殖器、直腸和口腔黏膜,可引起盆腔炎性疾病及不孕癥等疾?。ˋrenas,2022)。

3.3不同飼養(yǎng)方式下南江黃羊腸道菌群豐度與血清免疫指標(biāo)的相關(guān)性

腸黏膜免疫屏障由機械屏障、化學(xué)屏障、免疫屏障和微生物屏障構(gòu)成,可保護宿主免受外來病原微生物的侵襲(Jin et al.,2017)。腸黏膜免疫屏障由體液免疫和細(xì)胞免疫組成,腸黏膜中的免疫細(xì)胞和細(xì)胞因子通過參與先天性免疫和適應(yīng)性免疫以維持腸道穩(wěn)態(tài)(Chen et al.,2021)。為避免有害的免疫反應(yīng),腸道微生物群和腸黏膜相互作用并相互依賴,形成微生態(tài)系統(tǒng)——腸黏膜微生物群屏障。在正常情況下,腸道菌群的豐度和多樣性處于動態(tài)平衡狀態(tài),可防止病原體的入侵和定殖,對維持腸黏膜屏障功能至關(guān)重要。腸道菌群紊亂可導(dǎo)致細(xì)菌易位,破壞腸黏膜屏障功能,從而影響機體健康(Chen et al.,2021;Wang et al.,2022)。本研究中,南江黃羊腸道中乳桿菌屬和擬桿菌屬的相對豐度與血清中IgM含量呈顯著或極顯著負(fù)相關(guān),與Fidanza等(2021)研究證實乳桿菌屬菌群能減輕沙門氏菌引起的腸道損傷及促進部分細(xì)胞因子分泌的結(jié)論基本一致,即乳桿菌屬能顯著改善沙門氏菌引起的腸道微生物組紊亂。此外,大腸桿菌一志賀菌屬、普雷沃氏菌科_NK3B31_群和單桿菌屬的相對豐度與血清中TNF-α含量顯著相關(guān)。普雷沃氏菌科_NK3B31_群能產(chǎn)生丁酸鹽,其缺失會導(dǎo)致腸道屏障功能受損(Huang et al.,2021);擬桿菌屬在維持宿主腸道健康及提高宿主對營養(yǎng)物質(zhì)的消化吸收等方面發(fā)揮重要作用(Zafar and Saier,2021)。此外,在豐度有顯著差異的前30個菌屬中,有16個菌屬的相對豐度與IL-6、TNF-a、IgM和IgG的含量呈顯著或極顯著相關(guān),不同飼養(yǎng)方式對南江黃羊血清免疫指標(biāo)和腸道微生物豐度的影響也有明顯區(qū)別。綜合血清免疫指標(biāo)和腸道菌群結(jié)構(gòu)特點,可確定放牧對南江黃羊的免疫性能和腸道有益菌群結(jié)構(gòu)有明顯的正向影響。

4結(jié)論

與舍飼相比,放牧能促使南江黃羊血清中IgM含量升高及TNF-α含量降低,并顯著提高腸道中疣微菌門和脫硫桿菌門等有益菌群豐度,同時抑制彎曲菌門和梭桿菌門等有害菌群繁殖??梢姡拍翆δ辖S羊的免疫性能和腸道有益菌群結(jié)構(gòu)有明顯的正向影響。

參考文獻(References):

何佳檜,陳瑜,苗斌.2022.補飼、季節(jié)和年齡對南江黃羊繁殖成活率的影響[J].草學(xué),(6):68-71.[He JH,Chen Y,Miao B.2022.Effects of supplementary feeding,season and age on reproductive survival rate ofNanjiang yellow goat[J].Journal of Grassland and Forage Science,(6):68-71.]doi:10.3969/j.issn.2096-3971.2022.06.009.

何向東,張國俊,張敬,劉春梅,黃麗,譚玉祥,張蓉,周琴,蔣康.2023.不同飼喂方式對南江黃羊育肥效果的影響[J].中國畜禽種業(yè),19(2):171-172.[He XD,Zhang GJ,Zhang J,Liu CM,Huang L,TanYX,Zhang R,Zhou Q,Jiang K.2023.Effects of different feeding methods on fattening effect of Nanjiang yellow goat[J].The Chinese Livestockand Poultry Breeding,19(2):171-172.]doi:10.3969/j.issn.1673-4556.2023.02.046.

賈立軍,張樹敏,柴方紅,李娜,李兆華,李航,謝素珠.2018.放養(yǎng)與圈養(yǎng)對松遼黑豬免疫球蛋白和細(xì)胞因子水平的影響[J].黑龍江畜牧獸醫(yī),(20):76-77.[Jia LJ,Zhangs"M,ChaiF H,LiN,LiZH,LiH,Xie SZ.2018.Effects of"stocking and captivity on immunogobulin and cytokine levels inSongliao black pig[J].Heilongjiang Animal Scien-ce and Veterinary Medicine,(20):76-77.]doi:10.13881j.cnki.hljxmsy.2018.04.0301.

李勤,劉建平,肖國強,李勇.2011.運動強度和運動量對血液免疫指標(biāo)影響程度的比較研究[J].武漢體育學(xué)院學(xué)報,45(11):97-100.[LiQ,Liu JP,Xiao GQ,LiY.2011.A comparative study of the influence on the immunocompe-tence index of organisms from exercise intensity and the amount ofexercise[J].Journalof Wuhan Institute of Physi-cal Education,45(11):97-100.]doi:10.3969/j.issn.1000-520X.2011.11.018.

馬麗娜,高總元,高?;?,康曉冬,梁小軍.2022.飼糧蛋白水平對哺乳期犢牛生長性能、血清生化、免疫與抗氧化指標(biāo)的影響[J].飼料研究,45(13):12-15.[Ma LN,Gao ZY,Gao HH,Kang XD,Liang XJ.2022.Effects of dietaryprotein levels on growth performance,serum bio-chemistry,immunity and antioxidant indexes of lactating"calves[J].Feed Research,45(13):12-15.]doi:10.13557j.cnki.issn1002-2813.2022.13.003.

裴利君,楊巧麗,王鵬飛,滾雙寶.2021.合作豬夏冬季的腸道菌群結(jié)構(gòu)[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報,56(4):8-15.[Pei LJ,Yang QL,Wang PF,Gun SB.2021.Study on the struc-ture of intestinal microflora in Hezuo pigs in summer and winter[J].Journal of Gansu Agricultural University,56(4):8-15.]doi:10.13432/j.cnki.jgsau.2021.04.002.

石璐璐,王哲奇,徐元慶,毛晨羽,郭世偉,金曉,史彬林.2020.熱應(yīng)激對綿羊血清免疫和抗氧化指標(biāo)及相關(guān)基因相對表達(dá)量的影響[J].動物營養(yǎng)學(xué)報,32(11):5275-5284.[Shi LL,Wang ZQ,Xu YQ,Mao CY,Guo Sw,Jin X,Shi BL.2020.Effects of heat stress on serum immune and antioxidant indexes and relative expression of related genes in sheep[J].Chinese Journal of Animal Nutri-tion,32(11):5275-5284.]doi:10.3969/j.issn.1006-267x.2020.11.032.

舒迎霜,賀蒙初,桂雪兒,夏曉冬,馮士彬,李玉,王希春,吳金節(jié).2020.黃芪多糖對犬盲腸菌群的影響[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報,55(2):1-8.[Shu YS,He MC,Gui XE,Xia XD,F(xiàn)eng SB,Li Y,Wang XC,Wu JJ.2020.Effect of Astragalus polysaccharide on cecal flora in canines[J].Journal of Gansu Agricultural University,55(2):1-8.]doi:10.13432/j.cnki.jgsau.2020.02.001.

譚占坤,池福敏,商振達(dá),商鵬,劉鎖珠,強巴央宗.2022.放牧藏豬、舍飼藏豬與商品豬糞便真菌群落組成及其與飼糧纖維消化的相關(guān)性研究[J].微生物學(xué)報,62(1):259-274.[Tan ZK,ChiFM,ShangZ D,Shang P,Liu SZ,Qiang baYangzong.2022.Fungal community in the feces ofgra-zingTibetan pigs,captive Tibetanpigs,and commercial pigsand its interactionwith dietary fiber digestion[J].Acta Microbiologica Sinica,62(1):259-274.]doi:10.13343/j.cnki.wsxb.20210215.

王柏輝,楊蕾,羅玉龍,王宇,袁倩,王德寶,靳燁.2018.飼養(yǎng)方式對蘇尼特羊腸道菌群與脂肪酸代謝的影響[J].食品科學(xué),39(17):1-7.[Wang BH,Yang L,Luo YL,Wang Y,Yuan Q,Wang DB,Jin Y.2018.Effect of feeding pat-tern on intestinal flora and fatty acid metabolism in Sunit sheep[J].Food Science,39(17):1-7.]doi:10.7506/spkx 1002-6630-201817001.

魏鳳仙,胡驍飛,張敏紅,李紹鈺,徐彬,藺萍,孫全友,李浩.2013.相對濕度和氨氣應(yīng)激對肉仔雞血氨水平及細(xì)胞因子含量的影響[J].動物營養(yǎng)學(xué)報,25(10):2246-2253.[WeiFX,Hu XF,Zhang MH,LiSY,Xu B,Lin P,Sun QY,LiH.2013.Effects of relative humidity and ammonia stress on plasma ammonia level and cytokinecontents of broilers[J].ChineseJournal of AnimalNutrition,25(10):2246-2253.]doi:10.3969/j.issn.1006-267x.2013.10.008.

苑妞妞,潘琪浩,胡微唯,張超楠,高騰云,廉紅霞,趙麗,孫宇.2023.西藏高原環(huán)境舍飼與半舍飼模式對娟姍牛乳品質(zhì)、瘤胃發(fā)酵和血清生化指標(biāo)的影響[J].動物營養(yǎng)學(xué)報,35(5):3093-3103.[Yuan NN,Pan QH,Hu Ww,Zhang CN,Gao TY,Lian HX,Zhao L,Sun Y.2023.Effects of shed feeding and semi-shed feeding patterns on milk quality,rumen fermentation and serum biochemical indices of jersey cattle in Tibet plateau[J].Chinese Jour-nal of Animal Nutrition,35(5):3093-3103.]doi:10.12418/CJAN2023.288.

張星星,黃新,韓猛立,蔣烈戈,張倩,高攀,劉鵬,吳桐忠,鐘發(fā)剛.2021.放牧與舍飼條件下夏洛萊牛腸道微生物多樣性及差異分析[J].新疆農(nóng)業(yè)科學(xué),58(9):1729-1739.[Zhang XX,Huang X,Han ML,Jiang LG,Zhang Q,Gao P,Liu P,Wu TZ,Zhong FG.2021.Differences of the intestinal microbial flora diversity and composition of"barn feeding and grazingCharolais[J].Xinjiang Agricul-tural Sciences,58(9):1729-1739.]doi:10.6048/j.issn.1001-4330.2021.09.020.

趙曉雅,史晨迪,田沛知,陳佳欣,段春輝,紀(jì)守坤,嚴(yán)慧,劉月琴,張英杰.2022.牛至精油對羔羊生長性能、養(yǎng)分表觀消化率及血清免疫和抗氧化指標(biāo)的影響[J].動物營養(yǎng)學(xué)報,34(4):2534-2541.[Zhao XY,Shi CD,Tian PZ,Chen JX,Duan CH,JiSK,Yan M,Liu YQ,Zhang YJ.2022.Effects of oregano essential oil on growth perfor"mance,nutrient apparent digestibility and serum immune"and antioxidant indexes of lamb[J].Chinese Journal of"Animal Nutrition,34(4):2534-2541.]doi:10.3969/j.issn.1006-267x.2022.04.048.

Arenas J.2022.Editorial:Pathogenic Neisseria:Pathogenicity,vaccines,and antibiotic resistance[J].Frontiers in Cellular and Infection Microbiology,12:1119244.doi:10.3389/fcimb.2022.1119244.

Aziz Q,Doré J,Emmanuel A,Guarmer F,Quigley EMM.2012.Gutmicrobiota and gastrointestinal health:Current concepts and future directions[J].Neurogastroenterologyamp;Motility,25(1):4-15.doi:10.1111/nmo.12046.

Baltazar-Diaz TA,González-Hernández LA,Aldana-Ledesma"J M,Pena-Rodriguez M,Vega-Magana AN,Zepeda-Morales AS M,López-Roa RI,del Toro-Arreola S,Martinez-López E,Salazar-Montes AM,Bueno-Topete M"R.2022.Escherichia/Shigella,SCFAs,and metabolic path-ways—The triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from Western Mexico[J].Microorganisms,10(6):1231.doi:10.3390/microorganisms10061231.

Beller A,Kruglov A,Durek P,von Goetze V,Werner K,Heinz GA,Ninnemann J,Lehmann K,Maier R,Hoffmann U,Riedel R,Heiking K,Zimmermann J,Siegmund B,Mashreghi MF,Radbruch A,Chang HD.2020.Specific microbiota enhances intestinal IgA levels by inducing TGF-β in Tfollicular helper cells of Peyer's patches in mice[J].European Journal of Immunology,50(6):783-794.doi:10.1002/eji.201948474.

Chen J,Huang CL,Wang JJ,Zhou H,Lu YY,Lou LH,"Zheng JY,Tian L,Wang XP,Cao ZW,Zeng Y.2017."Dysbiosis of intestinal microbiota and decrease in paneth"cell antimicrobial peptide level during acute necrotizing"pancreatitis in rats[J].PLoS One,12(4):e0176583.doi:10.1371/journal.pone.0176583.

Chen SS,He RN,He BH,Xu L,Zhang S.2021.Potentia roles of exosomal lncRNAs in the intestinal mucosal im-mune barrier[J].Journal of Immunology Research,2021:7183136.doi:10.1155/2021/7183136.

Dabke K,Hendrick G,Devkota S.2019.The gut microbiome and metabolic syndrome[J].The Journal of Clinical Inves-tigation,129(10):4050-4057.doi:10.1172/JCI129194.

Dande SS,Bhatt VD,Patil NV,Joshi CG.2015.The camel faecal metagenome under different systems of manage-ment:Phylogenetic and gene-centric approach[J].Live-stock Science,178:108-118.doi:10.1016/j.livsci.2015.05.024.

Engevik MA,Danhof HA,Ruan W,Engevik AC,Chang-Graham AL,EngevikKA,Shi ZC,ZhaoYL,Brand CK,Krystofiak ES,Venable S,Liu XL,Hirschi KD,Hyser JM,Spinler JK,Britton RA,Versalovic J.2021.Fusobac-terium nucleatum secretes outer membrane vesicles and"promotes intestinal inflammation[J].mBio,12(2):e02706-20.doi:10.1128/mBio.02706-20.

Fidanza M,Panigrahi P,Kollmann TR.2021.Lactiplantiba-cillus plantarum-Nomad and Ideal Probiotic[J].Frontiers in Microbiology,12:712236.doi:10.3389/fmicb.2021.712236.

Fu X,ZhangYP,Shi B,WuXK,Zhao HW,Xin ZB,Yang JS.2022.Benzoic acid metabolism and lipopolysaccharide synthesis of intestinal microbiome affects the health of ruminants under free-range and captive mode[J].Life(Basel),12(7):1071.doi:10.3390/life12071071.

Gharechahi J,Sarikhan S,HanJ L,Ding XZ,Salekdeh GH.2022.Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates[J].NPJ Biofilms and Microbiomes,8(1):46.doi:10.1038/s41522-022-00309-9.

Gharechahi J,Vahidi MF,Ding XZ,Han JL,Salekdeh GH.2020.Temporal changes inmicrobial communitiesattached to forages with different lignocellulosic compositions in cattle rumen[J].FEMS Microbiology Ecology,96(6):fiaa069.doi:10.1093/femsec/fiaa069.

Han XP,Liu HJ,Hu LY,Zhao N,Xu SX,Lin ZJ,Chen Y"W.2021.Bacterial communitycharacteristics in thegastro-intestinal tract of yak(Bos grunniens)fully grazed on pas-ture of the Qinghai-Tibetan Plateau of China[J].Animals"(Basel),11(8):2243.doi:10.3390/anil 1082243.

Huang P,Jiang AQ,Wang XX,Zhou Y,Tang WH,Ren CF Qian X,Zhou ZR,Gong AH.2021.NMNmaintains intes-tinalhomeostasis by regulating the gut microbiota[J].Fron-tiers in Nutrition,8:714604.doi:10.3389/fnut.2021.714604.

Jin ML,Zhu YM,Shao DY,Zhao K,Xu CL,LiQ,Yang H,"Huang QS,Shi JL.2017.Effects of polysaccharide from"mycelia of Ganodermalucidum on intestinal barrier func-tions of rats[J].International Journal of Biological Macro-molecules,94(A):1-9.doi:10.1016/j.ijbiomac.2016.09.099.

John GK,Mullin GE.2016.The gut microbiome and obesity"[J].Current Oncology Reports,18(7):45.doi:10.1007/s11912-016-0528-7.

KurilshikovA,Wijmenga C,F(xiàn)u JY,Zhernakova A.2017.Host"genetics and gut microbiome:Challenges and perspectives[J].Trends in Immunology,38(9):633-647.doi:10.1016/j.it.2017.06.003.

Kuziel GA,Rakoff-Nahoum S.2022.The gut microbiome[J]Current Biology,32(6):R257-R264.doi:10.1016/j.cub.2022.02.023.

Li MM,Zhou Y,Zuo L,Nie D,Li XA.2021.Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice[J].Nutri-tion,81:110959.doi:10.1016/j.nut.2020.110959.

Lynch SV,Pedersen 0.2016.The human intestinal microbi- ome in health and disease[J].New England Journal of Me- dicine,375(24):2369-2379.doi:10.1056/NEJMra1600266.Macchione IG,Lopetuso LR,Ianiro G,NapoliM,Gibiino G,Rizzatti G,Petito V,Gasbarrini A,Scaldaferri F.2019.

Akkermansia muciniphila:Key player in metabolic and gastrointestinal disorders[J].European Review for Medi-cal and Pharmacological Sciences,23(18):8075-8083.doi:10.26355/eurrev_201909_19024.

Martinez-Garcia M,Brazel DM,Swan BK,Arnosti C,Chain PS G,Reitenga KG,Xie G,Poulton NJ,Gomez ML,Masland DED,Thompson B,Bellows WK,Ziervogel K,LoCC,Ahmed S,Gleasner CD,DetterCJ,Stepanauskas

R.2012.Capturing single cell genomes of active polysac-charide degraders:An unexpected contributionofVerruco-microbia[J].PLoS One,7(4):e35314.doi:10.1371/jour-nal.pone.0035314.

Palevich N,Kelly WJ,Leahy SC,Denman S,Altermann E,Rakonjac J,Attwood GT.2019.Comparative genomics of rumen Butyivibrio spp.uncovers acontinuum of"polysaccharide-degrading capabilities[J].Applied and En-vironmental Microbiology,86(1):e01993-19.doi:10.1128/AEM.01993-19.

Pan YS,An HR,F(xiàn)u T,Zhao SY,Zhang CW,Xiao GH Zhang JR,Zhao XF,Hu GZ.2018.Characterization of"Sreptococcus pluranimalium from acattle withmastitisby"whole genome sequencing and functional validation[J]BMC Microbiology,18(1):182.doi:10.1186/s12866-018-1327-0.

Pidcock SE,Skvortsov T,Santos FG,Courtney SJ,Sui-Ting K,Creevey CJ,Huws SA.2021.Phylogenetic systema"tics of Butyrivibrio andPseudobutyrivibrio genomes illus-trate vast taxonomic diversity,open genomes and an abun-dance of carbohydrate-active enzyme family isoforms[J].Microbial Genomes,7(10):000638.doi:10.1099/mgen0.000638.

Sahin O,Yaeger M,WuZW,ZhangQJ.2017.Campylobacter-associated diseases in animals[J].Annual Review of Ani-mal Biosciences,5:21-42.doi:10.1146/annurev-animal-022516-022826.

Shapira M.2016.Gut microbiotas and hostevolution:Scaling up symbiosis[J].Trends in Ecologyamp;Evolution,31(7):539-549.doi:10.1016/j.tree.2016.03.006."SheppardSK,MaidenM CJ.2015.The evolution of Campylo-bacter jejumi and Campylobacter coli[J].Cold Spring Har-bor Perspectives in Biology,7(8):a018119.doi:10.1101/cshperspect.a018119.

Song PF,Qin W,Huang YG,Wang L,Cai ZY,Zhang TZ.2020.Grazing management influences gut microbial diver-sity of livestock in the same area[J].Sustainability,12(10):4160.doi:10.3390/su12104160.

Sun YW,Sun YJ,ShiZH,Liu ZS,Zhao C,Lu TF,Gao H,Zhu F,Chen R,Zhang J,Pan RL,Li BG,Teng LW,Guo ST.2020.Gut microbiota of wild and captive alpine musk deer(Moschus chrysogaster)[J].Frontiers in Microbio-logy,10:3156.doi:10.3389/fmicb.2019.03156.

Tremaroli V,B?ckhed F.2012.Functional interactions between the gut microbiota and host metabolism[J].Nature,489(7415):242-249.doi:10.1038/nature11552.

Veldhoen M,F(xiàn)erreira C.2015.Influence of nutrient-derived metabolites on lymphocyte immunity[J].Nature Medicine,21(7):709-718.doi:10.1038/nm.3894.

Wang BH,Luo YL,Su RN,Yao D,Hou YR,Liu C,Du R,Jin Y.2020.Impact of feeding regimens on the composi-tion of gut microbiota and metabolite profilesof plasma and feces from Mongolian sheep[J].Journal of Microbio-logy,58(6):472-482.doi:10.1007/s12275-020-9501-0

Wang L,Cao ZM,ZhangLL,LiJM,LvWL.2022.Therole of gut microbiota in some liver diseases:From an immuno-logical perspective[J].Frontiers in Immunology,13:923599.doi:10.3389/fimmu.2022.923599.

Wang YP,F(xiàn)uYH,He YY,KulyarMFA,Iqbal M,LiK,Liu JG.2021.Longitudinal characterization of the gut bacte-rial and fungalcommunities inyaks[J].Journal of Fungi,7(7):559.doi:10.3390/jof7070559.

Wen Y,LiSF,Wang ZS,F(xiàn)engH,YaoXT,Liu MJ,Chang JJ,Ding XY,Zhao HY,Ma WT.2022.Intestinal micro-bial diversity of free-range and captive yak in Qinghai Province[J].Microorganisms,10(4):754.doi:10.3390/microorganisms10040754.

Zafar H,Saier MH.2021.Gut Bacteroides species in health and disease[J].Gut Microbes,13(1):1848158.doi:10.1080/19490976.2020.1848158.

Zhang H,Shao MX,Huang H,Wang SJ,Ma LL,Wang HN,Hu LP,Wei K,Zhu RL.2018.The dynamic distribution of small-tail Han sheep microbiota across different intesti-nal segments[J].Frontiers in Microbiology,9:00032.doi:10.3389/fmicb.2018.00032

Zhao L,Zhang Q,Ma WN,Tian F,Shen HY,Zhou MM.2017.A combination of quercein and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J].Food and Function,8(12):4644-4656.doi:10.1039/c7fo01383c.

Zhu YB,Li X,Lousang·Zhaxi,Suolang·Zhaxi,Suolang,Ciyang,Sun GM,Cidan·Yangji,Basang·Wangdui.2022.House feeding pattern increased male yak fertility by improving gut microbiota and serummetabolites[J].Fron-tiers in Veterinary Science,9:989908.doi:10.3389/fvets.2022.989908.

(責(zé)任編輯 蘭宗寶)

猜你喜歡
腸道菌群
補充雙歧桿菌與鼠李糖乳桿菌三聯(lián)活菌制劑對腸道手術(shù)后腸道菌群的影響
UPLC—ESI—Q—TOF—MS/MS分析槲皮苷在大鼠
誘導(dǎo)小鼠腸道菌群改變對血脂影響的初步探究
青春歲月(2017年4期)2017-03-14 17:21:34
高鉛血癥兒童腸道菌群構(gòu)成變化研究
氣相色譜法快速分析人唾液中7種短鏈脂肪酸
大鼠腸道菌群對芍藥苷體外代謝轉(zhuǎn)化的研究
腸道菌群與非酒精性脂肪性肝病
英夫利西單抗對炎癥性腸病患者腸道菌群的影響
動脈粥樣硬化的腸道微生態(tài)機制研究
口服頭孢菌素類藥物對肺炎鏈球菌肺炎大鼠腸道菌群的影響
安陆市| 文水县| 湘阴县| 孝昌县| 铁力市| 新闻| 永川市| 怀集县| 扶余县| 砚山县| 新沂市| 安西县| 方城县| 文化| 黄冈市| 洛隆县| 礼泉县| 泾源县| 玉门市| 白银市| 大厂| 四子王旗| 灵山县| 武隆县| 饶平县| 许昌县| 依兰县| 岳普湖县| 鹤庆县| 夏津县| 孝感市| 承德市| 安岳县| 双柏县| 绥棱县| 丰都县| 阿坝| 大田县| 颍上县| 乐清市| 汝阳县|