摘要:【目的】通過(guò)對(duì)青錢柳全基因組序列分析,開發(fā)基因組SSR分子標(biāo)記;嘗試構(gòu)建19個(gè)青錢柳優(yōu)良藥用無(wú)性系的DNA分子身份證,為后續(xù)種質(zhì)資源評(píng)價(jià)、遺傳多樣性和種質(zhì)鑒定提供技術(shù)支撐?!痉椒ā坷肕ISA(microsatellite identification tool)軟件對(duì)青錢柳全基因組進(jìn)行SSR位點(diǎn)搜尋、篩選、識(shí)別及富集分析,采用Primer 3.0進(jìn)行SSR引物設(shè)計(jì);用重復(fù)性和穩(wěn)定性高的SSR標(biāo)記構(gòu)建青錢柳無(wú)性系的識(shí)別系統(tǒng)?!窘Y(jié)果】①?gòu)娜蚪M中共檢測(cè)出89 741個(gè)SSR位點(diǎn),SSR位點(diǎn)的發(fā)生頻率為62.07%。②基因組SSR位點(diǎn)中單核苷酸重復(fù)單元比例最高,占總SSR位點(diǎn)的62.67%;六核苷酸重復(fù)單元比例最低,占0.15%;SSR位點(diǎn)的重復(fù)基序大多以(A/T)n為主。③單核苷酸和二核苷酸重復(fù)類型的SSR位點(diǎn)基序重復(fù)次數(shù)集中在6~16次;隨重復(fù)次數(shù)增加,各SSR位點(diǎn)重復(fù)類型出現(xiàn)頻率均呈下降趨勢(shì)。④基因組SSR序列長(zhǎng)度介于10~476 bp,不同類型重復(fù)單元的SSR序列長(zhǎng)度存在變異性;隨著重復(fù)次數(shù)的增加,SSR序列出現(xiàn)的頻率整體呈下降趨勢(shì)。⑤利用Primer 3.0成功設(shè)計(jì)出78 285對(duì)SSR引物;合成的377對(duì)中有75對(duì)引物可擴(kuò)增出多態(tài)性條帶;用5對(duì)單堿基重復(fù)的多態(tài)性SSR引物分析19個(gè)藥用無(wú)性系,構(gòu)建出無(wú)性系的二維碼DNA分子身份證?!窘Y(jié)論】青錢柳基因組SSR位點(diǎn)出現(xiàn)頻率高,位點(diǎn)種類豐富,可為種質(zhì)資源評(píng)價(jià)及指紋圖譜的構(gòu)建提供豐富的候選分子標(biāo)記。
關(guān)鍵詞:青錢柳;簡(jiǎn)單重復(fù)序列(SSR);全基因組;DNA分子身份證
中圖分類號(hào):S722;Q756""" 文獻(xiàn)標(biāo)志碼:A開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
文章編號(hào):1000-2006(2024)04-0067-09
Analysis of SSR locus based on the whole genome" sequences of Cyclocarya paliurus and" the development of polymorphic primers
LIU Li1,2, QU Yinquan1, YU Yanhao1, WANG Qian1, FU Xiangxiang1*
(1.College of Forestry and Grassland, Nanjing Forestry University," Nanjing 210037, China;2.Shanghai Pudong Forestry Station, Shanghai"" 200120, China)
Abstract: 【Objective】 Genomic simple repeat sequence (SSR) loci were analyzed by screening the whole genome of Cyclocarya paliurus. DNA molecular ID cards of 19 excellent medicinal clones of C. paliurus were constructed based on the newly-developed SSR primers. These genomic SSR markers could support further research, such as the evaluation of the germplasm resource, analysis of genetic diversity, and"" identification of cultivars/clones. 【Method】 The SSR loci were screened along with the whole genome of C. paliurus and were"" enriched and analyzed using MISA software. Subsequently, SSR primers were designed using Primer 3.0. Furthermore, a system for identifying clones of C. paliurus was constructed based on selected SSR markers with high reproducibility and stability. 【Result】 (1) We detected 89 741 SSR loci from the whole genome, with an occurrence frequency of 62.07%. (2) Among all SSR loci, the proportion of SSRs with a mononucleotide motif was the highest (62.67%) and a hexa-nucleotide repeat was the lowest (0.15%). Most of the repeated motifs in the SSR loci were dominated by (A/T)n. (3) The repeat number of mono-nucleotide and di-nucleotide motifs ranged from 6 to 16. With the increase in the repeat number, the frequencies of various SSR repetition types displayed a downward trend. (4) The length of the SSR sequences varied from 10 to 476 bp," and this length variation existed in different repetitive motifs. Additionally, the frequency of SSR occurrence tended to decrease as the repeat number increased. (5) We successfully designed 78 285 pairs of SSR primers using Primer 3.0. A total of 377 primer pairs were randomly synthesized for amplifying polymorphic SSR fragments, among which 75 pairs primers were successful. Moreover, quick response code DNA molecular ID cards for 19 medical-use clones of C. paliurus were constructed by five pairs of polymorphic SSR primers with a mono-nucleotide motif. 【Conclusion】 The frequency of genomic SSR loci was high, and there was variability in the type of SSR loci. Simple repeat sequences developed from the whole genome of C. paliurus could be effective candidate molecular markers with further applications in germplasm resource evaluation and fingerprint construction for multi-use clones of C. paliurus.
Keywords:Cyclocarya paliurus; simple sequence repeat (SSR); whole genome; DNA molecular ID card
青錢柳(Cyclocarya paliurus),又名青錢李、甜茶樹、搖錢樹等,是我國(guó)胡桃科(Juglandaceae)特有的單屬種植物[1]。廣泛分布于江西、浙江、江蘇等海拔420~1 100 m(東部)或2 500 m(西部)的山區(qū)、溪谷或石灰?guī)r山地。青錢柳集藥用、材用和觀賞功能于一體[1-2]。其葉中富含黃酮、三萜、多糖、酚酸等生物活性物質(zhì),具有降血糖、降血脂、抗氧化、抗菌、抗癌等功效[3-7]。
青錢柳具有顯著的藥用價(jià)值,因此廣受學(xué)者們的關(guān)注。目前青錢柳的開發(fā)利用主要源于天然林資源[8],而天然資源存在顯著的地域特點(diǎn)且資源有限[9],其藥用品質(zhì)難以保證,嚴(yán)重制約了青錢柳的產(chǎn)業(yè)化發(fā)展。研究還發(fā)現(xiàn),來(lái)自青錢柳不同種源、家系和個(gè)體內(nèi)主要的生物活性物質(zhì)含量差異顯著[7,10-11],為藥用優(yōu)良種植材料的篩選提供了條件,但僅依據(jù)表型選擇的單株,其藥用品質(zhì)并不十分穩(wěn)定[12]?;诖耍斜匾_展分子輔助選擇,將有效的分子標(biāo)記結(jié)合表型進(jìn)行選擇,提高選擇效率。此外,利用分子標(biāo)記還可對(duì)青錢柳天然資源進(jìn)行遺傳多樣性分析、種質(zhì)資源鑒定和評(píng)價(jià)、構(gòu)建優(yōu)良品系的指紋圖譜等,可為進(jìn)一步的開發(fā)利用提供技術(shù)支撐。
隨著分子標(biāo)記技術(shù)的發(fā)展,分子標(biāo)記已成為種質(zhì)資源鑒定和保護(hù)、遺傳多樣性分析等的有效手段[13]。其中,由于SSR(簡(jiǎn)單重復(fù)序列,simple sequence repeat)標(biāo)記技術(shù)具有快速、共顯性、特異性和重復(fù)性好的特點(diǎn),廣泛應(yīng)用于種質(zhì)資源評(píng)價(jià)、遺傳多樣性分析及品種鑒定等方面的研究[14-16]。隨著高通量測(cè)序技術(shù)的發(fā)展,許多生物都已完成了全基因組測(cè)序(whole genome sequencing,WGS),為SSR位點(diǎn)的開發(fā)和應(yīng)用提供了條件。如鵝掌楸(Liriodendron chinense)、黃檀(Dalbergia hupeana)、茶樹(Camellia sinensis)等木本植物基于全基因組序列進(jìn)行了SSR標(biāo)記的開發(fā)和應(yīng)用[17-19]。
本研究基于青錢柳全基因組測(cè)序結(jié)果,分析了基因組水平上的SSR位點(diǎn)數(shù)量、SSR重復(fù)基序類型和重復(fù)次數(shù)、序列長(zhǎng)度等。在此基礎(chǔ)上設(shè)計(jì)引物并按一定比例隨機(jī)合成,篩選出多態(tài)性SSR引物,構(gòu)建19個(gè)優(yōu)良藥用無(wú)性系的DNA分子身份證,為后續(xù)無(wú)性系的推廣栽培和多態(tài)性引物構(gòu)建身份識(shí)別系統(tǒng)提供技術(shù)支撐和方法初探。青錢柳SSR多態(tài)性位點(diǎn)的開發(fā)可為核心種質(zhì)資源庫(kù)的構(gòu)建、種質(zhì)資源的遺傳多樣性評(píng)價(jià)和鑒定提供有效的研究手段和方法。
1 材料與方法
1.1 供試材料
引物驗(yàn)證及DNA分子身份證構(gòu)建所用材料為根據(jù)青錢柳表型特征篩選出的19個(gè)藥用無(wú)性系[12],分別種植于南京林業(yè)大學(xué)白馬教學(xué)科研基地(江蘇南京溧水區(qū)白馬鎮(zhèn),119°09′E,31°35′N)及安徽省池州市石臺(tái)縣青錢柳人工林試驗(yàn)基地(117°17′E, 30°14′N)。無(wú)性系來(lái)自浙江千島湖、湖南張家界、云南、安徽清涼峰和舒城、湖北五峰和鶴峰、貴州黎平和劍河的種源和家系。采集幼嫩葉片,-40 ℃冰箱保存?zhèn)溆?。?jīng)細(xì)胞流式儀測(cè)定及細(xì)胞學(xué)分析,除S4號(hào)為二倍體外,其余均為四倍體。
1.2 DNA提取
采用改良CTAB法提取植物基因組DNA。1%(質(zhì)量分?jǐn)?shù))的瓊脂糖凝膠電泳檢測(cè)DNA質(zhì)量,微量紫外分光光度計(jì)檢測(cè)DNA濃度和吸收峰,將電泳條帶明亮清晰、吸光度(A260/A280)值為1.8~2.0的DNA樣品濃度稀釋到50 ng/μL,-20 ℃保存?zhèn)溆谩?/p>
1.3 全基因組測(cè)序
通過(guò)single-molecule real-time (SMRT) 技術(shù)對(duì)青錢柳二倍體植株進(jìn)行了全基因組測(cè)序和組裝,獲得35 221條序列(已去除冗余,無(wú)重復(fù)),總基因組大小為553.87 Mb。
1.4 SSR位點(diǎn)識(shí)別及引物設(shè)計(jì)
利用軟件MISA(microsatellite identification tool)搜索全基因組序列中的SSR位點(diǎn)。為保證較高的位點(diǎn)檢出率和引物設(shè)計(jì)成功率[20],具體查找標(biāo)準(zhǔn)為:?jiǎn)?、二、三、四、五、六核苷酸的最低重?fù)次數(shù)為10、6、5、5、5、5次,SSR側(cè)翼序列長(zhǎng)度 ≥ 50 bp;當(dāng)相鄰SSR之間的間隔區(qū)域長(zhǎng)度小于100 bp時(shí),兩個(gè)微衛(wèi)星組成一個(gè)微衛(wèi)星,也稱復(fù)合型微衛(wèi)星(C型)。
根據(jù)MISA查找SSR位點(diǎn)兩端的保守序列,利用Primer 3.0(V 2.3.7; http://primer3.source-forge. net/)進(jìn)行引物設(shè)計(jì)[21],各項(xiàng)參數(shù)設(shè)置為默認(rèn)值[22]。
1.5 PCR擴(kuò)增及SSR檢測(cè)
PCR反應(yīng)體系10" μL,包括250 U Taq酶0.1" μL(TaKaRa,中國(guó)),上下游引物各0.6" μL(10" μmol/L),2.5 mmol/L Mg2+ 0.8" μL,2.5 mmol/L dNTPs 2" μL,10×buffer 1" μL,50 ng/μL的模板DNA 1" μL,剩余用3.9" μL dd H2O補(bǔ)足。普通引物和毛細(xì)管電泳檢測(cè)的熒光引物(3′端添加熒光修飾,F(xiàn)AM、HEX、TAMRA和ROX)均由南京擎科生物技術(shù)有限公司合成。
PCR反應(yīng)程序:95 ℃預(yù)變性2 min,39個(gè)循環(huán)包括:94 ℃變性45 s;55~62 ℃退火,復(fù)性45 s,72 ℃延伸30 s;72 ℃延伸10 min。擴(kuò)增產(chǎn)物用8%(質(zhì)量分?jǐn)?shù))的變性聚丙烯酰胺凝膠電泳檢測(cè),進(jìn)行引物初篩;對(duì)多態(tài)性SSR位點(diǎn),用熒光引物進(jìn)行避光擴(kuò)增,擴(kuò)增產(chǎn)物在+ABI-3730XL基因分析儀(Applied Biosystems, Foster City, CA, USA)上進(jìn)行毛細(xì)管電泳檢測(cè)。
1.6 DNA分子身份證構(gòu)建方法
統(tǒng)計(jì)毛細(xì)管電泳檢測(cè)位點(diǎn),有效位點(diǎn)采用數(shù)字和英文字母編碼。將每對(duì)引物的擴(kuò)增條帶按分子量由大到小排序,編碼為A—F,構(gòu)建數(shù)字與字母結(jié)合的字符串形式的DNA分子身份證。將每個(gè)無(wú)性系的來(lái)源、種質(zhì)類型、特性和唯一的DNA分子身份證編碼信息導(dǎo)入二維碼生成軟件(https://cli.im/),生成可供掃描的二維碼DNA分子身份證[23]。
1.7 數(shù)據(jù)處理
利用Excel對(duì)SSR位點(diǎn)的數(shù)量、重復(fù)基元類型、重復(fù)次數(shù)、SSR序列長(zhǎng)度及其變異進(jìn)行統(tǒng)計(jì)。
2 結(jié)果與分析
2.1 青錢柳全基因組中SSR位點(diǎn)特性
2.1.1 SSR位點(diǎn)的分布特點(diǎn)
MISA搜索基因組35 221條序列發(fā)現(xiàn),有21 863條序列含有共89 741個(gè)SSR位點(diǎn),SSR的發(fā)生頻率為62.07%。其中包含1個(gè)以上SSR位點(diǎn)的序列有16 234條,占發(fā)生SSR位點(diǎn)序列的74.25%;5 629條序列包含1個(gè)SSR位點(diǎn),占包含SSR位點(diǎn)序列的25.75%。所有SSR位點(diǎn)中共包含11 445個(gè)復(fù)合型SSR(C型SSR),占SSR位點(diǎn)總數(shù)的12.75%。平均每1.81 kb含有1個(gè)SSR位點(diǎn)。
2.1.2 SSR重復(fù)類型
分析發(fā)現(xiàn),青錢柳基因組SSR核苷酸重復(fù)基元種類豐富,共存在354種類型,重復(fù)基序的堿基變化為1~6(表1)。單核苷酸重復(fù)基元有A/T和C/G兩種類型,其中以A/T為主,共有50 610個(gè)位點(diǎn),占單核苷酸重復(fù)基序的89.99%。二核苷酸重復(fù)基元有AC/GT、AT/AT、CG/CG和AG/CT4種重復(fù)類型,其中以AC/GT為主,有13 779個(gè),占二核苷酸重復(fù)基元的50.49%;AT/AT重復(fù)基元最少,僅有108個(gè),占二核苷酸重復(fù)基元的0.003%。三核苷酸重復(fù)基元共有59種類型,其中以AAT/ATT為主要重復(fù)基元,其位點(diǎn)數(shù)為1 697個(gè),占三核苷酸重復(fù)基元的33.85%;其次為AAG/CTT,有1 479個(gè),占三核苷酸重復(fù)基元的29.50%;ACG/CGT重復(fù)基元最少,僅有65個(gè),占三核苷酸重復(fù)基元的1.30%。四核苷酸、五核苷酸和六核苷酸重復(fù)類型較多,分別有101種、90種和88種重復(fù)類型,但數(shù)量較少, 僅占總SSR位點(diǎn)的1.33%(表1)。
2.1.3 SSR位點(diǎn)基序重復(fù)次數(shù)
從核苷酸重復(fù)次數(shù)來(lái)看,核苷酸基元重復(fù)次數(shù)主要集中在5~18次。其中以重復(fù)10次最為常見,有19 843個(gè)位點(diǎn),占總數(shù)的22.11%;重復(fù)5、6、7、8、9、11、12次的SSR位點(diǎn)分別有3 377、7 485、4 767、3 654、3 040、11 636、8 338個(gè);其他重復(fù)頻率較少(圖1)。
單核苷酸重復(fù)次數(shù)主要集中在10~15次,以重復(fù)10次最為常見,有17 485個(gè)位點(diǎn),占單核苷酸總數(shù)的31.09%;重復(fù)11、12、13、14次的SSR位點(diǎn)分別有9 861個(gè)(17.53%)、6 978個(gè)(12.41%)、5 155個(gè)(9.17%)、4 433個(gè)(7.88%)。二核苷酸重復(fù)次數(shù)主要集中在6~11次,以重復(fù)6次最為常見,有6 070個(gè)位點(diǎn),占二核苷酸總數(shù)的22.24%;重復(fù)7、8、9、10、11次的SSR位點(diǎn)分別有4 123個(gè)(15.11%)、3 351個(gè)(12.28%)、2 857 個(gè)(10.47%)、2 270個(gè)(8.32%)、1729(6.34%)個(gè)。三核苷酸重復(fù)基元主要集中在5~9次,以重復(fù)5次最為常見,有2 491個(gè)位點(diǎn),占三核苷酸總數(shù)的49.48%;重復(fù)6、7、8、9次的SSR位點(diǎn)分別有1 201個(gè)(23.95%)、593個(gè)(11.83%)、279個(gè)(5.56%)、171個(gè)(3.41%)。四、五、六核苷酸重復(fù)次數(shù)主要集中在5~6次,其他重復(fù)次數(shù)見表1。
2.1.4 SSR序列長(zhǎng)度及變異分析
分析發(fā)現(xiàn),SSR序列長(zhǎng)度分布于10~476 bp,平均長(zhǎng)度為15.29 bp。不同重復(fù)單元類型的SSR序列長(zhǎng)度具有多態(tài)性。隨著SSR序列長(zhǎng)度的增加,其出現(xiàn)的頻次整體呈逐漸下降的趨勢(shì)(圖2)。單核苷酸重復(fù)基序最豐富,共有56 242個(gè),占總數(shù)的62.67%;平均長(zhǎng)度為12.61 bp,其中(C/G)n序列的平均長(zhǎng)度為14.84 bp,(A/T)n 平均長(zhǎng)度為12.36 bp。其次為二核苷酸重復(fù),有27 291個(gè),占總數(shù)的30.41%;平均長(zhǎng)度為19.78 bp,其中(AT/AT)n序列的平均長(zhǎng)度最大,為21.04 bp,(CG/GC)n平均長(zhǎng)度最小,僅13.33 bp。三核苷酸重復(fù)的位點(diǎn)共5 014個(gè),占總數(shù)的5.59%;平均長(zhǎng)度為18.68 bp。其他重復(fù)類型較少,分別為四核苷酸重復(fù)712個(gè)(0.79%),五核苷酸重復(fù)351個(gè)(0.39%),六核苷酸重復(fù)131個(gè)(0.15%),平均長(zhǎng)度分別為21.67、26.62、33.02 bp(表1)。其中C型(復(fù)合型)SSR位點(diǎn)的平均長(zhǎng)度為21.52 bp。
此外,不考慮SSR重復(fù)基元類型,序列長(zhǎng)度為10 bp的SSR位點(diǎn)數(shù)量最多,為17 485條,占總位點(diǎn)數(shù)的19.48%;其次為長(zhǎng)度14 bp的位點(diǎn),為10 503條,占總位點(diǎn)數(shù)的11.70%;其他長(zhǎng)度數(shù)量及所占頻率見圖2。
2.2 青錢柳基因組SSR位點(diǎn)的驗(yàn)證和應(yīng)用
2.2.1 SSR引物設(shè)計(jì)和驗(yàn)證
應(yīng)用Primer 3.0對(duì)篩選獲得的89 741個(gè)SSR位點(diǎn)進(jìn)行引物設(shè)計(jì),共設(shè)計(jì)78 285對(duì)SSR引物,引物長(zhǎng)度為18~25 bp。其中,從78 296個(gè)P型(完全重復(fù)型)SSR位點(diǎn)中共設(shè)計(jì)出68 109對(duì)引物,設(shè)計(jì)成功率為86.99%,占總引物數(shù)的87.00%;從11 445個(gè)C型SSR位點(diǎn)中共設(shè)計(jì)出10 176對(duì)引物,設(shè)計(jì)成功率為88.91%,占總數(shù)的13.00%。預(yù)測(cè)擴(kuò)增產(chǎn)物長(zhǎng)度為100~280 bp(引物長(zhǎng)度及預(yù)計(jì)擴(kuò)增產(chǎn)物長(zhǎng)度的數(shù)據(jù)均來(lái)源于Primer設(shè)計(jì)結(jié)果)。在78 285對(duì)SSR引物中,預(yù)期擴(kuò)增產(chǎn)物的核心序列為單核苷酸、二核苷酸和三核苷酸重復(fù)的SSR引物數(shù)分別為44 242對(duì)(56.51%)、19 100對(duì)(24.40%)和3 843對(duì)(4.91%)(圖2)。
將設(shè)計(jì)的引物按核心序列的核苷酸重復(fù)類型分組,每組隨機(jī)進(jìn)行選取,由于單核苷酸重復(fù)基序引物占比較大,每組隨機(jī)選擇60對(duì),其他基序重復(fù)類型每組隨機(jī)選擇10對(duì)(不足10對(duì)全部選?。?,則單堿基和雙核苷酸重復(fù)共選取引物246對(duì),從19個(gè)青錢柳無(wú)性系樣本提取的DNA中隨機(jī)選擇兩個(gè)對(duì)引物的有效性進(jìn)行驗(yàn)證。經(jīng)變性聚丙烯酰胺凝膠電泳檢測(cè),其中161對(duì)引物能擴(kuò)增出清晰、重復(fù)性好且在預(yù)期片段長(zhǎng)度范圍內(nèi)的產(chǎn)物,有效擴(kuò)增率為65.45%;其余85對(duì)引物的擴(kuò)增結(jié)果為非目的條帶、無(wú)擴(kuò)增產(chǎn)物或條帶模糊。三核苷酸重復(fù)類型共選出131對(duì)SSR引物,用以上方法篩選后結(jié)果顯示,其中119對(duì)引物的擴(kuò)增條帶為清晰、重復(fù)性好的目的產(chǎn)物,有效擴(kuò)增率為90.84%;其余12對(duì)引物的擴(kuò)增結(jié)果為非目的條帶、無(wú)擴(kuò)增產(chǎn)物或條帶模糊(表2)??傮w有效擴(kuò)增率為74.27%,多態(tài)性比例為19.89%。
2.2.2 青錢柳優(yōu)良藥用無(wú)性系的SSR分子鑒定
1) SSR引物的有效性和多態(tài)性。經(jīng)變性聚丙烯酰胺凝膠電泳復(fù)篩,以19個(gè)優(yōu)良無(wú)性系DNA為樣本,161對(duì)引物中有18對(duì)SSR引物的擴(kuò)增結(jié)果具有多態(tài)性。從單核苷酸重復(fù)類型的多態(tài)性引物中選取5對(duì)條帶清晰、多態(tài)性高、穩(wěn)定好的引物進(jìn)行毛細(xì)管電泳檢測(cè)。5對(duì)SSR引物的擴(kuò)增產(chǎn)物長(zhǎng)度均與預(yù)計(jì)產(chǎn)物長(zhǎng)度吻合。5對(duì)引物共擴(kuò)增出20條條帶,其中14條具有多態(tài)性,多態(tài)性比率為67.0%(表3);引物擴(kuò)增條帶數(shù)為3~5條,平均每對(duì)引物擴(kuò)增出4條條帶,實(shí)際擴(kuò)增片段大小在118~296 bp。
2) 無(wú)性系DNA分子身份證構(gòu)建。5對(duì)多態(tài)性SSR引物對(duì)19個(gè)無(wú)性系的擴(kuò)增產(chǎn)物進(jìn)行毛細(xì)管電泳的統(tǒng)計(jì)分析,分別檢測(cè)到5、5、6、4、2種特征帶型(表4)。
利用多態(tài)性位點(diǎn)及編碼信息構(gòu)建DNA分子身份證,編碼方法為引物名稱+片段編碼;片段編碼為字母格式,每對(duì)引物中的A—F分別對(duì)應(yīng)于不同的擴(kuò)增產(chǎn)物。如LC1樣本的分子身份證編碼為“CpSSR139ACpSSR10ACpSSR43ACpSSR46A CpSS-R6A”。將各無(wú)性系的來(lái)源、種質(zhì)特性和DNA分子身份證編碼導(dǎo)入二維碼生成軟件,獲得每個(gè)無(wú)性系唯一的二維碼分子身份證(圖3)。
3 討 論
由于SSR標(biāo)記的多態(tài)性、重復(fù)性及穩(wěn)定性好,長(zhǎng)期以來(lái)SSR標(biāo)記在各物種的開發(fā)應(yīng)用廣受關(guān)注。隨著高通量測(cè)序技術(shù)的不斷發(fā)展,各物種的基因組信息逐漸被破譯,大大加快了SSR標(biāo)記位點(diǎn)的開發(fā)和應(yīng)用[16,18,24-26]。例如,Lee等[19]通過(guò)應(yīng)用茶樹基因組SSR進(jìn)行種群遺傳多樣性分析。青錢柳作為中國(guó)特有樹種,因其獨(dú)特的藥用價(jià)值成為各領(lǐng)域的研究熱點(diǎn)。但其研究基礎(chǔ)薄弱,缺乏基因組序列信息;分子方面的研究也剛起步[27]。在標(biāo)記位點(diǎn)的研究方面,陳秀娟等[28] 和周一旸等[29]分別利用ISSR和SRAP分子標(biāo)記分析了青錢柳種質(zhì)資源親緣關(guān)系及其多樣性;Fan等[30]基于AFLP技術(shù)開發(fā)了少數(shù)SSR標(biāo)記,但其應(yīng)用效果并不十分理想[15]。而青錢柳基因組測(cè)序工作的完成,為SSR標(biāo)記的開發(fā)和應(yīng)用奠定基礎(chǔ)。
本研究從青錢柳基因組中挖掘出89 741個(gè)SSR位點(diǎn),核心序列1~6核苷酸重復(fù)均有發(fā)生,位點(diǎn)發(fā)生頻率為62.07%,平均每1.81 kb序列中含有一個(gè)SSR位點(diǎn),此分布頻率高于玉米(Zea mays)的1/15.48 kb、短莛飛蓬(Erigeron breviscapus)的1/5.25 kb[31-32]。研究認(rèn)為,物種基因組越小,單核苷酸重復(fù)序列的SSR位點(diǎn)比例越高;隨著基因組的增大,其他重復(fù)序列的SSR位點(diǎn)會(huì)逐漸增多[33-34]。如燈盞花(Erigeron breviscapus)[35]基因組序列全長(zhǎng)是青錢柳基因序列全長(zhǎng)的8.79倍,但其單核苷酸(32.72%)和二核苷酸(47.14%)重復(fù)的SSR序列數(shù)量顯著少于青錢柳中單核苷酸(62.67%)和二核苷酸(30.41%)重復(fù)數(shù)量占比;而其他種類重復(fù)序列則顯著大于青錢柳。
一般來(lái)說(shuō),隨著重復(fù)次數(shù)的增多,SSR出現(xiàn)的頻率會(huì)呈指數(shù)趨勢(shì)下降,且SSR標(biāo)記數(shù)量隨著重復(fù)基元長(zhǎng)度的增加而減少,這一現(xiàn)象是由于長(zhǎng)微衛(wèi)星更傾向于突變?yōu)槎涛⑿l(wèi)星造成的[33,36]。對(duì)青錢柳基因組的分析發(fā)現(xiàn),總SSR的長(zhǎng)度分布在10~476 bp,平均為15.29 bp,其中71.09%集中在10~18 bp。由此可見,青錢柳基因組中微衛(wèi)星重復(fù)基元變異較活躍,微衛(wèi)星發(fā)生變異的概率較高。
分析還發(fā)現(xiàn),青錢柳全基因組SSR序列中1~6核苷酸共有354種重復(fù)單元變異類型,不同類型SSR重復(fù)單元均顯示出明顯的堿基偏好性。總體上以A/T為主要基序,而以G/C為基序的相對(duì)較少,這一研究結(jié)果與龍眼(Dimocarpus longan)[33]、四倍體野花生(Arachis monticola)[37]、毛果楊(Populus trichocarpa)[26]和鵝掌楸[17]的研究結(jié)果相似。Liu等[38]研究認(rèn)為,重復(fù)比例高的核苷酸序列,可能與重復(fù)基元轉(zhuǎn)錄翻譯合成的蛋白質(zhì)呈正相關(guān)關(guān)系。另有研究表明,G/C基序的重復(fù)單元少可能是基因組DNA中CpG島的甲基化造成的,通過(guò)脫氨基作用,甲基化的胞嘧啶C很容易轉(zhuǎn)變成胸腺嘧啶T[39]。
為保證SSR標(biāo)記位點(diǎn)的穩(wěn)定性和可靠性,研究中一般選擇預(yù)計(jì)擴(kuò)增產(chǎn)物大小在150~250 bp的完全重復(fù)型SSR引物(P型)。本研究發(fā)現(xiàn)1~3核苷酸重復(fù)的P型引物總多態(tài)性比率為19.89%;其中,三核苷酸SSRs的多態(tài)性比例(43.51%)遠(yuǎn)高于單核苷酸(7.04%)和二核苷酸(7.69%)SSRs。可能因?yàn)槭菃?二核苷酸的等位基因差異小,易產(chǎn)生誤讀或混淆,因此多態(tài)性比例較低[40-41],這與Beghè等[42]和Cregan等[43]在核心基序重復(fù)數(shù)量和多態(tài)性比例間相關(guān)性的研究結(jié)果一致。在青錢柳基因組中三核苷酸以上重復(fù)的SSR位點(diǎn)占總SSR的6.92%,占比雖小,但相較單核苷酸和雙核苷酸重復(fù)基序的位點(diǎn),更具潛在的開發(fā)利用價(jià)值。
本研究通過(guò)對(duì)青錢柳全基因組的掃描,對(duì)大量具有潛在應(yīng)用價(jià)值的SSR位點(diǎn)進(jìn)行查找。利用篩選出的5對(duì)多態(tài)性SSR引物初步嘗試了對(duì)19個(gè)青錢柳藥用無(wú)性系的DNA分子身份證構(gòu)建,此方法不僅可使各個(gè)無(wú)性系被唯一識(shí)別,還可以充分了解其起源和無(wú)性系特點(diǎn)。在后續(xù)更多多態(tài)性引物得到開發(fā)的基礎(chǔ)上,可針對(duì)不斷發(fā)掘的優(yōu)良無(wú)性系,建立二維碼識(shí)別系統(tǒng),通過(guò)更多的SSR特異性位點(diǎn)加以識(shí)別,形成動(dòng)態(tài)和可準(zhǔn)確識(shí)別的無(wú)性系庫(kù),為青錢柳無(wú)性系的規(guī)?;茝V和應(yīng)用提供技術(shù)保障。
參考文獻(xiàn)(reference):
[1]方升佐,洑香香.青錢柳資源培育與開發(fā)利用的研究進(jìn)展[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,31(1):95-100.FANG S Z,F(xiàn)U X X.Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources[J].J Nanjing For Univ (Nat Sci Ed),2007,31(1):95-100.DOI: 10.3969/j.issn.1000-2006.2007.01.023.
[2]孫戴妍,尚旭嵐,洑香香,等.青錢柳胸徑生長(zhǎng)和木材密度的地理變異規(guī)律[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,41(4):1-5.SUN D Y,SHANG X L,F(xiàn)U X X,et al.Regularity on geographic variation in DBH growth and wood density of Cyclocarya paliurus[J].J Nanjing For Univ (Nat Sci Ed),2017,41(4):1-5.DOI: 10.3969/j.issn.1000-2006.201610005.
[3]侯小利,劉曉霞,王碩,等.青錢柳葉總黃酮對(duì)自發(fā)性高血壓大鼠的影響[J].中藥藥理與臨床,2014,30(2):62-69.HOU X L,LIU X X,WANG S,et al.Effect of the flavonoids from" Cyclocarya paliurus on spontaneous hypertension rats[J].Pharmacol Clin Chin Mater Med,2014,30(2):62-69.DOI: 10.13412/j.cnki.zyyl.2014.02.021.
[4]WU Z F,MENG F C,CAO L J,et al.Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells[J].Phytochemistry,2017,142:76-84.DOI: 10.1016/j.phytochem.2017.06.015.
[5]YANG Z W,WANG J,LI J G,et al.Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice[J].Carbohydr Polym,2018,183:11-20.DOI: 10.1016/j.carbpol.2017.11.033.
[6]鄭觀濤,殷志琦.藥用植物青錢柳的開發(fā)研究進(jìn)展[J].世界最新醫(yī)學(xué)信息文摘,2019,19(43):123-124.ZHENG G T,YIN Z Q.Research progress on development in Cyclocarya paliurus[J].World Latest Med Inf,2019,19(43):123-124.DOI: 10.19613/j.cnki.1671-3141.2019.43.058.
[7]林源,陳培,周明明,等.天然居群青錢柳葉主要生物活性物質(zhì)及抗氧化活性研究[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(2):10-16.LIN Y,CHEN P,ZHOU M M,et al.Key bioactive substances and their antioxidant activities in Cyclocarya paliurus (Batal.) Iljinskaja leaves collected from natural populations[J].J Nanjing For Univ (Nat Sci Ed),2020,44(2):10-16.DOI: 10.3969/j.issn.1000-2006.201901045.
[8]周永晟,徐子恒,袁發(fā)銀,等.亞熱帶3個(gè)地點(diǎn)青錢柳群落特征比較[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,45(1):29-35.ZHOU Y S,XU Z H,YUAN F Y,et al.Comparisons of community characteristics among three natural forests of Cyclocarya paliurus in the subtropical region of China[J].J Nanjing For Univ (Nat Sci Ed),2021,45(1):29-35.DOI: 10.12302/j.issn.1000-2006.202005017.
[9]SUN C W,ZHOU Y S,F(xiàn)ANG S Z,et al.Ecological gradient analysis and environmental interpretation of Cyclocarya paliurus communities[J].Forests,2021,12(2):146.DOI: 10.3390/f12020146.
[10]SUN C W,SHANG X L,DING H F,et al.Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves[J].J For Res,2021,32(2):805-814.DOI: 10.1007/s11676-020-01139-1.
[11]ZHOU M M,QUEK S Y,SHANG X L,et al.Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on HeLa cells[J].Ind Crops Prod,2021,162:113314.DOI: 10.1016/j.indcrop.2021.113314.
[12]田力,徐騁煒,尚旭嵐,等.青錢柳藥用優(yōu)良單株評(píng)價(jià)與選擇[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,45(1):21-28.TIAN L,XU C W,SHANG X L,et al.Evaluation and selection on superior individuals for medicinal use of Cyclocarya paliurus[J].J Nanjing For Univ (Nat Sci Ed),2021,45(1):21-28.DOI: 10.12302/j.issn.1000-2006.202002018.
[13]王久利,朱明星,徐明行,等.基于RAD-seq技術(shù)的異型花SSR信息分析[J].植物研究,2017,37(3):447-452,460.WANG J L,ZHU M X,XU M H,et al.Analysis on SSR in Sinoswertia tetraptera base on RAD-seq[J].Bull Bot Res,2017,37(3):447-452,460.DOI: 10.7525/j.issn.1673-5102.2017.03.016.
[14]GONZAGA Z J,ASLAM K,SEPTININGSIH E M,et al.Evaluation of SSR and SNP markers for molecular breeding in rice[J].Plant Breed Biotech,2015,3(2):139-152.DOI: 10.9787/pbb.2015.3.2.139.
[15]LI X C,F(xiàn)U X X,SHANG X L,et al.Natural population structure and genetic differentiation for heterodicogamous plant:Cyclocarya paliurus (Batal.) Iljinskaja (Juglandaceae)[J].Tree Genet Genomes,2017,13(4):80.DOI: 10.1007/s11295-017-1157-5.
[16]SAVIC' A,PIPAN B,VASIC' M,et al.Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm from Serbia,as revealed by single sequence repeats (SSR)[J].Sci Hortic,2021,288:110405.DOI: 10.1016/j.scienta.2021.110405.
[17]LI B,LIN F R,HUANG P,et al.Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing[J].Biol Res,2020,53(1):21.DOI: 10.1186/s40659-020-00289-0.
[18]LI C H,ZHENG Y Q,LIU Y,et al.Development of genomic SSR for the subtropical hardwood tree Dalbergia hupeana and assessment of their transferability to other related species[J].Forests,2021,12(6):804.DOI: 10.3390/f12060804.
[19]LEE K J,LEE J R,SEBASTIN R,et al.Assessment of genetic diversity of tea germplasm for its management and sustainable use in Korea genebank[J].Forests,2019,10(9):780.DOI: 10.3390/f10090780.
[20]王希,陳麗,趙春雷.利用MISA工具對(duì)不同類型序列進(jìn)行SSR標(biāo)記位點(diǎn)挖掘的探討[J].中國(guó)農(nóng)學(xué)通報(bào),2016,32(10):150-156.WANG X,CHEN L,ZHAO C L.Mining SSR molecular marker sites with MISA tool for different types of sequences[J].Chin Agric Sci Bull,2016,32(10):150-156.
[21]UNTERGASSER A,CUTCUTACHE I,KORESSAAR T,et al.Primer3:new capabilities and interfaces[J].Nucleic Acids Res,2012,40(15):e115.DOI: 10.1093/nar/gks596.
[22]喬舒婷,董文其,胡齊贊,等.基于絲瓜全基因組序列SSR分子標(biāo)記開發(fā)[J].分子植物育種,2023,21(6):1937-1947.QIAO S T,DONG W Q,HU Q Z,et al.Development of SSR molecular markers based on whole genome sequences of sponge gourd[J].Mol Plant Breed,2023,21(6):1937-1947.DOI: 10.13271/j.mpb.021.001937.
[23]郭艷春,張力嵐,陳思遠(yuǎn),等.黃麻應(yīng)用核心種質(zhì)的DNA分子身份證構(gòu)建[J].作物學(xué)報(bào),2021,47(1):80-93.GUO Y C,ZHANG L L,CHEN S Y,et al.Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.)[J].Acta Agron Sin,2021,47(1):80-93.DOI: 10.3724/SP.J.1006.2021.04022.
[24]XIA E H,ZHANG H B,SHENG J,et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J].Mol Plant,2017,10(6):866-877.DOI: 10.1016/j.molp.2017.04.002.
[25]宋立肖,李國(guó)旗,靳長(zhǎng)青,等.大麻狀羅布麻的全基因組分析和SSR標(biāo)記開發(fā)[J].植物遺傳資源學(xué)報(bào),2019,20(5):1309-1316.SONG L X,LI G Q,JIN C Q,et al.Whole genome sequencing and development of SSR markers in Apocynum cannabinum[J].J Plant Genet Resour,2019,20(5):1309-1316.DOI: 10.13430/j.cnki.jpgr.20181218002.
[26]崔哲,左力輝,韓坤瑾,等.毛果楊(Populus trichocarpa)全基因組SSR位點(diǎn)分布規(guī)律[J].分子植物育種,2020,18(11):3683-3692.CUI Z,ZUO L H,HAN K J,et al.Distribution rule of SSR loci in whole genome of Populus trichocarpa[J].Mol Plant Breed,2020,18(11):3683-3692.DOI: 10.13271/j.mpb.018.003683.
[27]蔣向輝,苑靜,王翔.青錢柳葉片轉(zhuǎn)錄組數(shù)據(jù)組裝及基因功能注釋[J].華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,52(6):822-831.JIANG X H,YUAN J,WANG X.De novo transcriptome assembly and annotation of the leaves of Cyclocarya paliurus[J].J Cent China Norm Univ (Nat Sci),2018,52(6):822-831.DOI: 10.19603/j.cnki.1000-1190.2018.06.012.
[28]陳秀娟,柏明娥,王麗玲,等.青錢柳種質(zhì)資源親緣關(guān)系的ISSR分析評(píng)價(jià)[J].中國(guó)林副特產(chǎn),2016(4):6-10.CHEN X J,BAI M E,WANG L L,et al.ISSR analysis and evaluation of genetic relationship of Cyclocarya paliurus germplasm resources[J].For Prod Speciality China,2016(4):6-10.DOI: 10.13268/j.cnki.fbsic.2016.04.002.
[29]周一旸,洑香香,尚旭嵐,等.青錢柳種質(zhì)資源多樣性SRAP初步分析[J].基因組學(xué)與應(yīng)用生物學(xué),2011,30(1):40-46.ZHOU Y Y,F(xiàn)U X X,SHANG X L,et al.Preliminary study on the genetic diversity of germplasm for Cyclocarya paliurus revealed by SRAP markers[J].Genom Appl Biol,2011,30(1):40-46.DOI: 10.3969/gab.030.000040.
[30]FAN D M,YE L J,LUO Y,et al.Development of microsatellite loci for Cyclocarya paliurus (Juglandaceae),a monotypic species in subtropical China[J].Appl Plant Sci,2013,1(6):apps.1200524.DOI: 10.3732/apps.1200524.
[31]XU J,LIU L,XU Y B,et al.Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize[J].DNA Res,2013,20(5):497-509.DOI: 10.1093/dnares/dst026.
[32]HE S M,DONG X,ZHANG G H,et al.High quality genome of Erigeron breviscapus provides a reference for herbal plants in Asteraceae[J].Mol Ecol Resour,2021,21(1):153-169.DOI: 10.1111/1755-0998.13257.
[33]林恩文,林榕榕,陳欽常,等.龍眼全基因組和轉(zhuǎn)錄本序列SSR位點(diǎn)的鑒定[J].福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,51(4):493-501.LIN E W,LIN R R,CHEN Q C,et al.SSR loci analysis in genome and transcriptome of Longan[J].J Fujian Agric For Univ (Nat Sci Ed),2022,51(4):493-501.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2022.04.007.
[34]KARAOGLU H,LEE C M Y,MEYER W.Survey of simple sequence repeats in completed fungal genomes[J].Mol Biol Evol,2005,22(3):639-649.DOI: 10.1093/molbev/msi057.
[35]劉松衛(wèi),盧迎春,宋婉玲,等.基于燈盞花全基因組SSR位點(diǎn)分析及多態(tài)性引物開發(fā)[J].分子植物育種,2018,16(12):4003-4009.LIU S W,LU Y C,SONG W L,et al.SSR loci analysis based on Erigeron breviscapus genome and polymorphism primers development[J].Mol Plant Breed,2018,16(12):4003-4009.DOI: 10.13271/j.mpb.016.004003.
[36]CARDLE L,RAMSAY L,MILBOURNE D,et al.Computational and experimental characterization of physically clustered simple sequence repeats in plants[J].Genetics,2000,156(2):847-854.DOI: 10.1093/genetics/156.2.847.
[37]王玉龍,黃冰艷,王思雨,等.四倍體野生種花生(A.monticola)全基因組SSR的開發(fā)與特征分析[J].中國(guó)農(nóng)業(yè)科學(xué),2019,52(15):2567-2585.WANG Y L,HUANG B Y,WANG S Y,et al.Development and characterization of whole genome SSR in tetraploid wild peanut(Arachis monticola)[J].Sci Agric Sin,2019,52(15):2567-2585.DOI: 10.3864/j.issn.0578-1752.2019.15.002.
[38]LIU S R,LI W Y,LONG D,et al.Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis[J].PLoS One,2013,8(10):e75149.DOI: 10.1371/journal.pone.0075149.
[39]SCHORDERET D F,GARTLER S M.Analysis of CpG suppression in methylated and nonmethylated species[J].Proc Natl Acad Sci USA,1992,89(3):957-961.DOI: 10.1073/pnas.89.3.957.
[40]宋莎,馮建文,吳亞維,等.基于RAD-seq技術(shù)的花紅SSR信息分析[J].貴州農(nóng)業(yè)科學(xué),2019,47(11):103-106.SONG S,F(xiàn)ENG J W,WU Y W,et al.Analysis on SSR in Malus asiatica Nakai.base on RAD sequencing[J].Guizhou Agric Sci,2019,47(11):103-106.DOI: 10.3969/j.issn.1001-3601.2019.11.021.
[41]周曉君,王海亮,李方玲,等.基于RAD-seq技術(shù)開發(fā)靈寶杜鵑多態(tài)性SSR標(biāo)記[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2019,27(1):55-62.ZHOU X J,WANG H L,LI F L,et al.Development of polymorphic SSR markers in Rhododendron henanense subsp.lingbaoense based on RAD-seq[J].J Agric Biotechnol,2019,27(1):55-62.DOI: 10.3969/j.issn.1674-7968.2019.01.006.
[42]BEGH D,MOLANO J F G,F(xiàn)ABBRI A,et al.Olive biodiversity in Colombia.A molecular study of local germplasm[J].Sci Hortic,2015,189:122-131.DOI: 10.1016/j.scienta.2015.04.003.
[43]CREGAN P B,JARVIK T,BUSH A L,et al.An integrated genetic linkage map of the soybean genome[J].Crop Sci,1999,39(5):1464-1490.DOI: 10.2135/cropsci1999.3951464x.
(責(zé)任編輯 吳祝華)
收稿日期Received:2022-06-01""" 修回日期Accepted:2022-09-05
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31971642);中央財(cái)政林業(yè)科技推廣示范項(xiàng)目(皖[2023]TG13號(hào))。
第一作者:劉莉(943444013@qq.com)。
*通信作者:(xxfu@njfu.edu.cn),洑香香,教授。
引文格式:劉莉,瞿印權(quán),余延浩,等. 青錢柳全基因組SSR位點(diǎn)分析及多態(tài)性引物開發(fā)[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(4):67-75.
LIU L, QU Y Q, YU Y H, et al. Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the" development of polymorphic primers[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(4):67-75.
DOI:10.12302/j.issn.1000-2006.202206001.