摘 要: "單細(xì)胞轉(zhuǎn)錄組測序技術(shù)(single cell RNA sequencing, scRNA-seq)可以能夠以高精度分辨率鑒定單個細(xì)胞類型和細(xì)胞狀態(tài),打破普通轉(zhuǎn)錄組測序(bulk RNA sequencing, RNA-seq)無法探究目標(biāo)細(xì)胞具體表達(dá)特征的困境,在各個領(lǐng)域的探索中起到重要作用,目前廣泛應(yīng)用于人類及小鼠發(fā)育生物學(xué)、腫瘤學(xué)、免疫學(xué)、復(fù)雜疾病、腸道微生物組及臨床應(yīng)用等諸多領(lǐng)域。近年來,scRNA-seq在畜牧業(yè)領(lǐng)域也開展了一些開創(chuàng)性的研究并獲得了一系列的成果,主要集中在動物繁殖性能、胚胎發(fā)育、關(guān)鍵性狀解析等方面,但相較于在人類上的應(yīng)用還較為薄弱,在其他領(lǐng)域的應(yīng)用也仍有待深入。本文主要綜述了scRNA-seq的工作流程及其在家養(yǎng)動物中應(yīng)用的研究進(jìn)展,以期為提高scRNA-seq分析效率以及在家養(yǎng)動物中的創(chuàng)新應(yīng)用提供參考。
關(guān)鍵詞: 單細(xì)胞;轉(zhuǎn)錄組測序;家養(yǎng)動物
中圖分類號:S813.1
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)08-3276-12
收稿日期:2024-02-02
基金項目:國家重點研發(fā)計劃青年科學(xué)家項目(2023YFF1001800);國家重點研發(fā)計劃(2022YFF1000103);國家自然科學(xué)基金(31802031;31960659);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ZDRW202106;ASTIP-IAS13);財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助(CARS-38)
作者簡介:張肖旭(2000-),女,山東鄒城人,博士生,主要從事動物遺傳育種研究,E-mail: zhangxiaoxu_dk@163.com
通信作者:潘章源,主要從事動物功能基因組學(xué)研究,E-mail: zhypan01@163.com;儲明星,主要從事動物遺傳育種研究,E-mail: mxchu@263.net
Application of Single-Cell Transcriptome Sequencing Technology in Domesticated Animals
ZHANG" Xiaoxu, LI" Hao, FENG" Pingjie, YANG" Hao, LI" Xinyue, L Ran, PAN" Zhangyuan*, CHU" Mingxing*
(State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy
of Agricultural Sciences, Beijing 100193," China)
Abstract:" Single-cell transcriptome sequencing technology(scRNA-seq) can identify individual cell types and cell states with high-precision resolution, breaking the dilemma that ordinary transcriptome sequencing unable to probe the specific expression characteristics of target cells, and playing an important role in the exploration of various fields, which is now widely used in many fields, such as human and mouse developmental biology, oncology, immunology, complex diseases, intestinal microbiome and clinical applications. In recent years, scRNA-seq has also carried out some pioneering research in the field of animal husbandry, mainly focusing on animal reproductive performance, embryonic development, analysis of key traits, etc. However, the application of scRNA-seq in other fields remains to be in-depth compared to its application in humans. In this paper, we review the workflow of scRNA-seq and its application in domesticated animals is reviewed, intending to provide a reference for improving the efficiency of scRNA-seq analysis and its innovative application in domesticated animals.
Key words: single-cell; transcriptome sequencing; domesticated animals
*Corresponding authors:PAN Zhangyuan, E-mail: zhypan01@163.com; CHU Mingxing, E-mail: mxchu@263.net
細(xì)胞是機(jī)體最基本的結(jié)構(gòu)組成及功能單位,細(xì)胞內(nèi)表達(dá)的RNA決定細(xì)胞類型和功能,同一個體的所有細(xì)胞擁有相同的基因組,但不同細(xì)胞類型甚至每個細(xì)胞表達(dá)的RNA具有特異性[1]。以同質(zhì)組織或是同類細(xì)胞為整體進(jìn)行的普通轉(zhuǎn)錄組測序(bulk RNA sequencing, RNA-seq),測序結(jié)果是整個組織所有細(xì)胞的平均基因表達(dá)水平,掩蓋了組織中不同類型細(xì)胞的獨特性及異質(zhì)性[2],并且在研究復(fù)雜生物學(xué)機(jī)制過程中,組織內(nèi)大量細(xì)胞很可能會將目標(biāo)細(xì)胞的表達(dá)特征掩蓋,對探究微量細(xì)胞的遺傳信息有較大影響,且不利于對細(xì)胞病變過程的追蹤和生物多樣性的研究[3];而單細(xì)胞轉(zhuǎn)錄組測序技術(shù)(single cell RNA sequencing, scRNA-seq)可通過微流控技術(shù)從動物組織分離出單個細(xì)胞,并對微量全轉(zhuǎn)錄組RNA擴(kuò)增后進(jìn)行高通量測序,得到單個細(xì)胞的表達(dá)譜特征,進(jìn)而以高精度分辨率鑒定細(xì)胞類型和細(xì)胞狀態(tài)[4],鎖定目標(biāo)細(xì)胞以進(jìn)行深入分析,是解析目標(biāo)表型背后復(fù)雜分子細(xì)胞機(jī)制、探究細(xì)胞間異質(zhì)性及特異性信息和細(xì)胞群體之間關(guān)系的有力工具[2,5-8]。scRNA-seq技術(shù)在單細(xì)胞分辨率下對遺傳信息進(jìn)行測序,不僅能很好地解決細(xì)胞異質(zhì)性問題,還能鑒定細(xì)胞亞群、繪制細(xì)胞圖譜,結(jié)合其他組學(xué)還可以挖掘差異基因表達(dá)背后的調(diào)控機(jī)制[9-11]。scRNA-seq已廣泛應(yīng)用于人類發(fā)育生物學(xué)、腫瘤學(xué)、免疫學(xué)、復(fù)雜疾病、腸道微生物組及臨床應(yīng)用等諸多領(lǐng)域,近年來在畜牧業(yè)領(lǐng)域也開展了一些開創(chuàng)性的研究并獲得了一系列的成果,尤其是在家養(yǎng)動物包括家豬、家禽和反芻動物中,較多應(yīng)用于配子發(fā)生、生長發(fā)育和免疫與疾病研究方面,解析了家養(yǎng)動物生殖細(xì)胞的發(fā)育軌跡,注釋了肌肉和脂肪等組織的特異性細(xì)胞,揭示了免疫反應(yīng)圖譜,為畜禽早期選育和優(yōu)良性狀選育提供了重要依據(jù),在畜牧業(yè)科研生產(chǎn)中具有巨大的應(yīng)用潛力和廣闊的前景。盡管scRNA-seq技術(shù)在國內(nèi)外已經(jīng)建立了廣泛的商業(yè)化生產(chǎn)服務(wù),但該技術(shù)在畜牧業(yè)中的標(biāo)準(zhǔn)化流程還需要進(jìn)一步探索和梳理,為其在畜牧業(yè)中的應(yīng)用提供線索[12]。
1 單細(xì)胞轉(zhuǎn)錄組測序技術(shù)簡介
2009年,Tang等[13]首次實現(xiàn)了單個細(xì)胞的mRNA高通量檢測,他們改進(jìn)了對單個細(xì)胞mRNA的測序方法,檢測到小鼠囊胚單細(xì)胞中的基因高達(dá)5 270個,數(shù)量遠(yuǎn)高于利用微陣列對數(shù)百個囊胚細(xì)胞的測序數(shù)據(jù),這是scRNA-seq第一次進(jìn)入人們的視野。2013年開發(fā)的單核RNA測序(single-nucleus RNA-seq, snRNA-seq)技術(shù)可以讓人們深入了解細(xì)胞核特有的調(diào)控機(jī)制,它具有易于從中樞神經(jīng)系統(tǒng)等復(fù)雜組織和器官中分離出細(xì)胞的優(yōu)勢,還能夠?qū)鋬鼋M織樣品進(jìn)行分析[14]。大多數(shù)已發(fā)表的scRNA-seq研究遵循相同的工作流程:分離單個細(xì)胞,捕獲RNA逆轉(zhuǎn)錄成cDNA,預(yù)擴(kuò)增cDNA,制備文庫,高通量測序和數(shù)據(jù)分析。
1.1 單細(xì)胞的分離
從組織樣本中分離單個細(xì)胞是單細(xì)胞轉(zhuǎn)錄組測序的第一步。液態(tài)樣本如血液,對其進(jìn)行密度梯度離心后可直接用于單細(xì)胞捕獲,固體組織樣本一般采用機(jī)械切割或刀片破碎進(jìn)行分解,后采用適宜的消化酶對組織碎塊進(jìn)行消化使其分離為單細(xì)胞懸液[15]。冷凍組織樣本需研磨后裂解細(xì)胞,去除雜質(zhì)后加入蔗糖密度梯度離心,吸取細(xì)胞核層進(jìn)行懸液制備。單細(xì)胞的分離應(yīng)快速、準(zhǔn)確以獲得完整且獨立的單細(xì)胞[16]。分離的方法主要有連續(xù)稀釋法、顯微操作法、熒光激活流式分選、激光捕獲顯微切割、微流控液滴等[17]。目前應(yīng)用最為廣泛的是微流控液滴方法,應(yīng)用該方法最具有代表性的平臺是10×Genomics[18],其使用液滴作為隔離單細(xì)胞的載體,基于微流控技術(shù)將單個細(xì)胞與含有10×barcode、唯一分子標(biāo)識符(unique molecular identifier, UMI)和poly(dT)VN序列的凝膠微珠包裹在一個凝膠珠(bead)中。磁珠在流動的管道中形成油包水的微液滴體系(gel bead in emulsion, GEM),單個細(xì)胞在微液滴中完成反轉(zhuǎn)錄,油滴破裂后,將cDNA進(jìn)行擴(kuò)增,并攜帶獨一無二的接頭。
1.2 單細(xì)胞轉(zhuǎn)錄組文庫構(gòu)建及測序
單細(xì)胞轉(zhuǎn)錄組文庫制備和質(zhì)量控制是關(guān)鍵環(huán)節(jié)[19]。單個GEM依次形成后再全部混合,細(xì)胞中的mRNA被反轉(zhuǎn)錄為帶有10×barcode和UMI信息的cDNA一鏈,引入適配序列或RNA聚合酶啟動子序列進(jìn)行PCR或體外轉(zhuǎn)錄擴(kuò)增cDNA。這一過程篩去了除mRNA外其余類型的RNA。對UMI序列進(jìn)行飽和測序,準(zhǔn)確量化轉(zhuǎn)錄物豐度[16],在序列分析時,去除UMI序列并統(tǒng)計不同UMI的出現(xiàn)次數(shù)和頻率,所得的結(jié)果即為對應(yīng)基因的表達(dá)矩陣,高效避免由聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction, PCR)復(fù)制造成的數(shù)據(jù)偏移[15]。
2 單細(xì)胞轉(zhuǎn)錄組測序分析流程
測序完成后,原始數(shù)據(jù)首先應(yīng)轉(zhuǎn)化為fastq格式,便于數(shù)據(jù)比對。為獲得有效的基因表達(dá)矩陣,各物種參考基因組的選擇和分析算法的選擇是整個序列比對和分析過程的核心問題[20-21]。scRNA-seq的分析大致可以分為常規(guī)分析和高級分析,常規(guī)分析例如細(xì)胞聚類、細(xì)胞簇的鑒定、功能富集分析、細(xì)胞周期階段的測定以及擬時序分析,高級分析可進(jìn)行細(xì)胞間相互作用鑒定、轉(zhuǎn)錄因子活性分析、可變剪切等,也可以結(jié)合多組學(xué)研究表觀遺傳細(xì)胞特征,這些特征可以確定細(xì)胞表型,預(yù)測細(xì)胞分化的方向,獲得有關(guān)細(xì)胞間相互作用和系統(tǒng)發(fā)育的信息[22]。
2.1 質(zhì)量控制
單細(xì)胞轉(zhuǎn)錄組測序數(shù)據(jù)結(jié)果可能受到細(xì)胞捕獲、文庫制備和測序程序產(chǎn)生的多種技術(shù)噪聲的影響。因此,過濾劣質(zhì)數(shù)據(jù)對于后續(xù)分析至關(guān)重要。FastQC 是一種廣泛使用的工具,用于評估raw reads(去接頭前)和clean reads(去接頭后)的測序質(zhì)量,由QC(quality control)值決定數(shù)據(jù)的好壞[23]。如果初步 QC 沒有發(fā)現(xiàn)影響較大的質(zhì)量偏差,使用FastQC 后,則可以省略掉刪除異常細(xì)胞和去接頭這兩個步驟[24]。
2.2 reads比對
經(jīng)過質(zhì)量控制后,reads通過與參考基因組或轉(zhuǎn)錄組進(jìn)行映射的方式分配給轉(zhuǎn)錄本?;趨⒖嫉谋葘ぞ叽笾路譃閮煞N:當(dāng)使用轉(zhuǎn)錄組作為參考時,使用包括 bowtie2 和 BWA(burrow-wheeler aligner)在內(nèi)的剪接識別工具;當(dāng)使用基因組作為參考時,使用如 TopHat2、STAR 和 HISAT2的剪接感知工具更有優(yōu)勢,因為它們可以處理剪接對齊[24-25]。
2.3 表達(dá)定量與標(biāo)準(zhǔn)化
對raw reads進(jìn)行標(biāo)準(zhǔn)化處理是一個關(guān)鍵步驟[26],可糾正從解離樣本到生成測序數(shù)據(jù)之間的非生物(技術(shù))差異[27-28],使表達(dá)計數(shù)在細(xì)胞間具有可比性。這種差異可能是由于文庫制備、樣本測序深度(通常稱為文庫大?。?、基因長度、讀數(shù)映射偏差、基因序列組成和序列相似性等原因造成的[29]。測序深度反映了在給定樣本中生成的二代測序(next generation sequencing, NGS)reads總量[30]。為了使不同樣本之間的文庫大小具有可比性,研究人員采用各種全局縮放因子對raw reads計數(shù)進(jìn)行標(biāo)準(zhǔn)化處理[31]。
2.4 降維聚類
scRNA-seq數(shù)據(jù)呈現(xiàn)出高維特性,基因之間的低計數(shù)、零計數(shù)和高相關(guān)性特征與高維相結(jié)合,在分析中引入了噪聲和冗余信息,為后續(xù)分析帶來了極大挑戰(zhàn)。利用基因空間和細(xì)胞空間中的降維(dimension reduction, DR)可以提高分析速度,也提升了區(qū)分細(xì)胞異質(zhì)性信號的能力。降維算法可將高維細(xì)胞空間投影到二維或三維的低維空間,常用的方法有主成分分析法(principal components analysis, PCA)和非線性降維方法,后者包括 t-分布隨機(jī)鄰域嵌入法(t-distributed stochastic neighbor embedding, t-SNE)和均勻流形近似和投影法(uniform manifold approximation and projection method, UMAP)。與 PCA 相比,非線性降維算法是隨機(jī)的,且高度依賴于參數(shù)的選擇,往往會扭曲全局結(jié)構(gòu),但它能夠應(yīng)用于數(shù)據(jù)可視化中,因此現(xiàn)今t-SNE和UMAP更多的是作為細(xì)胞聚類的可視化工具[32],便于后續(xù)的細(xì)胞類型注釋。
2.5 差異基因表達(dá)分析
標(biāo)準(zhǔn)化后的數(shù)據(jù)分析應(yīng)根據(jù)試驗進(jìn)行不同的設(shè)置[33-34]。差異基因表達(dá)分析(differential expression analysis, DE)是傳統(tǒng)RNA-seq研究的標(biāo)志,可比較物種、表型等多種條件下的基因表達(dá)差異,并鑒定條件相關(guān)基因[35-37]。在scRNA-seq中,人們可以識別不同細(xì)胞類型或相同細(xì)胞類型的差異表達(dá)基因[32]。
3 單細(xì)胞轉(zhuǎn)錄組測序技術(shù)在家養(yǎng)動物中的應(yīng)用
3.1 在豬上的應(yīng)用
3.1.1 配子發(fā)生
雷佩佩[38]利用scRNA-seq在杜洛克公豬睪丸中鑒定了20個細(xì)胞群,根據(jù)marker基因?qū)?0個細(xì)胞群注釋為7個細(xì)胞類群,其中包括一個未被注釋過的新細(xì)胞群;通過對鑒定出的生殖細(xì)胞進(jìn)行發(fā)育軌跡分析,篩選并驗證了CDH1和CD99是豬未分化精原細(xì)胞的分子標(biāo)記物、PODXL2是分化精原細(xì)胞的分子標(biāo)記物,為研究豬生殖細(xì)胞分化提供了理論基礎(chǔ)。Zhang等[39]通過scRNA-seq分析了豬睪丸中的精原細(xì)胞、精母細(xì)胞、精子細(xì)胞和三種體細(xì)胞類型,并將精原細(xì)胞劃分出了4個不同的亞群,確定了 CD99 和 PODXL2 分別作為未分化和分化精原細(xì)胞的新型細(xì)胞表面標(biāo)記物,同時結(jié)合bulk RNA-seq數(shù)據(jù),進(jìn)一步驗證了豬生殖細(xì)胞類型定義的準(zhǔn)確性。張發(fā)利等[40]收集了豬和綿羊睪丸發(fā)育的scRNA-seq數(shù)據(jù),發(fā)現(xiàn)豬在精原細(xì)胞向精母細(xì)胞分化過程中有920個不同于綿羊的差異表達(dá)基因,它們參與調(diào)控減數(shù)分裂細(xì)胞周期過程。Zhang等[41]對關(guān)中黑豬7、30、60、90和150日齡時的睪丸單細(xì)胞轉(zhuǎn)錄組進(jìn)行了分析,鑒定了5種類型的 sertoli 細(xì)胞、5種類型的 leydig 細(xì)胞和4種類型的管周肌細(xì)胞,并確定了PRND為sertoli 細(xì)胞的新marker基因。Zhao等[42]通過分析豬體外成熟的第二次減數(shù)分裂中期(MII)卵母細(xì)胞、體外受精合子和孤雌生殖激活的單細(xì)胞胚胎scRNA-seq數(shù)據(jù)集來表征卵母細(xì)胞到受精卵轉(zhuǎn)化過程中的3′UTR(3′ untranslated region)動態(tài)變化,為進(jìn)一步研究3′UTR調(diào)控該轉(zhuǎn)化過程的分子機(jī)制提供了有用的信息。
3.1.2 生長發(fā)育
Wiarda等[43]利用scRNA-seq技術(shù)分析了豬十二指腸、空腸和回腸的上皮細(xì)胞,鑒定出豬特有的腸內(nèi)分泌(enteroendocrine, EE)細(xì)胞亞群,發(fā)現(xiàn)EE細(xì)胞中的激素編碼基因和腸細(xì)胞中的營養(yǎng)轉(zhuǎn)運基因的表達(dá)呈近端到遠(yuǎn)端的梯度,證明了區(qū)域特化的存在。Cai等[44]通過整合豬肌肉分化scRNA-seq 和染色質(zhì)開放性測序(assay for transposase accessible chromatin with high-throughput sequencing, ATAC-seq)數(shù)據(jù),以單細(xì)胞分辨率分析了發(fā)育中的豬體節(jié)和肌節(jié)的基因表達(dá)和染色質(zhì)可及性,構(gòu)建了豬骨骼肌本體發(fā)育的分化軌跡,探究基因表達(dá)和染色質(zhì)可及性的動態(tài)變化,找尋出豬胚胎肌肉生成的2個關(guān)鍵調(diào)控因子。Xu等[45]提供了豬肌肉駐留細(xì)胞全圖譜,并注釋出新型和品種特異性細(xì)胞,可視化在擬時序分析軌跡上,同時分析發(fā)現(xiàn)不同的駐留細(xì)胞特征會顯著影響不同肌肉細(xì)胞類型的配體-受體相互作用網(wǎng)絡(luò),證明人工選擇引起了肌肉駐留細(xì)胞特征的顯著變化。
3.1.3 免疫與疾病研究
Zhang等[46]構(gòu)建了3月齡豬肺部的單細(xì)胞圖譜,通過研究肺部細(xì)胞異質(zhì)性,系統(tǒng)地比較了豬肺與人肺各細(xì)胞類型的細(xì)胞通訊和呼吸道病毒受體表達(dá)模式的異同,提出了豬-人免疫生物學(xué)不相容性和凝血失調(diào)相關(guān)的 10 個基因的細(xì)胞型表達(dá)模式,基于豬肺和人肺共享的主要細(xì)胞類型構(gòu)建了5個保守的轉(zhuǎn)錄因子(transcription factor, TF)調(diào)控網(wǎng)絡(luò),此成果為豬肺研究乃至異種器官移植提供了指導(dǎo)。Li等[47]生成并整合了人-豬外周血單核細(xì)胞(peripheral blood mononuclear cells, PBMCs)scRNA-seq 數(shù)據(jù),構(gòu)建了豬外周血免疫細(xì)胞亞群的整體基因表達(dá)圖譜,明確了免疫細(xì)胞亞群的不同分布,并分析了人和豬免疫細(xì)胞的不同轉(zhuǎn)錄譜。非洲豬瘟是一種傳染性極強(qiáng)、致死率極高的疾病,Zheng等[48]通過scRNA-seq技術(shù)探究了感染非洲豬瘟病毒(African swine fever virus, ASFV)的原代豬肺泡巨噬細(xì)胞的轉(zhuǎn)錄組結(jié)構(gòu),發(fā)現(xiàn)ASFV 感染抑制了干擾素和未折疊蛋白反應(yīng)(unfolded protein response, UPR)信號轉(zhuǎn)導(dǎo),同時激活宿主細(xì)胞凋亡通路。Fan等[49]對感染豬流行性腹瀉病毒(porcine epidemic diarrhea virus, PEDV)的仔豬空腸進(jìn)行了系統(tǒng)分析,確定了豬腸細(xì)胞類型,并發(fā)現(xiàn)了一種新的marker基因 DNAH11,還研究了不同類型細(xì)胞被感染PEDV的反應(yīng)。
3.2 在禽上的應(yīng)用
3.2.1 配子發(fā)生
Sun等[50]基于scRNA-seq,描述了多種雞雄性生殖細(xì)胞中的全基因組可變剪切,繪制了雄性雞生殖系細(xì)胞中可變剪切在全基因組范圍的綜合圖譜,篩選出胚胎干細(xì)胞、性腺原始生殖細(xì)胞和精原干細(xì)胞可變剪切中的階段特異性基因,解讀了雞生殖細(xì)胞可變剪切的機(jī)制。Jung等[51] 首次針對鳥類的跨物種單細(xì)胞轉(zhuǎn)錄組分析,評估了斑馬雀和雞的原始生殖細(xì)胞(primordial germ cells, PGCs)及其周圍細(xì)胞,構(gòu)建了雞性腺 PGCs 的單細(xì)胞轉(zhuǎn)錄組圖譜,發(fā)現(xiàn)了性腺 PGCs 和體細(xì)胞中幾種信號通路的種間差異,揭示了在系統(tǒng)發(fā)育上相距甚遠(yuǎn)物種之間生殖細(xì)胞發(fā)育的差異,為了解鳥類生殖細(xì)胞的生殖生理以及利用PGCs修復(fù)瀕危鳥類和生產(chǎn)轉(zhuǎn)基因鳥類提供了基礎(chǔ),并確定了物種特異性特征。Choi等[52]利用生殖細(xì)胞追蹤模型和scRNA-seq確定了雞雄性生殖細(xì)胞在性別決定后發(fā)育過程中轉(zhuǎn)錄水平發(fā)生變化的信號通路,驗證了雄性生殖細(xì)胞進(jìn)入有絲分裂停滯期和靜止期的信號通路互作情況。
3.2.2 生長發(fā)育
Li等[53]在雞孵化后5 d和100 d的發(fā)育階段進(jìn)行scRNA-seq,相較于5 d的發(fā)育階段,100 d的細(xì)胞聚類更能顯示出清晰的邊界,首次描述了雞骨骼肌在兩個發(fā)育階段的異質(zhì)性;同時在篩選出的上調(diào)基因中發(fā)現(xiàn)了APOA1和COL1A1基因與脂肪細(xì)胞marker基因ADIPOQ在胸部肌肉中共同表達(dá),證明APOA1和COL1A1基因是雞肌肉內(nèi)脂肪細(xì)胞的生物標(biāo)記物。Mantri等[54]將scRNA-seq和空間轉(zhuǎn)錄組學(xué)與數(shù)據(jù)整合算法相結(jié)合,研究了雞心的四腔從早期到晚期階段的發(fā)育過程,確定了心外膜細(xì)胞系中上皮細(xì)胞和間充質(zhì)細(xì)胞之間的轉(zhuǎn)錄差異,明確了先天性心臟病相關(guān)基因的空間分辨基因表達(dá)。
3.2.3 免疫與疾病研究
Wu等[55]利用scRNA-seq和基因編輯技術(shù)描述雞脾的傳統(tǒng)樹突狀細(xì)胞(conventional dendritic cells, cDCs)的特征,分析表明雞脾中只有1個表達(dá)趨化因子受體 XCR1 的 cDC 亞群,通過基因敲除方法,發(fā)現(xiàn)敲除 XCR1能阻止 cDC 與 CD8+ T 細(xì)胞的這種聚集,表明雞和哺乳動物XCR1+ cDCs 在驅(qū)動 CD8+ T 細(xì)胞反應(yīng)中是保守的。Qu等[56]根據(jù)雞PBMCs進(jìn)行scRNA-seq研究,確定了8個細(xì)胞群及其潛在的marker基因,發(fā)現(xiàn)T細(xì)胞群對感染禽白血病病毒 J 亞群(avian leukosis virus subgroup J, ALV-J)的反應(yīng)更強(qiáng),并使用擬時序分析,發(fā)現(xiàn)雞CD4+ T細(xì)胞可以分化為輔助T細(xì)胞1(T-helper 1, Th1)樣和輔助T細(xì)胞2(T-helper 2, Th2)樣細(xì)胞,ALV-J 感染激活的 CD4+ T 細(xì)胞可能傾向于分化成 Th1 樣細(xì)胞。Dai等[57]系統(tǒng)分析了分別感染 H5N1 高致病性禽流感病毒(highly pathogenic avian influenza virus, HPAIV)和 H9N2 低致病性禽流感病毒(low pathogenic avian influenza virus, LPAIV)的雞肺組織的轉(zhuǎn)錄組,揭示了雞感染 H5N1 和 H9N2禽流感病毒(avian influenza virus, AIV)后肺部組織中復(fù)雜而獨特的免疫反應(yīng)圖譜,并破譯了 AIV 驅(qū)動雞炎癥反應(yīng)的潛在機(jī)制。
3.3 在反芻動物上的應(yīng)用
3.3.1 配子發(fā)生
高源[58]利用scRNA-seq技術(shù)對性成熟前后安格斯牛的睪丸進(jìn)行研究,首次獲得了牛青春期轉(zhuǎn)錄細(xì)胞圖譜,通過聚類分析將睪丸生殖細(xì)胞聚為13個類群,分別鑒定出了每個細(xì)胞群特異表達(dá)的基因。Yang等[59]首次利用scRNA-seq技術(shù)對綿羊精子發(fā)生過程進(jìn)行了全面的單細(xì)胞轉(zhuǎn)錄組研究,在睪丸細(xì)胞中鑒定了所有已知的生殖細(xì)胞和體細(xì)胞,以及一個意外含有白細(xì)胞的體細(xì)胞,并分析發(fā)現(xiàn)了生殖細(xì)胞的幾個階段特異性marker基因;功能富集分析表明,在睪丸生殖細(xì)胞中,細(xì)胞周期、配子發(fā)生、蛋白質(zhì)加工和mRNA監(jiān)控途徑的幾個通路顯著富集,而在睪丸體細(xì)胞中,核糖體通路顯著富集。Su等[60]分別分析了在新生兒時期、青春期和成年期階段湖羊睪丸細(xì)胞的組成以及3個影響精子發(fā)生的激素的表達(dá)變化,發(fā)現(xiàn)生殖細(xì)胞比例隨著年齡增長逐漸增加,sertoli細(xì)胞的比例逐漸減少,而leydig細(xì)胞的比例則先增加后減少;FSHR、LHR和AR主要在這三類細(xì)胞中表達(dá),其中 LHR 和 FSHR 的表達(dá)隨年齡增長而減少,而 AR 的表達(dá)則先增加后減少。隨后,蘇杰[61]構(gòu)建出湖羊睪丸發(fā)育圖譜,研究了出生后不同日齡湖羊睪丸生精細(xì)胞的X染色體劑量補(bǔ)償和雄性特異致死復(fù)合體(male specific lethal, MSL)在維持X染色體劑量的功能作用,并系統(tǒng)分析了湖羊出生后7個日齡的睪丸細(xì)胞組成變化、差異基因表達(dá)、信號通路變化及生殖細(xì)胞分化軌跡。Yu等[62]將關(guān)中奶山羊睪丸組織分離出11 753個單細(xì)胞進(jìn)行轉(zhuǎn)錄組測序,聚類分出16個細(xì)胞群,包括6個體細(xì)胞群和10個生殖細(xì)胞亞群,還篩選并確定了在關(guān)中奶山羊精原細(xì)胞中表達(dá)的兩個特定基因: TKTL1和AES,為奶山羊育種研究提供理論和技術(shù)支持。Jia等[63]研究了胚胎和綿羊母體子宮內(nèi)膜的動態(tài)轉(zhuǎn)錄變化,剖析了胚胎伸長過程中分化的17種細(xì)胞類型,根據(jù)特異性基因表達(dá)描述了不同滋養(yǎng)層細(xì)胞系的特征,分析子宮內(nèi)膜衍生出13種細(xì)胞類型并對胚胎發(fā)育的分子反應(yīng)做出闡述。
3.3.2 生長發(fā)育
Cai等[64]研究了妊娠期、哺乳期和成年期發(fā)育中的牛骨骼肌的細(xì)胞類型、分子特征、轉(zhuǎn)錄和表觀遺傳調(diào)控及模式,擬時序分析顯示骨骼肌三個發(fā)育階段發(fā)現(xiàn)的不同細(xì)胞亞群有明顯的排列順序,預(yù)測了單個細(xì)胞未來可能的轉(zhuǎn)錄狀態(tài)以及相鄰細(xì)胞之間的分化發(fā)育動態(tài),試驗還整合了 scRNA-seq 和 scATAC-seq 結(jié)果,發(fā)現(xiàn)了一系列特異表達(dá)的TF,它們可能是促進(jìn)牛骨骼肌發(fā)育過程中細(xì)胞命運轉(zhuǎn)換的候選因子。葉娜[65]構(gòu)建了天祝白牦牛生長期毛囊的單細(xì)胞轉(zhuǎn)錄圖譜,鑒定了生長期毛囊發(fā)育過程中的主要細(xì)胞類型,通過擬時序分析繪制出表皮細(xì)胞譜系以及真皮細(xì)胞譜系在毛囊發(fā)育中的分化軌跡,為探究牦牛毛絨性狀的分子育種提供理論基礎(chǔ)。張衛(wèi)東等[66]從單細(xì)胞水平分析了絨山羊毛囊發(fā)生過程中涉及的關(guān)鍵細(xì)胞轉(zhuǎn)錄信息,鑒定出多個絨山羊皮膚結(jié)構(gòu)關(guān)鍵細(xì)胞類群和其他功能細(xì)胞類群,篩選出毛乳頭細(xì)胞特異性表達(dá)基因427個。劉澤昊[67]利用scRNA-seq技術(shù)首次建立了高精度的絨山羊初級毛囊與次級毛囊的單細(xì)胞轉(zhuǎn)錄組圖譜,并發(fā)現(xiàn)了不同發(fā)育階段毛囊干細(xì)胞的特征分子,基于擬時序分析揭示了絨山羊毛囊干細(xì)胞在發(fā)育過程中的分化軌跡,識別到毛囊干細(xì)胞在發(fā)育過程中存在3種分化狀態(tài)。葛偉[68]首先建立了從少量毛囊組織中分離毛囊干細(xì)胞的技術(shù)平臺,繪制了陜北白絨山羊毛囊發(fā)育過程中誘導(dǎo)階段、器官形成階段以及細(xì)胞分化階段的單細(xì)胞轉(zhuǎn)錄圖譜,并鑒定了陜北白絨山羊毛囊形態(tài)發(fā)生過程中所涉及的主要細(xì)胞類型,對其分子特征以及其分化調(diào)控關(guān)系進(jìn)行了詳細(xì)描繪。Wang等[69]為探究綿羊毛囊發(fā)育和羊毛彎曲的分子機(jī)制分別制備了卷毛羔羊皮和直毛羔羊皮的單細(xì)胞懸液,鑒定出19個細(xì)胞類型及其特征,通過擬時序分析和細(xì)胞間通訊分析,揭示了基質(zhì)祖細(xì)胞的分化軌跡和細(xì)胞間互作的信號通路,確定了綿羊毛彎曲的分子機(jī)制。He等[70]對呼倫貝爾草原短尾羊和烏珠穆沁羊16 d胚胎發(fā)育的細(xì)胞進(jìn)行分群鑒定,分別獲得了8種和13種細(xì)胞類群,并建立了不同細(xì)胞群中差異基因的表達(dá)譜,通過功能富集分析揭示細(xì)胞類群中新發(fā)現(xiàn)的信號通路。而后何亭漪[71]發(fā)現(xiàn)在短尾羊發(fā)育過程中,有多信號通路共同協(xié)作調(diào)控尾部發(fā)育,其中間充質(zhì)細(xì)胞向脊索細(xì)胞轉(zhuǎn)化是調(diào)控的重要過程。Yuan等[72]利用五萬多個單細(xì)胞轉(zhuǎn)錄組提供了綿羊瘤胃發(fā)育的全面轉(zhuǎn)錄圖譜,鑒定了8種主要細(xì)胞類型,明確了瘤胃早期乳頭形成和乳頭角質(zhì)化的過程,并確定 TBX3 為潛在的marker基因,同時發(fā)現(xiàn)富集的棘層細(xì)胞在揮發(fā)性脂肪酸(volatile fatty acid, VFA)代謝和免疫反應(yīng)中發(fā)揮了關(guān)鍵作用。Deng等[73]對綿羊和山羊的瘤胃組織展開了分析,明確了瘤胃細(xì)胞、瘤胃微生物和發(fā)育相關(guān)的核心轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)的過渡特征,綜合分析驗證了宿主細(xì)胞與微生物群互作的趨同發(fā)展模式,這種相互作用會調(diào)節(jié)瘤胃細(xì)胞中的基因表達(dá),從而改變發(fā)酵、纖維消化和免疫防御等過程。
3.3.3 免疫與疾病研究
寇佳怡[74]首次描繪了完整的黃牛肺單細(xì)胞全轉(zhuǎn)錄圖譜,注釋出9個細(xì)胞大類、39個細(xì)胞類型,其中定義新細(xì)胞類型9個,篩選出347個差異表達(dá)基因并發(fā)現(xiàn)它們主要集中在免疫細(xì)胞中,同時發(fā)現(xiàn)9個潛在的新marker基因,豐富了牛肺的單細(xì)胞數(shù)據(jù)。Barut等[75]對奶牛腸系膜淋巴結(jié)(lymph nodes, LN)中的單核吞噬細(xì)胞進(jìn)行了scRNA-seq,發(fā)現(xiàn)了10個樹突狀細(xì)胞(dendritic-cell, DC)集群和7個單核/巨噬細(xì)胞集群,定義了 LN 駐留亞群及其祖細(xì)胞,以及高度活化的遷移性樹突狀細(xì)胞亞群,還揭示了 cDC2 的潛在分化途徑,形成了一個炎性 cDC2 群,其轉(zhuǎn)錄與假定的 DC3 和單核細(xì)胞衍生 DC 非常相似。Huang等[76]構(gòu)建了湖羊四腔胃的單細(xì)胞圖譜,發(fā)現(xiàn)免疫相關(guān)模塊中樞基因在四腔胃組織中的T細(xì)胞、單核細(xì)胞和巨噬細(xì)胞中高表達(dá),確定了參與免疫調(diào)節(jié)的一些關(guān)鍵受體和信號傳導(dǎo)。
4 單細(xì)胞轉(zhuǎn)錄組測序技術(shù)的創(chuàng)新應(yīng)用
scRNA-seq技術(shù)的快速革新使其在各個領(lǐng)域的探索中起到重要作用,與其他技術(shù)的結(jié)合可以挖掘出更加豐富的生物學(xué)信息。目前在人和小鼠上的應(yīng)用更加前沿。杜源[77]利用scRNA-seq結(jié)合細(xì)胞示蹤技術(shù),探究了肝細(xì)胞移植后狀態(tài)的變化和分區(qū)特征,更加明確了細(xì)胞再生肝的機(jī)制。Zeng等[78]利用空間翻譯組測序(ribosome-bound mRNA mapping, RIBOmap)方法,基于小鼠腦組織中 5 413 個基因繪制出包含119 173 個細(xì)胞的單細(xì)胞分辨率空間翻譯圖譜,從空間層面以單細(xì)胞分辨率系統(tǒng)地研究轉(zhuǎn)錄組水平的mRNA翻譯,揭示了細(xì)胞類型特異性和腦區(qū)特異性翻譯調(diào)控。Yi等[79]通過scRNA-seq聯(lián)合成像質(zhì)譜分析(imaging mass spectrometry, IMS)揭示了活化的恒定自然殺傷T細(xì)胞(invariant natural killer T cells, iNKT)通過增加自然殺傷細(xì)胞(natural killer cell, NK)和 T 細(xì)胞免疫力以及減少腫瘤相關(guān)巨噬細(xì)胞在胰腺癌肝轉(zhuǎn)移中的保護(hù)功能。Wang等[80]分析單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù),結(jié)合免疫熒光/免疫組織化學(xué)染色、蛋白質(zhì)組學(xué)和代謝組學(xué)分析等多組學(xué)方法和體外試驗探索中性粒細(xì)胞在胰腺導(dǎo)管腺癌中的異質(zhì)性和促腫瘤機(jī)制。
越來越多的研究者將scRNA-seq技術(shù)應(yīng)用于跨物種分析中。Li等[81]對小鼠、大鼠、豬、獼猴和人類回腸上皮單細(xì)胞轉(zhuǎn)錄組圖譜進(jìn)行跨物種分析,揭示了物種之間的保守和差異細(xì)胞類型和功能,鑒定了豬、獼猴和人回腸中新的CA7細(xì)胞類型,揭示了腸細(xì)胞、腸內(nèi)分泌細(xì)胞和paneth細(xì)胞中的獨特表達(dá)模式,并確定了保守和物種特異性的腸道干細(xì)胞marker基因;對跨物種藥物吸收的檢查表明,小鼠回腸中的藥物代謝更接近人類,而獼猴回腸中的藥物轉(zhuǎn)運與人類更相似。隨著跨不同物種的單細(xì)胞數(shù)據(jù)集快速生成,開發(fā)出能夠輕松探索和比較這些數(shù)據(jù)的新型軟件變得至關(guān)重要。這些軟件可以更深層次、多方面地挖掘這些單細(xì)胞圖譜數(shù)據(jù),使研究人員能夠高效調(diào)查細(xì)胞類型、識別與他們自己的研究相關(guān)的標(biāo)記,并比較不同數(shù)據(jù)集和物種之間的特征。
如今scRNA-seq技術(shù)已經(jīng)十分熱門,世界各地的研究人員已經(jīng)開發(fā)出許多新的計算方法和軟件工具來充分利用scRNA-seq數(shù)據(jù)集,研究人員需根據(jù)自身需求挑選當(dāng)前可用的技術(shù)。Xu等[4]利用autoCell結(jié)合圖嵌入和概率深度高斯混合模型來推斷高維稀疏 scRNA-seq 數(shù)據(jù)的分布,驗證發(fā)現(xiàn),在識別人類植入前胚胎的細(xì)胞發(fā)育軌跡方面,autoCell 的插值提高了現(xiàn)有工具的性能,為 scRNA-seq 數(shù)據(jù)的端到端分析提供了一個工具箱。Xiong等[82]針對scRNA-seq丟失數(shù)據(jù)的缺點提出了一種用于 scRNA-seq 數(shù)據(jù)估算的單細(xì)胞圖對比學(xué)習(xí)方法:scGCL(single-cell graph contrastive learning),并驗證了其在聚類性能和基因歸因方面優(yōu)于現(xiàn)有的最先進(jìn)的歸因方法。Wu等[83]提出了一種針對 scRNA-seq 數(shù)據(jù)的多視圖聚類與圖學(xué)習(xí)算法(supporting clustering with contrastive learning, MCGL),利用多視角學(xué)習(xí)從不同角度全面表征scRNA-seq數(shù)據(jù),可以更好地描述細(xì)胞的拓?fù)潢P(guān)系,也能夠更好地提高細(xì)胞聚類性能。Liu等[7]設(shè)計了一個異構(gòu)圖神經(jīng)網(wǎng)絡(luò)模型 CAME,來學(xué)習(xí)比對完成且已知的細(xì)胞和基因嵌入,以便從 scRNA-seq 數(shù)據(jù)中進(jìn)行跨物種細(xì)胞類型分配和基因模塊提取,發(fā)現(xiàn)兩個物種之間的共享特征和差異特征,對于基因組注釋不全的非模式動物也適用。Zappia等[84]開發(fā)了scRNA-tools 數(shù)據(jù)庫和網(wǎng)站(www.scRNA-tools.org),對目前已有的分析工具進(jìn)行了總結(jié),記錄了這些工具的下載出處、可用于哪些任務(wù)以及描述這些工具的工作方式,有利于幫助研究人員選擇所需的分析軟件(表1)。
5 總結(jié)與展望
諸多研究表明,轉(zhuǎn)錄組已經(jīng)步入了單細(xì)胞測序時代。scRNA-seq技術(shù)在家豬、家禽和反芻動物的研究中已取得了一系列成果,為家養(yǎng)動物配子發(fā)生、生長發(fā)育和免疫疾病的分子機(jī)制研究提供了有力的工具。在配子發(fā)生角度,多項研究從生殖器官尤其是睪丸組織展開分析,鑒定出睪丸組織中的細(xì)胞類型,分析發(fā)現(xiàn)了生殖細(xì)胞的幾個階段特異性marker基因和分子標(biāo)記物,并鑒定出生殖細(xì)胞發(fā)育軌跡。在生長發(fā)育角度,研究人員著手于對畜禽肌肉分化、胚胎及器官發(fā)育和營養(yǎng)轉(zhuǎn)運進(jìn)行探究;對于毛用反芻動物,毛囊發(fā)生過程涉及的關(guān)鍵轉(zhuǎn)錄信息也被愈來愈多的科研人員所揭示。在免疫與疾病角度,通過研究病理細(xì)胞和健康細(xì)胞的異質(zhì)性,揭示感染疾病后細(xì)胞的免疫反應(yīng)圖譜,為動物育種和疾病防控提供了重要的參考。
scRNA-seq技術(shù)確實擁有解決細(xì)胞異質(zhì)性的優(yōu)點,卻較于傳統(tǒng)的 bulk RNA-seq 更為昂貴,且敏感細(xì)胞可能會因為解離過度而破碎,針對于此局限,可以通過反卷積的方法,將scRNA-seq數(shù)據(jù)作為參考(reference)反向鑒定bulk數(shù)據(jù)中的細(xì)胞類型。此外,scRNA-seq分析深度有限,無法找到具體的調(diào)控位點和調(diào)控元件,需要聯(lián)合其他組學(xué)共同挖掘。目前,單細(xì)胞測序技術(shù)在人的腫瘤、免疫、生殖等生物醫(yī)學(xué)領(lǐng)域得到了廣泛應(yīng)用,而在畜牧學(xué)中的研究主要聚焦于動物繁殖性能、胚胎發(fā)育、解析關(guān)鍵性狀等方面,而在畜禽疫病以及產(chǎn)肉和繁殖等生產(chǎn)性狀的調(diào)控機(jī)制方面的應(yīng)用還有待進(jìn)一步研究和闡明深入??梢月?lián)合空間轉(zhuǎn)錄組獲得細(xì)胞的空間位置信息和基因表達(dá)數(shù)據(jù),揭示生產(chǎn)性狀相關(guān)細(xì)胞的發(fā)育層次結(jié)構(gòu),建立起細(xì)胞分化過程中的動態(tài)圖譜,為改良育種提供新的思路;也可以采用新算法研究RNA與RNA、RNA與蛋白的互作關(guān)系,繪制表觀基因組、轉(zhuǎn)錄組和翻譯組的空間多組學(xué)圖譜,綜合了解家畜和家禽的免疫應(yīng)答機(jī)制,揭示特定細(xì)胞亞群在疾病抗性中的關(guān)鍵作用;還可以結(jié)合現(xiàn)代醫(yī)學(xué)技術(shù),在畜禽模式動物中模擬疾病和器官發(fā)育[85],為疾病治療在臨床應(yīng)用中瓶頸的突破提供新想法。
參考文獻(xiàn)(References):
[1] 熊和麗,沙 茜,劉韶娜,等.單細(xì)胞轉(zhuǎn)錄組測序技術(shù)在動物上的應(yīng)用研究[J].生物技術(shù)通報,2022,38(3):226-233.
XIONG H L,SHA Q,LIU S N,et al.Application of single-cell transcriptome sequencing in animals[J].Biotechnology Bulletin,2022,38(3):226-233.(in Chinese)
[2] CHOE K,PAK U,PANG Y,et al.Advances and challenges in spatial transcriptomics for developmental biology[J].Biomolecules, 2023,13(1):156.
[3] 李麗娟,師書玥,張村宇,等.單細(xì)胞轉(zhuǎn)錄組測序技術(shù)原理及其應(yīng)用[J].中國畜牧雜志,2019,55(2):15-21.
LI L J,SHI S Y,ZHANG C Y,et al.Principle and application of single cell transceriptome sequencing[J].Chinese Journal of Animal Science,2019,55(2):15-21.(in Chinese)
[4] XU J L,XU J L,MENG Y J,et al.Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data[J].Cell Rep Methods,2023,3(1):100382.
[5] XU K,CHEONG C,VELDSMAN W P,et al.Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute[J].Brief Bioinform,2023,24(3):bbad124.
[6] TAN Z Y,CHEN X R,ZUO J M,et al.Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model[J].J Transl Med,2023,21(1):223.
[7] LIU X Y,SHEN Q L,ZHANG S H.Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network[J].Genome Res,2023,33(1):96-111.
[8] LU S,KELE"S.Debiased personalized gene coexpression networks for population-scale scRNA-seq data[J].Genome Res,2023, 33(6):932-947.
[9] NAYDENOV D D,VASHUKOVA E S,BARBITOFF Y A,et al.Current status and prospects of the single-cell sequencing technologies for revealing the pathogenesis of pregnancy-associated disorders[J].Genes (Basel),2023,14(3):756.
[10] LIU X Q,XU G,CHEN C S,et al.Evaluation of pulmonary single-cell identity specificity in scRNA-seq analysis[J].Clin Transl Med,2022,12(12):e1132.
[11] FENG M,SWEVERS L,SUN J C.Hemocyte clusters defined by scRNA-Seq in Bombyx mori:in silico analysis of predicted marker genes and implications for potential functional roles[J].Front Immunol,2022,13:852702.
[12] LI X W,ZHANG Q,ZHU X C,et al.Standardization status of single-cell RNA sequencing technology in animal husbandry[J]. China Standardization,2023(1):60-64.
[13] TANG F C,BARBACIORU C,WANG Y Z,et al.mRNA-Seq whole-transcriptome analysis of a single cell[J].Nat Methods,2009, 6(5):377-382.
[14] GRINDBERG R V,YEE-GREENBAUM J L,MCCONNELL M J,et al.RNA-sequencing from single nuclei[J].Proc Natl Acad Sci U S A,2013,110(49):19802-19807.
[15] 婁姬英,郭其新,畢瑜林,等.單細(xì)胞轉(zhuǎn)錄組測序技術(shù)及其在動物科學(xué)領(lǐng)域的應(yīng)用[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2023,31(5):1074-1087.
LOU J Y,GUO Q X,BI Y L,et al.Single-cell transcriptome sequencing technology and its application in the field of animal science[J].Journal of Agricultural Biotechnology,2023,31(5):1074-1087.(in Chinese)
[16] KOLODZIEJCZYK A A,KIM J K,SVENSSON V,et al.The technology and biology of single-cell RNA sequencing[J].Mol Cell,2015,58(4):610-620.
[17] 康彥東,王興東,郭韶珂,等.單細(xì)胞測序技術(shù)及其在畜牧科學(xué)研究中的應(yīng)用[J].中國牛業(yè)科學(xué),2022,48(4):41-45.
KANG Y D,WANG X D,GUO S K,et al.Single-cell sequencing technology and its application in animal science research[J].China Cattle Science,2022,48(4):41-45.(in Chinese)
[18] 易蘭蘭,賀德勇,許 宏,等.單細(xì)胞轉(zhuǎn)錄組測序技術(shù)在動物腸道中的應(yīng)用研究進(jìn)展[J].飼料研究,2023,46(11):159-163.
YI L L,HE D Y,XU H,et al.Study progress of application of single-cell transcriptome sequencing technology in animal intestine[J]. Feed Research,2023,46(11):159-163.(in Chinese)
[19] LI X L,GIBSON G,QIU P.Gene representation in scRNA-seq is correlated with common motifs at the 3′ end of transcripts[J]. Front Bioinform,2023,3:1120290.
[20] NIE X E,QIN D,ZHOU X Y,et al.Clustering ensemble in scRNA-seq data analysis:methods,applications and challenges[J]. Comput Biol Med,2023,159:106939.
[21] THURMAN A L,RATCLIFF J A,CHIMENTI M S,et al.Differential gene expression analysis for multi-subject single-cell RNA-sequencing studies with aggregateBioVar[J].Bioinformatics,2021,37(19):3243-3251.
[22] KHOZYAINOVA A A,VALYAEVA A A,ARBATSKY M S,et al.Complex analysis of single-cell RNA sequencing data[J].Biochemistry (Mosc),2023,88(2):231-252.
[23] 彭 巍,賈可欣,張子敬,等.單細(xì)胞測序技術(shù)及其在畜禽遺傳育種中的應(yīng)用研究新進(jìn)展[J].中國畜牧雜志,2022,58(10):44-49.
PENG W,JIA K X,ZHANG Z J,et al.New progress on single cell sequencing technology and its application to animal genetics and breeding[J].Chinese Journal of Animal Science,2022,58(10):44-49.(in Chinese)
[24] SINGH A,HERMANN B P.Bulk and single-cell RNA-Seq analyses for studies of spermatogonia[M]∥OATLEY J M,HERMANN B P.Spermatogonial Stem Cells:Methods and Protocols.New York:Humana,2023:37-70.
[25] KRIANOVIC' K,ECHCHIKI A,ROUX J,et al.Evaluation of tools for long read RNA-seq splice-aware alignment[J]. Bioinformatics, 2018,34(5):748-754.
[26] XU L,XUE T,DING W Y,et al.Comparison of scRNA-seq data analysis method combinations[J].Brief Funct Genomics,2022, 21(6):433-440.
[27] STUART T,BUTLER A,HOFFMAN P,et al.Comprehensive integration of single-cell data[J].Cell,2019,177(7):1888-1902.e21.
[28] LI X T,ZHANG S X,WONG K C.Deep embedded clustering with multiple objectives on scRNA-seq data[J].Brief Bioinform, 2021,22(5):bbab090.
[29] CHOI Y H,KIM J K.Dissecting cellular heterogeneity using single-cell RNA sequencing[J].Mol Cells,2019,42(3):189-199.
[30] GAO S.Data analysis in single-cell transcriptome sequencing[M]∥HUANG T.Computational Systems Biology:Methods and Protocols.New York:Humana,2018:311-326.
[31] CHOUDHARY S,SATIJA R.Comparison and evaluation of statistical error models for scRNA-seq[J].Genome Biol,2022, 23(1):27.
[32] DONG X R,BACHER R.Analysis of single-cell RNA-seq data[M]∥FRIDLEY B,WANG X F.Statistical Genomics.New York: Humana,2023:95-114.
[33] BOULAND G A,MAHFOUZ A,REINDERS M J T.Consequences and opportunities arising due to sparser single-cell RNA-seq datasets[J].Genome Biol,2023,24(1):86.
[34] YIP S H,SHAM P C,WANG J W.Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data[J].Brief Bioinform,2019,20(4):1583-1589.
[35] ZHANG S Q,XIE L J,CUI Y X,et al.Detecting fear-memory-related genes from neuronal scRNA-seq data by diverse distributions and Bhattacharyya distance[J].Biomolecules,2022,12(8):1130.
[36] SUN Y T,QIU P.Domain adaptation for supervised integration of scRNA-seq data[J].Commun Biol,2023,6(1):274.
[37] LU S,KELE S.Dozer:debiased personalized gene co-expression networks for population-scale scRNA-seq data[J].bioRxiv,2023.
[38] 雷佩佩.基于單細(xì)胞測序解析豬精原細(xì)胞的異質(zhì)性[D].楊凌:西北農(nóng)林科技大學(xué),2021.
LEI P P.The analysis of heterogeneity in porcine spermatogonia based on the single cell sequencing[D].Yangling:Northwest Aamp;F University,2021.(in Chinese)
[39] ZHANG L K,LI F Y,LEI P P,et al.Single-cell RNA-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis[J].J Anim Sci Biotechnol,2021,12(1):122.
[40] 張發(fā)利,朱可心,葛 偉,等.豬與綿羊睪丸發(fā)育特征的單細(xì)胞轉(zhuǎn)錄組差異的比較分析[J].豬業(yè)科學(xué),2023,40(5):106-109.
ZHANG F L,ZHU K X,GE W,et al.Comparative analysis of single-cell transcriptomic differences in testicular developmental characteristics between pigs and sheep[J].Swine Industry Science,2023,40(5):106-109.(in Chinese)
[41] ZHANG L K,GUO M,LIU Z D,et al.Single-cell RNA-seq analysis of testicular somatic cell development in pigs[J].J Genet Genomics,2022,49(11):1016-1028.
[42] ZHAO H,WU Z W,ZHANG R,et al.Dynamic changes of 3′UTR length during oocyte-to-zygote transition of in vitro pig embryos[J].Reprod Domest Anim,2023,58(5):605-613.
[43] WIARDA J E,BECKER S R,SIVASANKARAN S K,et al.Regional epithelial cell diversity in the small intestine of pigs[J].J Anim Sci,2023,101(1):skac318.
[44] CAI S F,HU B,WANG X Y,et al.Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig[J].BMC Biol,2023,21(1):19.
[45] XU D D,WAN B Y,QIU K,et al.Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J].Adv Sci (Weinh),2023,10(35):e2305080.
[46] ZHANG L J,ZHU J C,WANG H Y,et al.A high-resolution cell atlas of the domestic pig lung and an online platform for exploring lung single-cell data[J].J Genet Genomics,2021,48(5):411-425.
[47] LI J,XU Y N,ZHANG J Y,et al.Single-cell transcriptomic analysis reveals transcriptional and cell subpopulation differences between human and pig immune cells[J].Genes Genomics,2024,46(3):303-322.
[48] ZHENG Y X,LI S,LI S H,et al.Transcriptome profiling in swine macrophages infected with African swine fever virus at single-cell resolution[J].Proc Natl Acad Sci U S A,2022,119(19):e2201288119.
[49] FAN B C,ZHOU J Z,ZHAO Y X,et al.Identification of cell types and transcriptome landscapes of porcine epidemic diarrhea virus-infected porcine small intestine using single-cell RNA sequencing[J].J Immunol,2023,210(3):271-282.
[50] SUN C H,JIN K,ZUO Q S,et al.Characterization of alternative splicing (AS) events during chicken (Gallus gallus) male germ-line stem cell differentiation with single-cell RNA-seq[J].Animals (Basel),2021,11(5):1469.
[51] JUNG K M,SEO M,HAN J Y.Comparative single-cell transcriptomic analysis reveals differences in signaling pathways in gonadal primordial germ cells between chicken (Gallus gallus) and zebra finch (Taeniopygia guttata)[J].Faseb J,2023,37(1):e22706.
[52] CHOI H J,JUNG K M,PARK K J,et al.Single-cell transcriptome analysis of male chicken germ cells reveals changes in signaling pathway-related gene expression profiles during mitotic arrest[J].FEBS Open Bio,2023,13(5):833-844.
[53] LI J H,XING S Y,ZHAO G P,et al.Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing[J].BMC Genomics,2020,21(1):752.
[54] MANTRI M,SCUDERI G J,ABEDINI-NASSAB R,et al.Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis[J].Nat Commun,2021,12(1):1771.
[55] WU Z G,SHIH B,MACDONALD J,et al.Development and function of chicken XCR1+ conventional dendritic cells[J].Front Immunol,2023,14:1273661.
[56] QU X Y,LI X B,LI Z W,et al.Chicken peripheral blood mononuclear cells response to avian leukosis virus subgroup J infection assessed by single-cell RNA sequencing[J].Front Microbiol,2022,13:800618.
[57] DAI M M,ZHU S F,AN Z H,et al.Dissection of key factors correlating with H5N1 avian influenza virus driven inflammatory lung injury of chicken identified by single-cell analysis[J].PLoS Pathog,2023,19(10):e1011685.
[58] 高 源.安格斯牛睪丸組織非編碼RNA鑒定及單細(xì)胞轉(zhuǎn)錄圖譜繪制[D].楊凌:西北農(nóng)林科技大學(xué),2021.
GAO Y.Non-coding RNA identification and single-cell transcriptome atlas of angus bull testis[D].Yangling:Northwest Aamp;F University,2021.(in Chinese)
[59] YANG H,MA J Y,WAN Z,et al.Characterization of sheep spermatogenesis through single-cell RNA sequencing[J].Faseb J,2021, 35(2):e21187.
[60] SU J,SONG Y L,YANG Y Y,et al.Study on the changes of LHR,F(xiàn)SHR and AR with the development of testis cells in Hu sheep[J].Anim Reprod Sci,2023,256:107306.
[61] 蘇 杰.出生后湖羊睪丸發(fā)育圖譜、組織結(jié)構(gòu)及X染色體劑量補(bǔ)償研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2022.
SU J.Studies on testis development atlas,structure and X-chromosome dose compensation after Hu sheep birth[D].Hohhot:Inner Mongolia Agricultural University,2022.(in Chinese)
[62] YU X W,LI T T,DU X M,et al.Single-cell RNA sequencing reveals atlas of dairy goat testis cells[J].Zool Res,2021,42(4):401-405.
[63] JIA G X,MA W J,WU Z B,et al.Single-cell transcriptomic characterization of sheep conceptus elongation and implantation[J]. Cell Rep,2023,42(8):112860.
[64] CAI C C,WAN P,WANG H,et al.Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing[J].Cell Prolif,2023,56(9):e13430.
[65] 葉 娜.基于單細(xì)胞轉(zhuǎn)錄組測序?qū)μ熳0钻笈IL期毛囊轉(zhuǎn)錄圖譜的構(gòu)建[D].蘭州:西北民族大學(xué),2021.
YE N.Construction of transcription map of hair follicles in growing period of Tianzhu white yak based on single cell transcriptome sequencing[D].Lanzhou:Northwest Minzu University,2021.(in Chinese)
[66] 張衛(wèi)東,鄭玉杰,葛 偉,等.單細(xì)胞測序?qū)q山羊毛乳頭細(xì)胞的鑒定[J].中國農(nóng)業(yè)科學(xué),2022,55(12):2436-2446.
ZHANG W D,ZHENG Y J,GE W,et al.Identification of cashmere dermal papilla cells based on single-cell RNA sequencing technology[J].Scientia Agricultura Sinica,2022,55(12):2436-2446.(in Chinese)
[67] 劉澤昊.單細(xì)胞測序解析遼寧絨山羊初級與次級毛囊的轉(zhuǎn)錄組圖譜與分子特征[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2022.
LIU Z H.Single-cell sequencing reveals that transcriptome map and molecular features of primary and secondary hair follicles in Liaoning cashmere goats[D].Shenyang:Shenyang Agricultural University,2022.(in Chinese)
[68] 葛 偉.單細(xì)胞分辨率解析絨山羊及小鼠毛囊發(fā)生的轉(zhuǎn)錄調(diào)控機(jī)制[D].楊凌:西北農(nóng)林科技大學(xué),2019.
GE W.Dissecting the transcriptional regulatory mechanism underlying cashmere goat and murine hair follicle morphogenesis at single-cell resolution[D].Yangling:Northwest Aamp;F University,2019.(in Chinese)
[69] WANG S H,WU T Y,SUN J Y,et al.Single-cell transcriptomics reveals the molecular anatomy of sheep hair follicle heterogeneity and wool curvature[J].Front Cell Dev Biol,2021,9:800157.
[70] HE T Y,GUO W R,YANG G,et al.A single-cell atlas of an early mongolian sheep embryo[J].Vet Sci,2023,10(9):543.
[71] 何亭漪.單細(xì)胞轉(zhuǎn)錄組測序分析呼倫貝爾草原短尾羊和烏珠穆沁羊16天胚胎的基因表達(dá)差異[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2021.
HE T Y.Single-cell transcriptome sequencing analyses the gene expression differences in 16-day embryos of HulunBuir short-tailed sheep and Ujumqin sheep[D].Hohhot:Inner Mongolia Agricultural University,2021.(in Chinese)
[72] YUAN Y,SUN D M,QIN T,et al.Single-cell transcriptomic landscape of the sheep rumen provides insights into physiological programming development and adaptation of digestive strategies[J].Zool Res,2022,43(4):634-647.
[73] DENG J,LIU Y J,WEI W T,et al.Single-cell transcriptome and metagenome profiling reveals the genetic basis of rumen functions and convergent developmental patterns in ruminants[J].Genome Res,2023,33(10):1690-1707.
[74] 寇佳怡.黃牛肺臟單細(xì)胞轉(zhuǎn)錄圖譜的構(gòu)建及初步分析[D].成都:西南民族大學(xué),2022.
KOU J Y.Construction and preliminary analysis of single cell transcriptional map in the lung of cattle[D].Chengdu:Southwest Minzu University,2022.(in Chinese)
[75] BARUT G T,KREUZER M,BRUGGMANN R,et al.Single-cell transcriptomics reveals striking heterogeneity and functional organization of dendritic and monocytic cells in the bovine mesenteric lymph node[J].Front Immunol,2022,13:1099357.
[76] HUANG K L,YANG B,XU Z B,et al.The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum[J].J Anim Sci Biotechnol,2023,14(1):130.
[77] 杜 源.單細(xì)胞組學(xué)聯(lián)合細(xì)胞示蹤技術(shù)探究細(xì)胞移植再生肝臟的機(jī)制[D].南昌:南昌大學(xué),2023.
DU Y.Unveiling the mechanisms of liver regeneration by hepatocyte transplantation using cell tracing and single-cell RNA sequencing[D].Nanchang:Nanchang University,2023.(in Chinese)
[78] ZENG H,HUANG J H,REN J Y,et al.Spatially resolved single-cell translatomics at molecular resolution[J].Science,2023, 380(6652):eadd3067.
[79] YI Q J,WANG J,LIU T T,et al.scRNA-Seq and imaging mass cytometry analyses unveil iNKT cells-mediated anti-tumor immunity in pancreatic cancer liver metastasis[J].Cancer Lett,2023,561:216149.
[80] WANG L W,LIU Y H,DAI Y T,et al.Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment[J].Gut,2023,72(5):958-971.
[81] LI H N,WANG X D,WANG Y L,et al.Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium[J].Cell Regen,2022,11(1):19.
[82] XIONG Z H,LUO J W,SHI W W,et al.scGCL:an imputation method for scRNA-seq data based ongraph contrastive learning[J]. Bioinformatics,2023,39(3):btad098.
[83] WU W M,ZHANG W S,HOU W M,et al.Multi-view clustering with graph learning for scRNA-Seq data[J].IEEE/ACM Trans Comput Biol Bioinform,2023,20(6):3535-3546.
[84] ZAPPIA L,PHIPSON B,OSHLACK A.Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database[J]. PLoS Comput Biol,2018,14(6):e1006245.
[85] 汪浩浩,陳慶杰,劉清華,等.單細(xì)胞RNA測序技術(shù)及其在醫(yī)學(xué)研究中的應(yīng)用[J].醫(yī)學(xué)研究雜志,2023:1-7.
WANG H H,CHEN Q J,LIU Q H,et al.Single-cell RNA sequencing technology and its application in medical research[J].Journal of Medical Research,2023:1-7.(in Chinese)
(編輯 郭云雁)