国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于4D-DIA技術(shù)的伊犁馬早期妊娠血清蛋白質(zhì)組分析

2024-09-30 00:00:00曾明敏孟軍曾亞琦王建鄧海峰任萬路薛宇恒尚婷婷高鳳姚新奎
畜牧獸醫(yī)學(xué)報 2024年8期
關(guān)鍵詞:伊犁馬妊娠血清

摘 要: "旨在利用蛋白質(zhì)組學(xué)技術(shù)探究伊犁馬妊娠早期血清蛋白質(zhì)組特征,篩選差異蛋白質(zhì)并分析其在妊娠中的作用。本研究選取年齡相同、膘情相近的健康伊犁馬母馬20匹,自然發(fā)情后進行人工授精。在母馬排卵后第13天進行妊娠診斷,根據(jù)B超結(jié)果選擇妊娠母馬與未妊娠母馬各3匹并采集其血清樣品。利用4D-DIA技術(shù)對伊犁馬母馬血清樣品進行蛋白定量定性分析,篩選差異蛋白質(zhì)并進行GO、KEGG等生物信息學(xué)分析。結(jié)果顯示,共鑒定出823個蛋白質(zhì),分子量范圍在8~1 010 ku;根據(jù)差異倍數(shù)絕對值大于1.5倍、P<0.05的閾值,篩選出53種差異顯著性蛋白質(zhì),其中26個蛋白上調(diào),27個蛋白下調(diào)。差異蛋白質(zhì)主要參與細胞代謝、生物調(diào)節(jié)、代謝、對刺激的反應(yīng)、細胞成分組織或生物發(fā)生等生物學(xué)過程;KEGG富集通路包含蛋白酶體、精氨酸生物合成、PI3K-Akt信號、ECM受體相互作用等與妊娠相關(guān)通路。根據(jù)GO、KEGG等生物學(xué)分析,初步篩選出6種差異顯著性蛋白可能與早期妊娠存在關(guān)系,并用其繪制蛋白互作網(wǎng)絡(luò)圖,結(jié)果顯示,CTSS、MMP1、SERPINA5等處在關(guān)鍵節(jié)點。研究初步篩選出6種妊娠差異蛋白,為今后篩選馬屬動物妊娠特異性蛋白及分子調(diào)控機制提供了基礎(chǔ)資料。

關(guān)鍵詞: 蛋白質(zhì)組;伊犁馬;妊娠;血清

中圖分類號: S821.2

文獻標志碼: A

文章編號:0366-6964(2024)08-3493-10

收稿日期:2023-12-18

基金項目:基因項目:新疆維吾爾自治區(qū)重大科技專項“國產(chǎn)馬專門化品系高效繁育技術(shù)體系構(gòu)建”(2022A02013-1);自治區(qū)創(chuàng)新環(huán)境(人才、基地)建設(shè)專項“馬種質(zhì)創(chuàng)新培育與高效健康養(yǎng)殖重點實驗室平臺建設(shè)”(PT2311);中央引導(dǎo)地方科技發(fā)展專項資金項目“專門化運動馬培育技術(shù)服務(wù)支撐”(ZYYD2023C02)

作者簡介:曾明敏(1998-),女,新疆石河子人,碩士生,主要從事動物生產(chǎn)學(xué)研究,E-mail:1536866543@qq.com

通信作者:姚新奎,主要從事專門化馬品種(系)培育研究,E-mail:yxk61@126.com

Analysis of Serum Proteomics in Early Pregnancy of Yili Horses Based on 4D-DIA

Technology

ZENG" Mingmin1, MENG" Jun1,2, ZENG" Yaqi1,2, WANG" Jianwen1,2, DENG" Haifeng3, REN" Wanlu1,

XUE" Yuheng1, SHANG" Tingting1, GAO" Feng1, YAO" Xinkui1,2*

(1.College of Animal Science, Xinjiang Agricultural University/Research Institute of Horse Industry,

Xinjiang Agricultural University, Urumqi 830052, China;

2.Xinjiang Key Laboratory of Equine

Breeding and Exercise Physiology, Urumqi 830052, China;

3.Animal Husbandry and Veterinary Department,

Zhaosu Horse Farm, Yili Kazak Autonomous Prefecture, Zhaosu 835600," China)

Abstract: The purpose of this article was to explore the serum proteomic characteristics of early pregnancy in Yili horses using proteomic techniques, screen for differential proteins, and analyze their roles in pregnancy. In this study, 20 healthy Yili mares with the same age and similar weight were selected for artificial insemination after natural estrus. Pregnancy diagnosis was performed on the 13th day after ovulation in the mare. Three pregnant mares and three non pregnant mares were selected based on ultrasound results, and their serum samples were collected. Using 4D-DIA technology for protein quantitative and qualitative analysis of serum samples from Yili mares, screening differential proteins, and conducting bioinformatics analysis such as GO and KEGG. The results showed that a total of 823 proteins were identified, with a molecular weight range of 8-1 010 ku; Based on the threshold of absolute multiple of differences greater than 1.5 times and Plt;0.05, 53 proteins with significant differences were screened, of which 26 proteins were upregulated and 27 proteins were downregulated. Differential proteins mainly participated in biological processes such as cellular metabolism, biological regulation, metabolism, response to stimuli, cellular component organization, or biogenesis; The KEGG enrichment pathways included proteasomes, arginine biosynthesis, PI3K Akt signaling, ECM receptor interactions, and other pregnancy related pathways. Based on biological analysis such as GO and KEGG, six significantly different proteins were preliminarily screened for possible relationship with early pregnancy, and protein interaction network diagrams were drawn using them. The results showed that CTSS, MMP1, SERPINA5, and others were at key nodes. Six pregnancy specific proteins have been preliminarily screened in this study, providing basic data for screening pregnancy specific proteins and molecular regulatory mechanisms in equine animals in the future.

Key words: proteome; Yili horse; pregnancy; serum

*Corresponding author:" YAO Xinkui,E-mail:yxk61@126.com

妊娠建立是一個進化上保守而復(fù)雜的過程[1],妊娠期間,母體的器官、內(nèi)分泌系統(tǒng)和生理狀態(tài)隨胚胎的發(fā)育發(fā)生變化[2]。母體對妊娠的識別通常用于描述妊娠早期胚胎與母體的持續(xù)“溝通”,在配種后第13天,就可以通過B超直腸探測法對母馬進行早期妊娠診斷,準確率可達90%以上[3],在妊娠第13.5天,胚胎與母體之間在mRNA分子水平上相互作用強烈[4]。

近年來,依托于平行累積-串聯(lián)碎裂聯(lián)合數(shù)據(jù)獨立采集(parallel accumulation-serial fragmentation combined with data-independent acquisition,diaPASEF)技術(shù)的4D-DIA蛋白質(zhì)組學(xué),結(jié)合了4D蛋白質(zhì)組和DIA技術(shù)的優(yōu)勢,將蛋白質(zhì)組學(xué)在鑒定深度、定量準確性等方面全面提升[5]。目前,蛋白質(zhì)組學(xué)技術(shù)已經(jīng)廣泛的應(yīng)用于動物血液蛋白質(zhì)組的研究。Pennington等[6]應(yīng)用Nano LC-MS/MS技術(shù)鑒定不同生殖狀態(tài)對馬血清蛋白質(zhì)組的影響,發(fā)現(xiàn)了3種妊娠特異性蛋白(載脂蛋白A-I、補體C3和組蛋白H4);Deng等[7]應(yīng)用LC-MS/MS技術(shù)鑒定妊娠第45天驢血清中的蛋白質(zhì),篩選出5種(顆粒體蛋白、Transgelin-2、纖連蛋白、纖維蛋白原樣1和凝血酶敏感蛋白1)可能與妊娠相關(guān)的蛋白質(zhì)。

蛋白質(zhì)存在于身體的各個組織,在調(diào)節(jié)機體生殖活動相關(guān)的分子途徑方面發(fā)揮重要作用[8]。蛋白質(zhì)組學(xué)是識別機體蛋白質(zhì)動態(tài)變化的有力工具,可以從分子水平上更深入了解機體的生物系統(tǒng)[8]。目前,關(guān)于母馬妊娠早期血液蛋白質(zhì)組學(xué)的信息較少,因此本研究應(yīng)用4D-DIA技術(shù)對排卵第13天妊娠母馬與未妊娠母馬進行蛋白質(zhì)組、生物信息學(xué)研究與分析,旨在為進一步探究母馬妊娠早期血清蛋白調(diào)節(jié)分子機制提供參考依據(jù)。

1 材料與方法

1.1 試驗動物及妊娠檢查

試驗在新疆維吾爾自治區(qū)伊犁哈薩克自治州昭蘇馬場配種站進行,在試驗開始之前,根據(jù)獸醫(yī)記錄、體況評分、直腸觸診和B超(6.5 mhz線性陣列多頻換能器,ADP-10,江蘇,中國)生殖道檢查,確定母馬是健康的[9]。選擇年齡在(7.0±1.0)歲、體況評分(6.0±1.0)分(采用9分制評分)[10]、同處于發(fā)情期的速步型伊犁馬母馬20匹,在放牧條件下自由采食、飲水。采用同一品種種公馬的新鮮精液,以人工授精的方式進行配種,在母馬排卵后第13天用B超進行妊娠診斷。

結(jié)合配種記錄并根據(jù)B超影像妊娠診斷結(jié)果,從妊娠馬(P)中與未妊娠母馬(NP)中各選3匹母馬作為研究對象。

1.2 血清樣本采集及制備

排卵第13天早晨,對挑選的母馬使用非抗凝管采集頸靜脈血液,室溫放置1 h后,在離心機中以3 000 r·min-1的速度離心10 min,吸取上層血清,投入液氮速凍后轉(zhuǎn)-80℃保存,用以后續(xù)分析。

用iST(in-StageTip)樣本前處理試劑盒(PreOmics, Germany)對血清樣本進行前處理,目的是可以有效地提取和純化待測樣品中的目標物質(zhì),去除干擾物質(zhì),提高分析結(jié)果的準確性和可靠性。液氮研磨,取適量的樣本,加入50 μL的裂解液(8 mol·L-1尿素和1%SDS),在95℃下,1 000 r·min-1加熱10 min。樣品冷卻至室溫,加入胰蛋白酶消化緩沖液,37℃,500 r·min-1振蕩孵育2 h。加入終止緩沖液終止酶解反應(yīng)。采用試劑盒中的iST cartridge進行肽段除鹽,2×100 μL洗脫緩沖液進行洗脫,洗脫后的肽段真空抽干后-80℃保存。

1.3 nano-HPLC-MS/MS 分析

將除鹽凍干后的肽段重溶于solvent A(A:0.1%甲酸水溶液)后,經(jīng)由配備納噴離子源的LC-MS/MS分析??偣采蠘? μL,以120 min梯度分離:5% B(B:0.1%甲酸乙腈溶液)至35% B。柱流量控制在200 nL·min-1,電噴霧電壓2 kV。Orbitrap Fusion Lumos質(zhì)譜儀(Thermo Fisher Scientific, MA, USA)在數(shù)據(jù)依賴采集模式下運行,自動在MS和MS/MS采集間切換。

1.4 蛋白質(zhì)定性定量分析

質(zhì)譜檢測前,在每一個樣品中加入質(zhì)控試劑,根據(jù)多肽在色譜中的保留時間進行校準,使用QuiC軟件C(Biognosys)對原始質(zhì)譜數(shù)據(jù)進行質(zhì)控。然后采用Pulsar[11]軟件對DDA采集模式得到的數(shù)據(jù)進行建庫,根據(jù)DDA參考數(shù)據(jù)庫對DIA數(shù)據(jù)結(jié)果進行分析以鑒定蛋白。

1.5 數(shù)據(jù)分析及生物信息學(xué)分析

通過Spectronaut X(Biognosys AG, CH)處理和分析DIA的原始數(shù)據(jù),用iRT肽段軟件矯正保留時間和質(zhì)量窗口,決定理想的提取窗口。蛋白質(zhì)定性標準:Precursor Threshold 1.0% FDR, Protein Threshold 1.0% FDR。Decoy數(shù)據(jù)庫采用mutated策略生成,Spectronaut進行自動校正,符合篩選條件的MS1都用來計算表達量。篩選FDR小于1.0%的前3個MS1肽段的峰面積的平均值用來進行蛋白質(zhì)的定量。

使用Spectronaut X、Pulsar軟件、Microsoft Excel和R包計算軟件對數(shù)據(jù)進行分析。選擇的差異顯著蛋白序列從UniProt中提取,并接受GO功能和KEGG通路分析,只有Plt;0.05的功能類別和通路具有顯著性。應(yīng)用STRING蛋白質(zhì)互作數(shù)據(jù)庫進行差異蛋白互作網(wǎng)絡(luò)(PPI)的分析。

2 結(jié) 果

2.1 血清蛋白質(zhì)鑒定

按照FDR≤0.01的過濾標準,共鑒定出滿足要求的蛋白823種,分子量范圍為8~1 010 ku。如圖1所示,分子量25~50 ku的蛋白質(zhì)最多,其次是8~25 ku和50~75 ku的蛋白,分布大于500 ku的蛋白質(zhì)最少,蛋白質(zhì)主要分布在8~250 ku。

2.2 血清差異表達蛋白質(zhì)

對鑒定出的蛋白質(zhì)進行差異表達分析,根據(jù)差異倍數(shù)絕對值(FC)大于1.5倍,log2(1.5)的絕對值≈0.58,校正P值得到Q valuelt;0.05篩選出53種具有顯著性差異的蛋白質(zhì)。由圖2可以看出,有26種上調(diào)的蛋白質(zhì),27種下調(diào)的蛋白質(zhì)。部分差異顯著性蛋白質(zhì)信息(根據(jù)上調(diào)蛋白、下調(diào)蛋白P值篩選排名前7的蛋白質(zhì))如表1所示,上調(diào)蛋白質(zhì)有SERPIN家族A成員7(SERPINA7)、鈣粘蛋白17(CDH17)、組織蛋白酶S(CTSS)、白細胞介素1受體輔助蛋白(IL1RAP)等;下調(diào)蛋白質(zhì)有SERPIN家族A成員5(SERPINA5)、脂質(zhì)運載蛋白2(LCN2)、氯化物通道附件2(CACL2)等。

2.3 差異表達蛋白質(zhì)的生物信息學(xué)分析

2.3.1 GO功能分析

GO功能注釋如圖3所示,差異表達的蛋白質(zhì)涉及到的生物過程包括細胞代謝過程(cellular process)、生物調(diào)節(jié)(biological regulation)、代謝過程(metabolic process)、單體過程(dingle-organism process)、對刺激的反應(yīng)(response to stimulus)、細胞成分組織或生物發(fā)生(cellular component organization or biogenesis)、生物過程的正向調(diào)節(jié)(positive regulation of biological process)等過程;差異表達蛋白質(zhì)的細胞組分包括細胞區(qū)域(cell part)、細胞器部分(organelle part)、大分子復(fù)合物(macromolecular complex)、膜封閉腔(membrane-enclosed lumen)、胞外區(qū)(extracellular region)、胞外區(qū)部分(extracellular region part)等;差異表達蛋白質(zhì)的分子功能包括:結(jié)合(binding)、催化活性(catalytic activity)、核酸結(jié)合轉(zhuǎn)錄因子活性(nucleic acid binding transcription factor activity)、分子功能調(diào)節(jié)劑(molecular function regulator)、分子轉(zhuǎn)換器活性(molecular transducer activity)、信號轉(zhuǎn)導(dǎo)活性(signal transducer activity)等。

2.3.2 KEGG通路分析

根據(jù)差異Q值排序前20條通路如圖4所示,其中最顯著的通路有蛋白酶體(proteasome)、長壽調(diào)節(jié)途徑-蠕蟲(longevity regulating pathway-worm)、精氨酸生物合成(arginine biosynthesis)、RNA降解(RNA degradation)等;其余包括甘油酯代謝(glycerolipid metabolism)、色氨酸代謝(tryptophan metabolism)、葉酸合成(folate biosynthesis)、Toll樣受體信號通路(toll-like receptor signaling pathway),丙氨酸、天冬氨酸和谷氨酸代謝(alanine, aspartate and glutamate metabolism)、N-甘氨酸生物合成(N-glycan biosynthesis)等通路。

2.4 差異表達蛋白質(zhì)互作分析

對53種差異顯著性蛋白質(zhì)進行生物學(xué)分析(包括GO、PPI網(wǎng)絡(luò)和Pathway),共篩選出6種差異顯著蛋白可能與早期妊娠存在關(guān)系,蛋白質(zhì)在P和NP組表達量見圖5,PPI網(wǎng)絡(luò)見圖6。大部分蛋白質(zhì)至少與其中一個蛋白質(zhì)存在相互作用。MMP1、SERPINA5、CTSS、妊娠帶蛋白(LOC100061763)處在關(guān)系互作網(wǎng)中的關(guān)鍵節(jié)點。

3 討 論

妊娠早期是動物妊娠建立和維持的關(guān)鍵時期,母體的多個器官、內(nèi)分泌系統(tǒng)及生理狀態(tài)都會發(fā)生相應(yīng)的變化[12]。血液中的成分會隨機體不同生理狀態(tài)而發(fā)生變化,血清常用于蛋白質(zhì)組學(xué)分析研究[13]。本研究對排卵后第13天妊娠與未妊娠母馬血清蛋白質(zhì)進行研究,KEGG富集顯示,差異顯著蛋白主要富集的通路有精氨酸的合成。此外,差異顯著蛋白質(zhì)還與粘著斑、ECM(細胞外基質(zhì),extracellular Matrix)受體相互作用、PI3K-Akt信號通路的激活有關(guān)。精氨酸是蛋白質(zhì)的組成部分,是多胺和一氧化氮的前體,對于胎盤形成、血管生成和生長至關(guān)重要[14]。由于妊娠時精氨酸的需求增加,因此與未妊娠狀態(tài)相比,妊娠狀態(tài)的精氨酸表達量降低[15]。本研究表明,精氨酸酶1(ARG1)和精氨酸琥珀酸裂解酶(ASL)在P組表達下調(diào),表明在妊娠期間這兩種物質(zhì)消耗,用以胎盤生長與胚胎發(fā)育。粘著斑是含有整合素的多蛋白結(jié)構(gòu),在許多細胞類型中提供細胞內(nèi)肌動蛋白細胞骨架和細胞外基質(zhì)之間的信號聯(lián)系[16]。它們通過在細胞粘附位點傳遞力來發(fā)揮作用,并作為信號傳導(dǎo)中心,許多細胞內(nèi)途徑可以調(diào)節(jié)細胞生長、增殖、存活、發(fā)育、組織修復(fù)、遷移和侵襲[17-18]。細胞外基質(zhì)通過與其表面受體(ECM受體)相互作用調(diào)節(jié)細胞增殖、分化和存活[19]。本研究中,粘著斑和ECM受體相互作用可能是通過調(diào)節(jié)細胞增殖、分化及生長從而參與早期妊娠。PI3K-Akt通路在各種細胞中經(jīng)常被激活,并促進許多細胞功能,包括增殖、粘附、遷移、侵襲和血管生成[19-20]。在人滋養(yǎng)層細胞中,抑制PI3K-Akt通路中的磷酸化可降低磷酸化內(nèi)皮型一氧化氮合酶和mTOR表達,從而顯著降低細胞增殖、遷移和侵襲[20-21]。相反,增加PI3K-Akt通路中的磷酸化通過促進細胞進入DNA合成期來調(diào)節(jié)細胞周期進程[19]。近年來,Lu等[22]已經(jīng)通過VEGF相關(guān)基因證明了PI3K-Akt通路在血管內(nèi)皮細胞中的血管生成功能。由此推測,PI3K-Akt通路可能參與滋養(yǎng)細胞的生長和血管生成,從而參與馬匹早期妊娠。

本研究共鑒定到823個蛋白,篩選出53個差異顯著性蛋白,26個蛋白上調(diào)、27個蛋白下調(diào)。通過GO和KEGG分析,進一步篩選到以下6個(MMP1、CTSS、IL1RAP、SERPINA5、LCN2、LOC100061763)可能與妊娠相關(guān)的差異顯著性蛋白質(zhì)。MMP1是最常見的基質(zhì)金屬蛋白酶之一,其定位于管腔內(nèi)和壁內(nèi)的細胞滋養(yǎng)層內(nèi)[23]。研究表明,MMP1參與血管生成,而其抑制作用與胎盤功能不全有關(guān)[24-25]。孕酮可以通過抑制MMP1的mRNA和蛋白質(zhì)水平以及激活性來維持妊娠狀態(tài)[26]。在本研究中,與NP組相比,MMP1在P組血清中的表達量下調(diào),可能是孕酮抑制其表達,使其在催化活性和結(jié)合能力減弱,在早期妊娠中的具體機制還需進一步探究。組織蛋白酶S(CTSS)是一種半胱氨酸蛋白酶,參與多種生理過程[27]。有研究表明,CTSS基因促進兔卵巢顆粒細胞的增殖,且CTSS基因激活導(dǎo)致孕酮相關(guān)基因上調(diào),并促進孕酮和雌二醇的分泌[28]。孕酮在早期妊娠中起關(guān)鍵作用[29],孕酮分泌不足會導(dǎo)致流產(chǎn)等現(xiàn)象[30]。在雌激素和孕酮的協(xié)同作用下,子宮發(fā)生增殖和分化[31]。妊娠期綿羊子宮胎盤組織中的組織蛋白酶及其抑制劑的表達發(fā)生了時間和細胞特異性變化,CTSS的表達主要在子宮內(nèi)膜致密層、子宮內(nèi)膜腔上皮和腺上皮細胞,可能在子宮重塑用于著床、胎盤形成中發(fā)揮重要作用[32]。研究結(jié)果顯示,CTSS在妊娠母馬血清中表達上調(diào),表明可能通過調(diào)控激素的分泌和參與子宮重塑及胚胎著床方面,從而參與妊娠維持。

豬孕體在妊娠第10天和第12天之間在形態(tài)上從球形延伸到管狀和絲狀形式,同時分泌雌激素(母體識別妊娠的信號)和細胞因子白細胞介素-1b(IL1B)[33]。IL1B具有兩種細胞表面受體,IL1受體1型(IL1R1)和IL1受體2型(IL1R2)[34]。IL1R1和IL1R2都結(jié)合IL1B并與IL1受體輔助蛋白(IL1RAP)異源二聚化。IL1RAP是激活I(lǐng)L1B細胞信號通路所必需的,因此IL1RAP在著床期的限制性表達表明其是豬子宮內(nèi)膜中IL1B細胞信號系統(tǒng)的關(guān)鍵調(diào)節(jié)劑[35]。Seo等[36]研究發(fā)現(xiàn),相比于發(fā)情期內(nèi),在妊娠第12天時,IL1RAP的表達量極顯著增加。在本研究中,與NP組相比,IL1RAP在P組血清中的表達量上調(diào),與Seo等[36]研究結(jié)果相似,表明IL1RAP可能通過信號傳導(dǎo)活性及分子結(jié)合能力增強從而參與早期妊娠過程。脂質(zhì)運載蛋白2(LCN2)是一種小分子糖蛋白,是屬于脂質(zhì)運載蛋白家族的25 ku分泌性糖蛋白[37-38]。研究表明,LCN2參與多種生物學(xué)過程,是一種多功能蛋白質(zhì),在轉(zhuǎn)運疏水分子、引起凋亡、促進細胞存活、鐵載體結(jié)合和抗菌反應(yīng)中發(fā)揮作用[37,39]。子宮內(nèi)膜LCN2通過其受體可以提供孕馬與其子宮內(nèi)膜所需的鐵和疏水性營養(yǎng)素[40]。Haneda等[40]研究發(fā)現(xiàn),馬妊娠第13天時在子宮中檢測到LCN2最低表達,妊娠第19天和妊娠25天表達量逐漸增加。本研究中,相對于NP組,在P組血清中LCN2表達下調(diào),與Haneda等[40]研究結(jié)果一致,表明此妊娠節(jié)點血清中的LCN2的表達還未顯著增加。

絲氨酸蛋白酶抑制劑家族A成員5(SERPINA5)是一種分泌性蛋白質(zhì),是絲氨蛋白酶抑制劑超家族的成員[41],可抑制血流中的蛋白酶以調(diào)節(jié)其活性,并可以降低侵襲、轉(zhuǎn)移潛能和血管生成,以限制癌癥的發(fā)展[42]。SERPINA5過表達在胎盤發(fā)育早期會干擾絨毛外滋養(yǎng)細胞(EVT)的侵襲[41],EVT對子宮的侵襲和螺旋動脈的重塑是保障發(fā)育中的胎盤及胚胎組織營養(yǎng)供給的必要條件,EVT侵襲不足會導(dǎo)致先兆子癇[43]等病癥發(fā)生。研究發(fā)現(xiàn),SERPINA5的過表達導(dǎo)致懷孕大鼠出現(xiàn)類似先兆子癇和妊娠高血壓[41]綜合征。在本研究中,SERPINA5在P組中表達下調(diào),表明妊娠母馬中SERPINA5未干擾EVT侵襲,胚胎發(fā)育較好。妊娠帶蛋白(Pregnancy zone protein),是血清中的一種蛋白質(zhì)[44],也是免疫抑制劑,它通過與胎盤蛋白14合作選擇性調(diào)節(jié)T細胞活化介導(dǎo)的免疫偏離來幫助胎兒存活[45]。De等[46]研究發(fā)現(xiàn),在豬妊娠第12天和第16天血清時妊娠帶蛋白的表達量上調(diào)。而在本研究中,排卵后第13天P組妊娠帶蛋白表達下調(diào),推測可能與其分子結(jié)合能力減弱有關(guān),從而降低與胎盤蛋白的結(jié)合,但其在妊娠中調(diào)控機制還需進一步研究。

盡管本試驗的樣本量相對較小,但與之前對馬血液蛋白質(zhì)組學(xué)的研究相似[2,6,40]。研究的局限性是使用單一的時間點來收集數(shù)據(jù)和并未對篩選出的妊娠相關(guān)蛋白進行絕對定量分析。未來需要多采樣時間點的研究及妊娠相關(guān)蛋白的絕對定量分析來評估妊娠期間蛋白質(zhì)組的變化。

4 結(jié) 論

本研究利用4D-DIA技術(shù)首次對排卵后第13天妊娠與未妊娠母馬血清蛋白質(zhì)組進行分析,共篩選出53個差異顯著性蛋白,主要富集在細胞代謝、生物調(diào)節(jié)等生物過程和精氨酸代謝、粘著斑、PI3K-Akt信號等通路,本研究初步篩選出6種妊娠差異蛋白,其中CTSS和IL1RAP上調(diào),MMP1、LCN2、SERPINA5和LOC100061763下調(diào),為后續(xù)妊娠早期母馬特異性蛋白的篩選奠定基礎(chǔ)。

參考文獻(References):

[1] KACZYNSKI P,GORYSZEWSKA-SZCZUREK E,BARYLA M,et al.Novel insights into conceptus-maternal signaling during pregnancy establishment in pigs[J].Mol Reprod Dev,2023,90(7):658-672.

[2] DENG L,LI Z,TANG C,et al.Quantitative analysis of the serum proteome during early pregnancy in mares[J].Anim Sci J,2022,93(1):e13727.

[3] 王 驍,陳 霞,張海蘭,等.B超在馬發(fā)情鑒定和早期妊娠診斷中的應(yīng)用[J].畜牧與獸醫(yī),2018,50(4):17-21.

WANG X,CHEN X,ZHANG H L,et al.Application of B-scan in estrus detection and early diagnosis of pregnancy in horses[J].Animal Husbandry and Veterinary Medicine,2018,50(4):17-21.(in Chinese)

[4] KLEIN C,SCOGGIN K E,EALY A D,et al.Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy[J].Biol Reprod,2010,83(1):102-113.

[5] MEIER F,BRUNNER A D,F(xiàn)RANK M,et al.diaPASEF:parallel accumulation-serial fragmentation combined with data-independent acquisition[J].Nat Methods,2020,17(12):1229-1236.

[6] PENNINGTON P M,SPLAN R K,JACOBS R D,et al.Influence of reproductive status on equine serum proteome:preliminary results[J]. J Equine Vet Sci,2021,105:103724.

[7] DENG L,HAN Y W,TANG C,et al.Label-free mass spectrometry-based quantitative proteomics analysis of serum proteins during early pregnancy in jennies (Equus asinus)[J].Front Vet Sci,2020,7:569587.

[8] ZHAI Y Y,XIA F,SHI L T,et al.Early pregnancy markers in the serum of ewes identified via proteomic and metabolomic analyses[J].Int J Mol Sci,2023,24(18):14054.

[9] THOMSON E E,BELTMAN M E,MCALOON C G,et al.Determining the clinical utility of a single pre-breeding examination for predicting subsequent reproductive performance in seasonal pasture-based dairy heifers[J].Theriogenology,2023,207:11-18.

[10] HENNEKE D R,POTTER G D,KREIDER J L,et al.Relationship between condition score,physical measurements and body fat percentage in mares[J].Equine Vet J,1983,15(4):371-372.

[11] KIM Y J,CHAMBERS A G,CECCHI F,et al.Targeted data-independent acquisition for mass spectrometric detection of RAS mutations in formalin-fixed,paraffin-embedded tumor biopsies[J].J Proteomics,2018,189:91-96.

[12] 梁明月.妊娠早期奶牛乳外泌體miRNA的變化研究[D].咸陽楊凌:西北農(nóng)林科技大學(xué),2021.

LIANG M Y.Varieties of miRNA in milk exosomes of dairy cows in early pregnancy[D].XianyangYangling:Northwest Aamp;F University,2021.(in Chinese)

[13] ZHU Y Y.Plasma/serum proteomics based on mass spectrometry[J].Protein Pept Lett,2024,31(3):192-208.

[14] VIRDIS S,LUISE D,BOSI P,et al.A meta-analytical approach for evaluating the effect of arginine supplementation on the productive performance of sows during gestation[J].Anim Feed Sci Technol,2023,306:115807.

[15] BJRKE-JENSSEN A,UELAND P M,BJRKE-MONSEN A L.Amniotic fluid arginine from gestational weeks 13 to 15 is a predictor of birth weight,length,and head circumference[J]. Nutrients,2017,9(12):1357.

[16] MARTíNEZ P T,NAVAJAS P L,LIETHA D.FAK structure and regulation by membrane interactions and force in focal adhesions[J].Biomolecules,2020,10(2):179.

[17] LARSEN M,ARTYM V V,GREEN J A,et al.The matrix reorganized:extracellular matrix remodeling and integrin signaling[J]. Curr Opin Cell Biol,2006,18(5):463-471.

[18] GUO S K,CAO M L,WANG X D,et al.Changes in transcriptomic profiles in different reproductive periods in yaks[J]. Biology,2021,10(12):1229.

[19] LIU C,LIANG X H,WANG J,et al.Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways[J].Biomed Pharmacother,2017,88:95-101.

[20] XU Y L,SUI L L,QIU B T,et al.ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia[J].Am J Physiol Cell Physiol,2019,316(4):C481-C491.

[21] WANG L J,ZHANG Y,QU H M,et al.Reduced ELABELA expression attenuates trophoblast invasion through the PI3K/AKT/mTOR pathway in early onset preeclampsia[J].Placenta,2019,87:38-45.

[22] LU J M,ZHANG Z Z,MA X,et al.Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy [J].Exp Eye Res,2020,190:107886.

[23] MASHKINA E V,KOVALENKO K A,MARAKHOVSKAYA T A,et al.Association of gene polymorphisms of matrix metalloproteinases with reproductive losses in the first trimester of pregnancy[J].Russ J Genet,2016,52(8):853-859.

[24] LIAN I A,TOFT J H,OLSEN G D,et al.Matrix metalloproteinase 1 in pre-eclampsia and fetal growth restriction:reduced gene expression in decidual tissue and protein expression in extravillous trophoblasts[J].Placenta,2010,31(7):615-620.

[25] GOYAL R,YELLON S M,LONGO L D,et al.Placental gene expression in a rat ‘model’of placental insufficiency[J]. Placenta, 2010,31(7):568-575.

[26] 呂 燕,苗治晶,丁虹娟.基質(zhì)金屬蛋白酶在產(chǎn)科領(lǐng)域的研究進展[J].醫(yī)學(xué)綜述,2017,23(20):3958-3962.

LYU Y,MIAO Z J,DING H J.Research process in the roles of matrix metalloproteases in obstetrics[J].Medical Recapitulate, 2017,23(20):3958-3962.(in Chinese)

[27] SMYTH P,SASIWACHIRANGKUL J,WILLIAMS R,et al.Cathepsin S (CTSS) activity in health and disease-A treasure trove of untapped clinical potential[J].Mol Aspects Med,2022,88:101106.

[28] SONG G H,JIANG Y X,WANG Y L,et al.Modulation of Cathepsin S (CTSS) regulates the secretion of progesterone and estradiol,proliferation,and apoptosis of ovarian granulosa cells in rabbits[J].Animals (Basel),2021,11(6):1770.

[29] WAGNER L H,AURICH J,MELCHERT M,et al.Low progesterone concentration in early pregnancy is detrimental to conceptus development and pregnancy outcome in horses[J].Anim Reprod Sci,2023,257:107334.

[30] KE R W.Endocrine basis for recurrent pregnancy loss[J].Obstet Gynecol Clin North Am,2014,41(1):103-112.

[31] MURPHY C R.The plasma membrane transformation of uterine epithelial cells during pregnancy[J].J Reprod Fertil Suppl,2000,55:23-28.

[32] SONG G,BAZER F W,SPENCER T E.Differential expression of cathepsins and cystatin C in ovine uteroplacental tissues[J]. Placenta,2007,28(10):1091-1098.

[33] BAZER F W,WU G Y,SPENCER T E,et al.Novel pathways for implantation and establishment and maintenance of pregnancy in mammals[J].Mol Hum Reprod,2010,16(3):135-152.

[34] SUBRAMANIAM S,STANSBERG C,CUNNINGHAM C.The interleukin 1 receptor family[J].Dev Comp Immunol,2004, 28(5):415-428.

[35] DEVIREDDY L R,TEODORO J G,RICHARD F A,et al.Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation[J].Science,2001,293(5531):829-834.

[36] SEO H,CHOI Y,SHIM J,et al.Regulatory mechanism for expression of IL1B receptors in the uterine endometrium and effects of IL1B on prostaglandin synthetic enzymes during the implantation period in pigs[J].Biol Reprod,2012,87(2):31.

[37] LIU Y F,DENG W B,LI S Y,et al.Progesterone induces the expression of lipocalin-2 through Akt-c-Myc pathway during mouse decidualization[J].FEBS Lett,2016,590(16):2594-2602.

[38] ASAF S,MAQSOOD F,JALIL J,et al.Lipocalin 2-not only a biomarker:a study of current literature and systematic findings of ongoing clinical trials[J].Immunol Res,2023,71(3):287-313.

[39] FLOWER D R.The lipocalin protein family:structure and function[J].Biochem J,1996,318(1):1-14.

[40] HANEDA S,NAGAOKA K,NAMBO Y,et al.Expression of uterine lipocalin 2 and its receptor during early- to mid-pregnancy period in mares [J].J Reprod Dev,2017,63(2):127-133.

[41] FAN M Y,XIONG X F,HAN L,et al.SERPINA5 promotes tumour cell proliferation by modulating the PI3K/AKT/mTOR signalling pathway in gastriccancer[J].J Cell Mol Med,2022,26(18):4837-4846.

[42] LONG Y,ZENG S S,GAO F,et al.SERPINA5 may promote the development of preeclampsia by disruption of the uPA/uPAR pathway[J].Transl Res,2023,251:14-26.

[43] ZHANG Y G,ZHANG Y P,ZHAO L M,et al.Plasma SerpinA5 in conjunction with uterine artery pulsatility index and clinical risk factor for the early prediction of preeclampsia[J].PLoS One,2021,16(10):e0258541.

[44] VON SCHOULTZ B,STIGBRAND T.Purification of the “pregnancy zone” protein[J].Acta Obstet Gynecol Scand,1973, 52(1):51-57.

[45] SKORNICKA E L,KIYATKINA N,WEBER M C,et al.Pregnancy zone protein is a carrier and modulator of placental protein-14 in T-cell growth and cytokine production[J].Cell Immunol,2004,232(1-2):144-156.

[46] DE A K,ALI M A,CHUTIA T,et al.Comparative serum proteome analysis reveals potential early pregnancy-specific protein biomarkers in pigs[J].Reprod Fertil Dev,2019,31(3):613-631.

(編輯 郭云雁)

猜你喜歡
伊犁馬妊娠血清
補喂植物多酚對伊犁馬1000m速步賽運動成績及血氣指標的影響
中國飼料(2022年5期)2022-04-26 13:42:40
血清免疫球蛋白測定的臨床意義
中老年保健(2021年3期)2021-08-22 06:50:04
雪夜
西部(2021年3期)2021-07-11 15:44:17
Meigs綜合征伴血清CA-125水平升高1例
慢性鼻-鼻竇炎患者血清IgE、IL-5及HMGB1的表達及其臨床意義
不同比賽途程伊犁馬賽前心率變異性比較與分析
1例妊娠合并甲狀旁腺功能亢進患者的護理
今日健康(2016年12期)2016-11-17 13:54:50
妊娠期糖尿病患者的營養(yǎng)健康指導(dǎo)
科技資訊(2016年18期)2016-11-15 08:00:09
高齡孕婦的妊娠結(jié)局及其分娩相關(guān)危險因素的臨床分析
妊娠期糖尿病剖宮產(chǎn)術(shù)后護理
武威市| 申扎县| 安西县| 贡山| 潮州市| 虹口区| 海城市| 乌鲁木齐县| 金堂县| 海安县| 宽甸| 罗江县| 原平市| 平潭县| 柞水县| 苏尼特左旗| 通山县| 治县。| 清水县| 阿克苏市| 长春市| 木兰县| 彰武县| 肥西县| 怀来县| 册亨县| 平原县| 克什克腾旗| 香河县| 九寨沟县| 什邡市| 伊春市| 泾源县| 泗洪县| 长武县| 余江县| 佛坪县| 广灵县| 灵璧县| 胶州市| 呼玛县|