摘要:【目的】明確舞毒蛾(Lymantria dispar)谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferase, GST)與楊樹(shù)主要次生物質(zhì)的結(jié)合能力和結(jié)合方式,為解析GST介導(dǎo)的舞毒蛾對(duì)楊樹(shù)次生物質(zhì)適應(yīng)性機(jī)制提供理論基礎(chǔ),并通過(guò)GST分子模擬篩選結(jié)合能力強(qiáng)的次生物質(zhì),為舞毒蛾的科學(xué)防治提供新的策略?!痉椒ā炕赟wiss-model算法,經(jīng)序列多重比對(duì)后,以氨基酸序列一致性大于30%的GST蛋白作為建模模板,對(duì)10條舞毒蛾GST蛋白進(jìn)行同源建模,成功構(gòu)建其三維結(jié)構(gòu)。隨后,利用SAVES軟件對(duì)已構(gòu)建的GST蛋白三維結(jié)構(gòu)進(jìn)行評(píng)估。從Pubchem網(wǎng)站獲得6種楊樹(shù)次生物質(zhì)的3D結(jié)構(gòu)并運(yùn)用Discovery Studio 2019軟件對(duì)10種GST模型和6種楊樹(shù)次生物質(zhì)進(jìn)行分子對(duì)接,通過(guò)結(jié)合能和可視化分析其對(duì)接情況?!窘Y(jié)果】10種舞毒蛾GST蛋白同源建模所得模型均滿足拉氏構(gòu)象圖中氨基酸位于最佳合理區(qū)和允許區(qū)域的數(shù)量大于90%的條件;三維結(jié)構(gòu)與一級(jí)結(jié)構(gòu)的兼容性評(píng)分大于0.2的氨基酸數(shù)量大于80%;所得ERRAT值為91.73%~97.82%,可知10種GST模型評(píng)估合格。分子對(duì)接結(jié)果表明,GST與楊樹(shù)次生物質(zhì)分子間均含有氫鍵及共價(jià)鍵。其中:與水楊苷結(jié)合最優(yōu)蛋白為L(zhǎng)dGSTs2,結(jié)合能為-45.70 kJ/mol;與咖啡酸結(jié)合最優(yōu)蛋白為L(zhǎng)dGSTz2,結(jié)合能為-43.96 kJ/mol;與鄰苯二酚和蘆丁結(jié)合最優(yōu)蛋白為L(zhǎng)dGSTz1,結(jié)合能分別為-25.86和-95.46 kJ/mol;與黃酮結(jié)合最優(yōu)蛋白為L(zhǎng)dGSTe2,結(jié)合能為-32.49 kJ/mol;與槲皮素結(jié)合最優(yōu)蛋白為L(zhǎng)dGSTo2,結(jié)合能為-62.09 kJ/mol。【結(jié)論】舞毒蛾GST與楊樹(shù)次生物質(zhì)結(jié)合能均≤-5 kJ/mol均含有氫鍵和共價(jià)鍵,同種楊樹(shù)次生物質(zhì)與不同GSTs的結(jié)合能相似,表明舞毒蛾GST與楊樹(shù)次生物質(zhì)之間具有較好的親和力并且分子間結(jié)合穩(wěn)定;GST對(duì)次生物質(zhì)特異性不高,但同種GST與不同的楊樹(shù)次生物質(zhì)的親和力強(qiáng)弱存在差異。研究結(jié)果可為添加次生物質(zhì)以降低殺蟲(chóng)劑抗藥性提供理論依據(jù)。
關(guān)鍵詞:舞毒蛾;谷胱甘肽S-轉(zhuǎn)移酶;楊樹(shù)次生物質(zhì);同源建模;分子對(duì)接;結(jié)合能
中圖分類號(hào):S763; Q89""""" 文獻(xiàn)標(biāo)志碼:A開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
文章編號(hào):1000-2006(2024)05-0211-10
Structural prediction of glutathione S-transferase (GST) in Lymantria dispar and its molecular docking analysis with poplar secondary metabolites
XIE Jiaming1, CAO Chuanwang1*, SUN Lili1, LI Mingjun2, ZHANG Ruiqiong1
(1. Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China; 2. Ningcheng County Kuntouhe Forest Farm of Inner Mongolia, Ningcheng 024228, China)
Abstract: 【Objective】This study aims to" determine the binding ability and mode of glutathione S-transferase (GST) in Lymantria dispar to key poplar secondary metabolites, provide a foundational theory for the adaptation mechanism of LdGST to these metabolites. Additionally, The" GST molecular simulation was used to identify the best binding secondary metabolites, offering a novel strategy for controlling Lymantria dispar.【Method】Homology modeling, multiple sequence alignment, and three-dimensional structure determination of 10 GSTs were performed using templates with over 30% similarity via the Swiss-model website. The 10 GST models were evaluated using SAVES software. The 3D structures of six poplar secondary metabolites were obtained from the PubChem website. Molecular docking of the 10 GST models with the six poplar secondary metabolites was conducted using Discovery Studio 2019 Client software, and" docking results analyzed through combined energy and visualization.【Result】 The models obtained through homology modeling of the 10 GSTs met the criteria, with more than 90% of amino acids in the Ramachandran Plots most favored and additional allowed regions. The percentage of amino acids with a compatibility score above 0.2 between the three-dimensional and primary structures was over 80%, and the ERRAT value ranged from 91.73% to 97.82%, indicating the models were qualified. Molecular docking revealed that the binding of GST to poplar secondary metabolites involved hydrogen and covalent bonds. The optimal protein bindings were as follows: Salicin, LdGSTs2 with a binding energy of -45.70 kJ/mol. Caffeic acid, LdGSTz2 with a binding energy of -43.96 kJ/mol. Catechol and rutin, LdGSTz1 with binding energies of -25.86" and -95.46 kJ/mol, respectively. Flavonoids, LdGSTe2 with a binding energy of -32.49 kJ/mol. Quercetin, LdGSTo2 with a binding energy of -62.09 kJ/mol.【Conclusion】The binding energy of LdGSTs to poplar secondary metabolites are all" below -5 kJ/mol, involving hydrogen and covalent bonds. The similar binding energy of the same poplar secondary metabolites to different GSTs suggests good affinity and stable intermolecular binding, with low specificity of GST for secondary metabolites. However, the affinity of the same GST to different poplar secondary metabolites varied. These results provide a theoretical basis for reducing insecticide resistance by incorporating secondary metabolites.
Keywords:Lymantria dispar; glutathione S-transferase(GST); poplar secondary metabolites; homology modeling; molecular docking; binding energy
分子對(duì)接是研究蛋白質(zhì)結(jié)合的一種節(jié)約成本且快速的方法,可以提供蛋白質(zhì)和其配體結(jié)合模式的可視化結(jié)果,同時(shí)在短時(shí)間內(nèi)獲得大量的蛋白質(zhì),用于化學(xué)分子的前期初篩并比較、驗(yàn)證與蛋白質(zhì)的結(jié)合特性,篩選出結(jié)合能力更強(qiáng)的蛋白質(zhì)。然而熒光競(jìng)爭(zhēng)法和體外檢測(cè)法是驗(yàn)證蛋白與化學(xué)分子結(jié)合情況的直接證據(jù),同樣是十分重要的研究方法。但熒光競(jìng)爭(zhēng)法和體外檢測(cè)法過(guò)于耗時(shí)而且費(fèi)用昂貴,無(wú)法在短時(shí)間內(nèi)通過(guò)分析結(jié)果獲知大量蛋白質(zhì)與化學(xué)分子的結(jié)合特性[1]。目前,在昆蟲(chóng)的化學(xué)感受研究領(lǐng)域,分子對(duì)接主要應(yīng)用于氣味結(jié)合蛋白(odorant-binding protein, OBP)和化學(xué)感受蛋白(chemosensory protein, CSP)的功能預(yù)測(cè)以及與小分子物質(zhì)的結(jié)合方面[2],研究昆蟲(chóng)嗅覺(jué)和味覺(jué)感受蛋白的感受機(jī)制,進(jìn)而分析氣味小分子與OBP和CSP結(jié)合對(duì)昆蟲(chóng)行為產(chǎn)生的影響,可為開(kāi)發(fā)害蟲(chóng)抑制劑和利用益蟲(chóng)新技術(shù)等提供理論參考[3]。分子對(duì)接技術(shù)已在中華蜜蜂(Apis cerana)[4-6]、煙粉虱(Bemisia tabaci)[7]、薇甘菊頸盲蝽(Pachypeltis micranthus)[8]等昆蟲(chóng)中進(jìn)行了CSP研究。在禾谷縊管蚜(Rhopalosiphum padi)[9]、斜紋夜蛾(Spodoptera litura)[10-11]、小菜蛾(Plutella xylostella)[12]、東亞飛蝗(Locusta migratoria manilensis)[13]、榆紫葉甲(Ambrostoma quadriimpressum)[14]等昆蟲(chóng)的OBP研究中均有報(bào)道。對(duì)中華蜜蜂的觸角特異蛋白(antenna special protein, AcerASP2)的研究中,分子對(duì)接后的結(jié)合能與熒光結(jié)合解離常數(shù)呈正相關(guān),從而推導(dǎo)出AcerASP2和氣味分子之間的親和關(guān)系[3]?,F(xiàn)如今分子對(duì)接技術(shù)的快速發(fā)展,使其在研究解毒酶和殺蟲(chóng)劑的相互作用、揭示代謝殺蟲(chóng)劑的分子機(jī)制等領(lǐng)域成為可能[15]。家蠅(Musca domestica)GABA受體與氟蟲(chóng)腈的結(jié)合特性分析表明,GABA受體與氟蟲(chóng)腈的結(jié)合能力在體外熒光標(biāo)記實(shí)驗(yàn)中顯示出的親和常數(shù)和分子對(duì)接中結(jié)合能也呈正相關(guān)[16],證明分子對(duì)接可以彌補(bǔ)熒光競(jìng)爭(zhēng)結(jié)合和體外實(shí)驗(yàn)耗時(shí)長(zhǎng)的缺點(diǎn),并且其結(jié)果準(zhǔn)確。谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferase, GST)是廣泛分布于動(dòng)植物、昆蟲(chóng)以及微生物體內(nèi)的多功能超家族酶系。昆蟲(chóng)體內(nèi)GST可以根據(jù)GST功能、編碼基因相似度、組織形式和生化特性,分為Delta、Epsilon、Omega、Sigma、Theta和Zeta 共6個(gè)家族[17]。 GST催化還原型谷胱甘肽(GSH)和有毒物質(zhì)之間的耦合反應(yīng),使有毒物質(zhì)更易被溶解、排出并最終解毒[18]。Chen等[19]首次解析了第1個(gè)Delta家族的GST蛋白岡比亞按蚊(Anopheles gambiae)AgGSTd1-6的晶體結(jié)構(gòu)(PDB ID: 1PN9)。此后,Kakuta等[20]解析了家蠶(Bombyx mori)BmGSTu的晶體結(jié)構(gòu)(PDB ID: 3AY8),同時(shí)在結(jié)合區(qū)域內(nèi)還發(fā)現(xiàn)了具有催化功能的關(guān)鍵氨基酸殘基。已有研究表明斜紋夜蛾(Spodoptera litura)和家蠶GST在代謝次生物質(zhì)方面具有一定作用[21-22]。
舞毒蛾(Lymantria dispar)屬鱗翅目毒蛾科,是一種分布廣、食性雜、能順風(fēng)遷移并且危害嚴(yán)重的世界性害蟲(chóng)。據(jù)報(bào)道可為害500多種植物[23],目前主要利用化學(xué)農(nóng)藥來(lái)防治,但易造成“3R”(抗藥性、再增猖獗和殘留)問(wèn)題,因此開(kāi)發(fā)新型綠色殺蟲(chóng)劑成為研究的重點(diǎn),而來(lái)源于植物產(chǎn)生的次生物質(zhì)是植物源殺蟲(chóng)劑有效成分,具有低毒性、低殘留和無(wú)污染等優(yōu)點(diǎn)[24]。舞毒蛾GST與家蠶的GST親緣關(guān)系近,可能具有類似的生理功能。近年來(lái),關(guān)于舞毒蛾GST的研究多集中于分析不同農(nóng)藥和植物次生物質(zhì)對(duì)GST活性和基因表達(dá)的影響。鄢杰明等[25-26]根據(jù)毒力測(cè)定結(jié)果,分別用48h LC50劑量(半致死濃度)甲氧蟲(chóng)酰肼和24 h LC50劑量多殺菌素處理白樺葉片飼喂舞毒蛾,發(fā)現(xiàn)甲氧蟲(chóng)酰肼和多殺菌素對(duì)舞毒蛾GST活性抑制顯著;馮春富等[27]通過(guò)噴施茉莉酸甲酯、茉莉酮、舞毒蛾幼蟲(chóng)取食和松毛蟲(chóng)幼蟲(chóng)取食4種方法處理落葉松幼苗,結(jié)果顯示茉莉酸甲酯和舞毒蛾幼蟲(chóng)取食處理的幼苗飼喂舞毒蛾幼蟲(chóng),其體內(nèi)GST活性顯著降低,表明誘導(dǎo)植物產(chǎn)生抗性可以有效抑制GST的活性。Ma等[28]發(fā)現(xiàn)蘆丁和水楊苷顯著誘導(dǎo)舞毒蛾幼蟲(chóng)LdGSTe4和LdGSTo1基因表達(dá),LdGSTe4基因沉默影響舞毒蛾對(duì)蘆丁和水楊苷適應(yīng)性。從苦參(Sophora flavesoens)、苦豆子(S. alopecuroides)和白屈菜(Chelidonium majus)等植物中提取的苦參堿、氧化苦參堿和白屈菜總堿會(huì)導(dǎo)致舞毒蛾死亡,其致毒機(jī)制與GST活性抑制相關(guān)[29]。研究發(fā)現(xiàn)舞毒蛾GST(LdGSTe1、LdGSTe2、LdGSTs2和LdGSTo1)沉默體取食咖啡酸、水楊苷、蘆丁、槲皮素、鄰苯二酚、黃酮等6種楊樹(shù)次生物質(zhì)后存活率與注射dsGFP的舞毒蛾相比顯著降低,表明GST基因參與舞毒蛾對(duì)植物次生物質(zhì)解毒代謝過(guò)程,暗示GST基因在解毒次生物質(zhì)方面發(fā)揮重要作用[17, 30]。將次生物質(zhì)與溴氰蟲(chóng)酰胺聯(lián)用后,舞毒蛾的存活率低于溴氰蟲(chóng)酰胺單劑處理,GST的活性在次生物質(zhì)與溴氰蟲(chóng)酰胺聯(lián)合作用下增強(qiáng),表明次生物質(zhì)可能與GST優(yōu)先結(jié)合,從而使殺蟲(chóng)劑的代謝效率降低、毒性增強(qiáng)[31]。盡管舞毒蛾GST的研究報(bào)道較多,但利用分子對(duì)接技術(shù)研究GST的報(bào)道甚少。本研究以舞毒蛾為研究對(duì)象,選擇10個(gè)舞毒蛾GST基因和6種楊樹(shù)次生物質(zhì),通過(guò)分子對(duì)接技術(shù)分析舞毒蛾GST基因與楊樹(shù)主要次生物質(zhì)的結(jié)合能力,為篩選新型綠色殺蟲(chóng)劑提供理論基礎(chǔ)。
1 材料與方法
1.1 供試材料
10種GST全長(zhǎng)基因序列來(lái)自于舞毒蛾的轉(zhuǎn)錄組數(shù)據(jù),并且課題組在前期研究中通過(guò)基因克隆驗(yàn)證了其序列信息的準(zhǔn)確性和完整性[17]。將前期鑒定的6種楊樹(shù)主要次生物質(zhì)水楊苷、咖啡酸、鄰苯二酚、黃酮、蘆丁、槲皮素,分別與10種GST基因進(jìn)行分子對(duì)接。從pubchem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov/)中獲得配體小分子模型,編號(hào)分別為No.439503、No.689043、No.289、No.10680、No.5280805、No.5280343,利用Pymol 2.2.0軟件模擬其三維結(jié)構(gòu)。
1.2 研究方法
1.2.1 舞毒蛾GST基因同源建模
利用Swiss-model在線網(wǎng)站(https://www.swissmodel.expasy.org/)的模板搜索功能,搜索與舞毒蛾GST氨基酸序列一致性≥30%,且模板覆蓋率達(dá)到95%以上的模板。然后選擇排名第一的蛋白晶體結(jié)構(gòu)作為建模模板,模板序列與舞毒蛾GST氨基酸序列通過(guò)Bioedit 7.2.6軟件進(jìn)行多序列比對(duì),分析GST氨基酸序列的相似性,最后對(duì)舞毒蛾GST分子進(jìn)行三維結(jié)構(gòu)建模。
1.2.2 同源建模評(píng)價(jià)
舞毒蛾GSTs蛋白同源建模評(píng)價(jià)參照郭冰等[1]的分析方法。通過(guò)在線評(píng)估網(wǎng)站(https://saves.mbi.ucla.edu/)中Procheck、Verify_3D和ERRAT程序進(jìn)行評(píng)估。Procheck程序通過(guò)計(jì)算氨基酸落在最佳合理區(qū)、較合適區(qū)、勉強(qiáng)接受區(qū)和不合理區(qū)中的數(shù)量來(lái)分析蛋白質(zhì)主鏈中氨基酸殘基的二面角是否分布在合理范圍內(nèi)來(lái)評(píng)價(jià)蛋白模型是否合理,當(dāng)拉氏構(gòu)象圖≥90%氨基酸殘基位于最佳合理區(qū),則認(rèn)為蛋白模型合理。運(yùn)用Verify_3D程序評(píng)價(jià)時(shí),三維結(jié)構(gòu)與一級(jí)結(jié)構(gòu)(3D-1D)之間關(guān)系的得分大于0.2時(shí)的氨基酸≥80%,認(rèn)為蛋白模型是合理的。ERRAT程序是通過(guò)分析其誤差值在置信區(qū)間內(nèi)的氨基酸數(shù)量占總氨基酸數(shù)量的比例為ERRAT值,當(dāng)ERRAT值gt;50%時(shí),則認(rèn)為該模型是合理的[13]。為提高結(jié)果準(zhǔn)確性,當(dāng)所構(gòu)建的模型合理性符合以上3個(gè)標(biāo)準(zhǔn)時(shí),則可用于后續(xù)分析。
1.2.3 舞毒蛾GST與6種楊樹(shù)次生物質(zhì)的分子對(duì)接
采用Discovery Studio 2019(DS 2019)軟件的精準(zhǔn)對(duì)接功能(CDOCK)將GST模型和次生物質(zhì)進(jìn)行分子對(duì)接。首先通過(guò)隨機(jī)搜索小分子的不同構(gòu)象,將不同的構(gòu)象在受體的活性部位區(qū)域優(yōu)化;隨后在DS 2019中優(yōu)化蛋白質(zhì)模型,刪除蛋白質(zhì)的其他構(gòu)象,保留唯一的最佳構(gòu)象,將不完整的氨基酸殘基補(bǔ)充完整;然后對(duì)蛋白和小分子進(jìn)行加氫處理,對(duì)小分子同時(shí)進(jìn)行能量最小化等處理。通過(guò)DS 2019軟件搜索結(jié)合位點(diǎn),運(yùn)行CDOCK程序,使每個(gè)小分子的不同構(gòu)象分別與每個(gè)GST的最優(yōu)蛋白模型對(duì)接,對(duì)接結(jié)果生成10個(gè)最佳構(gòu)象。按照結(jié)合能排序,根據(jù)結(jié)合能越低、分子結(jié)合越穩(wěn)定、親和力越好的原則,選取結(jié)合能最小的構(gòu)象進(jìn)行分析評(píng)價(jià)。
2 結(jié)果與分析
2.1 舞毒蛾10個(gè)GST同源建模中模板搜索結(jié)果
經(jīng)序列比對(duì)分析(圖1),舞毒蛾GSTo1與家蠶GSTo3(模板編號(hào):3rbt.1.A)氨基酸序列一致性最高,相似度59%,模板覆蓋率100%;舞毒蛾GSTo2氨基酸序列與家蠶GSTo2(模板編號(hào):3wd6.1.A)一致性最高,相似度為41%,模板覆蓋率為93%;搜索到LdGSTs1和LdGSTs2氨基酸序列一致性最高的模板為德國(guó)小蠊(Blattella germanica)Blag5(模板編號(hào):4q5r.1.A),相似度分別為36%和40%,模板覆蓋率均為93%;搜索到LdGSTt1氨基酸序列一致性最高的模板是人類Homo GSTt1(模板編號(hào):2c3n.1.A),相似度為38%,模板覆蓋率為95%;搜索到LdGSTz1和LdGSTz2氨基酸序列一致性最高的模板是人類HomoGSTz1(模板編號(hào):1fw1.1.A),相似度分別為46%和40%,模板覆蓋率分別為100%和97%;搜索到LdGSTe1、LdGSTe2和LdGSTe3氨基酸序列一致性最高的模板是黑腹果蠅(Drosophila melanogaster)GSTe7(模板編號(hào):4png.1.A),相似度分別為37%、38%、42%,模板覆蓋率分別為95%、96%、96%;以上GSTs模板均符合Swiss-model同源模建序列一致性及模板覆蓋率條件,基于上述模板構(gòu)建了舞毒蛾GST同源蛋白三維結(jié)構(gòu)模型(圖2)。
2.2 舞毒蛾GST同源建模分析
舞毒蛾10個(gè)GST蛋白結(jié)構(gòu)是二聚體,包含a鏈和b鏈,具有β折疊和5~6個(gè)α-螺旋,從而穩(wěn)定GST整體結(jié)構(gòu)。分析表明建模所得舞毒蛾10個(gè)GST三維結(jié)構(gòu)模型均具有該典型結(jié)構(gòu)(圖2)。
2.3 舞毒蛾GST同源建模結(jié)果評(píng)價(jià)
2.3.1 GST模型的Procheck評(píng)價(jià)
所得的拉氏構(gòu)象圖中LdGSTe1、LdGSTe2、LdGSTe3、LdGSTo1、LdGSTo2、LdGSTs1、LdGSTs2、LdGSTt1、LdGSTz1和LdGSTz2的全部氨基酸均位于合理區(qū),滿足拉氏構(gòu)象圖中氨基酸位于最佳合理區(qū)的數(shù)量大于90%的條件,表明所構(gòu)建舞毒蛾GST模型的氨基酸殘基構(gòu)象是合理的(表1),可用于接下來(lái)的分析預(yù)測(cè)。
2.3.2 GST模型的Verify_3D和ERRAT評(píng)價(jià)
通過(guò)Verify_3D程序分析表明,LdGSTe1、LdGSTe2和LdGSTe3蛋白三維結(jié)構(gòu)與一級(jí)結(jié)構(gòu)的兼容性評(píng)分大于0.2的氨基酸殘基分別為80.30%、81.35%和86.38%;LdGSTo1和LdGSTo2三維結(jié)構(gòu)與一級(jí)結(jié)構(gòu)的兼容性評(píng)分大于0.2的氨基酸殘基分別為97.17%和94.12%;LdGSTs1和LdGSTs2中88.06%和97.52%的氨基酸殘基的三維結(jié)構(gòu)與一級(jí)結(jié)構(gòu)的兼容性評(píng)分大于0.2;LdGSTt1中84.11%的氨基酸殘基的三維結(jié)構(gòu)與一級(jí)結(jié)構(gòu)的兼容性評(píng)分大于0.2,LdGSTz1和LdGSTz2中87.5%和81.95%的氨基酸殘基的三維結(jié)構(gòu)與一級(jí)結(jié)構(gòu)的兼容性評(píng)分大于0.2。因此,LdGST氨基酸數(shù)量均大于80%,故建模的氨基酸殘基結(jié)構(gòu)合理。
通過(guò)ERRAT程序評(píng)價(jià)可知LdGSTe1、LdGSTe2和LdGSTe3的ERRAT值分別為96.61%、95.34%和93.4%;LdGSTo1和LdGSTo2的ERRAT值分別為95.92%和97.82%;LdGSTs1和LdGSTs2的ERRAT值分別為94.29%和94.32%;LdGSTt1的ERRAT值為95.86%;LdGSTz1和LdGSTz2的ERRAT值分別為91.73%和92.62%。評(píng)價(jià)這10個(gè)GST模型所得到的ERRAT值均遠(yuǎn)大于50%,故構(gòu)建GST蛋白模型中的非鍵合相互作用整體上是合理的。
2.4 舞毒蛾GST與楊樹(shù)次生物質(zhì)的分子對(duì)接
2.4.1 分子對(duì)接結(jié)合能分析
采用分子對(duì)接分析舞毒蛾10個(gè)GST與6種楊樹(shù)次生物質(zhì)的結(jié)合方式結(jié)果(表2)表明:與水楊苷結(jié)合的最佳蛋白為L(zhǎng)dGSTs2,結(jié)合能為-45.70 kJ/mol;與咖啡酸結(jié)合的最佳蛋白為L(zhǎng)dGSTz2,結(jié)合能為-43.96 kJ/mol;與鄰苯二酚和蘆丁結(jié)合的最佳蛋白為L(zhǎng)dGSTz1,結(jié)合能分別為-25.85和-95.46 kJ/mol;與黃酮結(jié)合的最佳蛋白為L(zhǎng)dGSTe2,結(jié)合能為-32.49 kJ/mol;與槲皮素結(jié)合的最佳蛋白為L(zhǎng)dGSTo2,結(jié)合能為-62.09 kJ/mol。從結(jié)合能來(lái)看,10個(gè)GST蛋白的結(jié)合能趨勢(shì)基本一致,其中與GST結(jié)合最好的楊樹(shù)次生物質(zhì)是蘆丁,其次是槲皮素、水楊苷、咖啡酸、黃酮和鄰苯二酚。與楊樹(shù)次生物質(zhì)結(jié)合最佳的蛋白為L(zhǎng)dGSTz1,結(jié)合最差的蛋白為L(zhǎng)dGSTo2。
2.4.2 LdGSTs2蛋白的結(jié)合分析
以Docking-score評(píng)價(jià)對(duì)接效果分析表明水楊苷與LdGSTs2結(jié)合特性最好(表2)。水楊苷位于LdGSTs2的α螺旋形成的結(jié)合腔內(nèi),周圍分子作用較為緊密,LdGSTs2中的天冬氨酸(ASP)97A、絲氨酸(SER)100B、SER100A、賴氨酸(LYS)101B、酪氨酸(TYR)96A、甲硫氨酸(MET)14A、SER64A、天冬酰胺(ASN)65A和丙氨酸(ALA)66A通過(guò)范德華力與水楊苷結(jié)合;ASP97B通過(guò)陰離子-π鍵與水楊苷結(jié)合;ASP97B、精氨酸(ARG)99A、谷氨酰胺(GLN)63A和ASP93B通過(guò)常規(guī)氫鍵與水楊苷結(jié)合。通過(guò)氫鍵結(jié)合的這些氨基酸說(shuō)明疏水性的殘基與水楊苷之間的氫鍵以及作用力均為促進(jìn)蛋白-配體結(jié)合的主要作用力(圖3)。
2.4.3 LdGSTz1蛋白的結(jié)合分析
鄰苯二酚和蘆丁與LdGSTz1結(jié)合特性最佳(表2)。鄰苯二酚位于LdGSTz1 α-螺旋形成的結(jié)合空腔內(nèi),周圍分子作用較為緊密,對(duì)接結(jié)果(圖4和圖5)可知,LdGSTz1中的GLN56B、SER12B、SER13B、GLN109B、GLN112B、ASN170B、ARG173B、亮氨酸(LEU)11B4和ASN113B與鄰苯二酚通過(guò)范德華力結(jié)合,LEU36B和半胱氨酸(CYS)14B與鄰苯二酚通過(guò)π-烷基結(jié)合。氫鍵作用力的氨基酸殘基為纈氨酸(VAL)57B,說(shuō)明在LdGSTz1中這些疏水性殘基與鄰苯二酚的作用力和氫鍵作用力是促進(jìn)蛋白-配體結(jié)合的主要作用力。
蘆丁位于LdGSTz1 α-螺旋形成的疏水口袋內(nèi),周圍分子作用緊密,脯氨酸(PRO)110B和CYS14B與蘆丁通過(guò)烷基結(jié)合;ASN113B與蘆丁通過(guò)π-孤對(duì)電子結(jié)合;組氨酸(HIS)44B、GLN43B、VAL115B和GLN56B通過(guò)不利鍵與蘆丁結(jié)合;VAL115B與蘆丁通過(guò)π-烷基結(jié)合;SER105B、SER106B、SER106A、ARG17B、GLU55B、SER70B、GLU102A、PRO58B、VAL103A、LEU111A、異亮氨酸(ILE)108A、VAL116B、甲硫氨酸(MET)54B、色氨酸(TRP)132A、SER15B、ARG135A、LEU16B、LEU114B、ILE118B和甘氨酸(GLY)40B與蘆丁通過(guò)范德華力結(jié)合;GLN109B、GLY107A、GLU69B、CYS14B、VAL57B、GLN56B和SER13B與蘆丁通過(guò)氫鍵結(jié)合;SER12B、LEU111A和GLU69B與蘆丁通過(guò)碳?xì)滏I結(jié)合,在SER12B、LEU111A和GLU69B以碳?xì)滏I的形式形成氫鍵。氫鍵是一種較強(qiáng)的分子間作用力,氫鍵作用使得蛋白-配體結(jié)合更加穩(wěn)固,所以SER12B、LEU111A和GLU69B是關(guān)鍵位點(diǎn)。
2.4.4 LdGSTz2蛋白的結(jié)合分析
咖啡酸與LdGSTz2結(jié)合特性最好(表2),咖啡酸位于LdGSTz2 α-螺旋形成的疏水口袋內(nèi),周圍分子作用緊密,LdGSTz2中的VAL59B、ASN115B、GLN111B、ASN173B、PHE116B、GLY117B、PHE46B、ARG138A和ALA56B與咖啡酸通過(guò)范德華力結(jié)合;CYS17B、SER16B、GLN45B和GLN57B與咖啡酸通過(guò)氫鍵結(jié)合;LYS58B和ILE39B與咖啡酸通過(guò)π-烷基結(jié)合;SER15B與咖啡酸通過(guò)碳?xì)滏I結(jié)合,SER15B以碳?xì)滏I的形式形成氫鍵,所以SER15B是一個(gè)關(guān)鍵位點(diǎn)(圖6)。
2.4.5 LdGSTe2蛋白的結(jié)合分析
黃酮與LdGSTe2結(jié)合特性最好(表2),黃酮位于LdGSTe2 α-螺旋形成的結(jié)合腔表面,LdGSTe2中的ASN131B、ALA119A、VAL115B和GLU114A與黃酮通過(guò)范德華力結(jié)合;LYS130B和PRO118A與黃酮通過(guò)π-烷基結(jié)合;ARG111B與黃酮通過(guò)陽(yáng)離子-π鍵結(jié)合,黃酮與LdGSTe2以分子間作用力結(jié)合,并未形成氫鍵,說(shuō)明促進(jìn)蛋白-配體結(jié)合的主要作用是疏水作用力(圖7)。
2.4.6 LdGSTo2蛋白的結(jié)合分析
槲皮素與LdGSTo2結(jié)合特性最好(表2),槲皮素位于LdGSTo2 α-螺旋形成的結(jié)合腔表面,LdGSTo2中的ALA230A、ALA126A、PRO130A、LEU181A和LYS186A與槲皮素通過(guò)范德華力結(jié)合;SER129A與槲皮素通過(guò)π-孤對(duì)電子和氫鍵結(jié)合;ILE184A與槲皮素通過(guò)π-烷基結(jié)合;ALA125A和GLY185A與槲皮素通過(guò)氫鍵結(jié)合,說(shuō)明這些疏水性殘基與水楊苷的作用力和氫鍵作用力為促進(jìn)蛋白-配體結(jié)合的主要作用力(圖8)。
3 討 論
利用分子對(duì)接能夠快速分析GST的結(jié)合情況,直觀地顯示出與次生物質(zhì)的結(jié)合模式,并且可以在短時(shí)間內(nèi)對(duì)大量結(jié)果進(jìn)行比較,使研究結(jié)果更具有針對(duì)性[32]。本研究選擇10種舞毒蛾GST和6種楊樹(shù)次生物質(zhì)進(jìn)行分子對(duì)接,分析舞毒蛾GST的結(jié)合能、關(guān)鍵氨基酸以及結(jié)合方式,可知不同舞毒蛾GST與楊樹(shù)次生物質(zhì)的結(jié)合區(qū)域相似,同種楊樹(shù)次生物質(zhì)與不同GST的結(jié)合能相似,表明GST對(duì)次生物質(zhì)特異性不高。GST與楊樹(shù)次生物質(zhì)通過(guò)氫鍵和共價(jià)鍵的方式結(jié)合,結(jié)合相對(duì)穩(wěn)定,結(jié)合能差異較大(-12.67~-95.46 kJ/mol),表明6種次生物質(zhì)與10個(gè)GST結(jié)合能力較好,具有較好的親和力。Lu等[33]、崔琳琳等[34]、馬天翔等[35]研究表明,蛋白質(zhì)與小分子結(jié)合能lt;0 kJ/mol能自發(fā)結(jié)合,蛋白質(zhì)與小分子結(jié)合能≤-5 kJ/mol則結(jié)合能力較好。Vogt[36]提出在氣味受體、氣味結(jié)合蛋白和氣味降解酶3種蛋白質(zhì)中,氣味降解酶中的兩類家族基因(CYP450和GST)可能是特異性最低的,為更具針對(duì)性的行為抑制蛋白。Gawande等[37]將棉蚜(Aphis gossypii)GST蛋白(AgosGSTs1和AgosGSTs2)分別與植物次生物質(zhì)進(jìn)行分子對(duì)接,結(jié)果顯示與單寧酸和鞣花酸[38]結(jié)合時(shí)具有相似的結(jié)合能和氫鍵得分,表明兩種GST對(duì)同一分子的特異性不高,但具有較好的結(jié)合能力。楊歡等[32]將禾谷縊管蚜GST蛋白(RpadGSTs1和RpadGSTd1)分別與12種化合物進(jìn)行分子對(duì)接,結(jié)合能為-14.77~-39.54 kJ/mol,表明GST與12種化合物能夠自發(fā)結(jié)合且結(jié)合能力較好;同種化合物與兩種GST對(duì)接的結(jié)合能相近,結(jié)合區(qū)域相似并且具有促進(jìn)穩(wěn)定結(jié)合的分子間作用力。
本次研究與上述結(jié)果類似,所選GST與配體結(jié)合過(guò)程中,不同的GST對(duì)相同的楊樹(shù)次生物質(zhì)結(jié)合差異不大,這與其他特異性較強(qiáng)的蛋白相比明顯不同。通過(guò)GST與以往研究最多的OBP[1,3,10-12]進(jìn)行比較,GST與OBP和配體結(jié)合的原理存在差異。結(jié)構(gòu)相似的次生物質(zhì)與GST蛋白的結(jié)合位點(diǎn)、形成的化學(xué)鍵以及分子間作用力差異很小,反之,OBP蛋白與配體結(jié)合會(huì)因結(jié)構(gòu)、化學(xué)鍵以及分子間作用力的不同而產(chǎn)生較大的差異[39-40];然而,GST蛋白結(jié)構(gòu)相似,與配體結(jié)合能力趨于穩(wěn)定[41-42]。根據(jù)GST的特異性較低這一特性,篩選與GST能夠結(jié)合的物質(zhì)的范圍更大,更容易篩選出可以與GST結(jié)合的物質(zhì)。在蛾類的殺蟲(chóng)劑研制防治中[43],可以添加更易與GST結(jié)合的化合物,根據(jù)底物競(jìng)爭(zhēng)結(jié)合原理,使GST優(yōu)先與該物質(zhì)結(jié)合,從而降低害蟲(chóng)對(duì)殺蟲(chóng)劑的抗性,增強(qiáng)殺蟲(chóng)劑的殺蟲(chóng)作用。然而,本研究所用分子對(duì)接技術(shù),屬于計(jì)算機(jī)模擬預(yù)測(cè),其預(yù)測(cè)結(jié)果可能與試驗(yàn)結(jié)果存在差異性,還需進(jìn)一步驗(yàn)證。
綜上所述,利用分子對(duì)接模擬了舞毒蛾GST與楊樹(shù)次生物質(zhì)的作用模式,為后續(xù)舞毒蛾GST對(duì)不同次生物質(zhì)的解毒能力分析,以及根據(jù)次生物質(zhì)與GST結(jié)合能力的強(qiáng)弱選擇殺蟲(chóng)劑增效劑,從而增加舞毒蛾的防治效果提供了理論基礎(chǔ)。
參考文獻(xiàn)(reference):
[1]郭冰,郝恩華,王菁楨,等.入侵害蟲(chóng)松樹(shù)蜂氣味結(jié)合蛋白與其相關(guān)信息化學(xué)物質(zhì)的分子對(duì)接[J].植物保護(hù)學(xué)報(bào),2019,46(5):1004-1017.GUO B,HAO E H,WANG J Z,et al.Molecular docking of odorant binding proteins and its related semiochemicals of sirex woodwasp Sirex noctilio,an invasive insect pest[J].J Plant Prot,2019,46(5):1004-1017.DOI: 10.13802/j.cnki.zwbhxb.2019.2019035.
[2]李敏,郭美琪,相偉芳,等.分子對(duì)接技術(shù)在昆蟲(chóng)化學(xué)感受研究中的應(yīng)用進(jìn)展[J].植物保護(hù),2019,45(5):121-127.LI M,GUO M Q,XIANG W F,et al.Research progress in molecular docking in insect chemosense[J].Plant Prot,2019,45(5):121-127.DOI: 10.16688/j.zwbh.2018464.
[3]李紅亮,張林雅,莊樹(shù)林,等.中華蜜蜂普通氣味結(jié)合蛋白ASP2的氣味結(jié)合功能模式分析[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(1):154-161.LI H L,ZHANG L Y,ZHUANG S L,et al.Interpretation of odorant binding function and mode of general odorant binding protein ASP2 in Chinese honeybee (Apis cerana cerana)[J].Sci Agric Sin,2013,46(1):154-161.DOI: 10.3864/j.issn.0578-1752.2013.01.018.
[4]LIU Q J,WANG H,LI H L,et al.Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee[J].Biosens Bioelectron,2013,40(1):174-179.DOI: 10.1016/j.bios.2012.07.011.
[5]LI H L,ZHANG L Y,NI C X,et al.Molecular recognition of floral volatile with two olfactory related proteins in the eastern honeybee (Apis cerana)[J].Int J Biol Macromol,2013,56:114-121.DOI: 10.1016/j.ijbiomac.2013.01.032.
[6]LI H L,NI C X,TAN J,et al.Chemosensory proteins of the eastern honeybee,Apis cerana:identification,tissue distribution and olfactory related functional characterization[J].Comp Biochem Physiol B Biochem Mol Biol,2016,194/195:11-19.DOI: 10.1016/j.cbpb.2015.11.014.
[7]LI H L,TAN J,SONG X M,et al.Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function[J].Biochem Biophys Res Commun,2017,486(2):391-397.DOI: 10.1016/j.bbrc.2017.03.051.
[8]LIU N Y,ZHU J Y,JI M,et al.Chemosensory genes from Pachypeltis micranthus,a natural enemy of the climbing hemp vine[J].J Asia Pac Entomol,2017,20(2):655-664.DOI: 10.1016/j.aspen.2017.01.016.
[9]DU S Q,YANG Z K,QIN Y G,et al.Computational investigation of the molecular conformation-dependent binding mode of (E)-β-farnesene analogs with a heterocycle to aphid odorant-binding proteins[J].J Mol Model,2018,24(3):70.DOI: 10.1007/s00894-018-3612-0.
[10]LIU N Y,YANG K,LIU Y,et al.Two general-odorant binding proteins in Spodoptera litura are differentially tuned to sex pheromones and plant odorants[J].Comp Biochem Physiol A Mol Integr Physiol,2015,180:23-31.DOI: 10.1016/j.cbpa.2014.11.005.
[11]ZHANG Y L,F(xiàn)U X B,CUI H C,et al.Functional characteristics,electrophysiological and antennal immunolocalization of general odorant-binding protein 2 in tea geometrid,Ectropis obliqua[J].Int J Mol Sci,2018,19(3):875.DOI: 10.3390/ijms19030875.
[12]ZHU J,PAOLO P,LIU Y,et al. Ligand-binding properties of three odorant-binding proteins of the diamondback moth Plutella xylostella[J].J Integr Agric,2016,15(3):580-590.DOI: 10.1016/S2095-3119(15)61067-X.
[13]張龍.飛蝗嗅覺(jué)的細(xì)胞與分子機(jī)制研究進(jìn)展[J].生命科學(xué),2010,22(12):1215-1228.ZHANG L.Cellular and molecular olfaction mechanisms of locust[J].Chin Bull Life Sci,2010,22(12):1215-1228.DOI: 10.13376/j.cbls/2010.12.004.
[14]WANG Y L,JIN Y C,CHEN Q,et al.Selectivity and ligand-based molecular modeling of an odorant-binding protein from the leaf beetle Ambrostoma quadriimpressum (Coleoptera:Chrysomelidae) in relation to habitat-related volatiles[J].Sci Rep,2017,7(1):15374.DOI: 10.1038/s41598-017-15538-8.
[15]楊雪清,劉吉元,張雅林.分子模擬技術(shù)及其在蘋(píng)果蠹蛾代謝殺蟲(chóng)劑分子機(jī)制研究中的應(yīng)用進(jìn)展[J].生物安全學(xué)報(bào),2015,24(4):265-273.YANG X Q,LIU J Y,ZHANG Y L.Molecular simulation and its application progress on molecular metabolic mechanisms of insecticide in Cydia pomonella[J].J Biosaf,2015,24(4):265-273.DOI: 10.3969/j.issn.2095-1787.2015.04.003.
[16]張?jiān)x(chóng)腈與昆蟲(chóng)GABA受體相互作用的研究[D].上海:上海師范大學(xué),2016.ZHANG Y.Study on the interaction between fipronil and insect GABA receptor[D].Shanghai:Shanghai Normal University,2016.
[17]CAO C W,SUN L L,WEN R R,et al.Characterization of the transcriptome of the Asian Gypsy moth Lymantria dispar identifies numerous transcripts associated with insecticide resistance[J].Pestic Biochem Physiol,2015,119:54-61.DOI: 10.1016/j.pestbp.2015.02.005.
[18]OHNUMA T,ANAN E,HOASHI R,et al.Dietary diacetylene falcarindiol induces phase 2 drug-metabolizing enzymes and blocks carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation[J].Biol Pharm Bull,2011,34(3):371-378.DOI: 10.1248/bpb.34.371.
[19]CHEN L Q,HALL P R,ZHOU X E,et al.Structure of an insect δ-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae[J].Acta Crystallogr D Biol Cryst,2003,59(12):2211-2217.DOI: 10.1107/s0907444903018493.
[20]KAKUTA Y,USUDA K,NAKASHIMA T,et al.Crystallographic survey of active sites of an unclassified glutathione transferase from Bombyx mori[J].Biochim Biophys Acta,2011,1810(12):1355-1360.DOI: 10.1016/j.bbagen.2011.06.022.
[21]周鄭,程新勝,王方曉,等.煙堿和蕓香苷對(duì)斜紋夜蛾藥劑敏感性及相關(guān)酶活性的影響[J].農(nóng)藥學(xué)學(xué)報(bào),2007,9(3):305-308.ZHOU Z,CHENG X S,WANG F X,et al.Effects of nicotine and rutin on the susceptibility of Spodoptera litura to insecticides and the activities of some enzymes[J].Chin J Pestic Sci,2007,9(3):305-308.DOI: 10.3321/j.issn:1008-7303.2007.03.019.
[22]高希武,董向麗,鄭炳宗,等.棉鈴蟲(chóng)的谷胱甘肽S-轉(zhuǎn)移酶(GSTs):殺蟲(chóng)藥劑和植物次生性物質(zhì)的誘導(dǎo)與GSTs對(duì)殺蟲(chóng)藥劑的代謝[J].昆蟲(chóng)學(xué)報(bào),1997,40(2):122-127.GAO X W,DONG X L,ZHENG B Z,et al.Glutathione S-transferase (GSTs) of Helicoverpa armigera:induction of insecticides and plant allelochemicals and metabolism of insecticides[J].Acta Entomol Sin,1997,40(2):122-127.DOI: 10.16380/j.kcxb.1997.02.002.
[23]胡春祥.舞毒蛾生物防治研究進(jìn)展[J].東北林業(yè)大學(xué)學(xué)報(bào),2002,30(4):40-43.HU C X.Research progress of the biological control for Lymantria dispar L[J].J Northeast For Univ,2002,30(4):40-43.DOI: 10.3969/j.issn.1000-5382.2002.04.011.
[24]王亞軍,鄒傳山,王若茜,等.3種植物次生代謝物質(zhì)對(duì)舞毒蛾的殺蟲(chóng)活性分析[J].北京林業(yè)大學(xué)學(xué)報(bào),2017,39(11):75-81.WANG Y J,ZOU C S,WANG R X,et al.Insecticidal activity analysis of three plant secondary metabolites on Lymantria dispar[J].J Beijing For Univ,2017,39(11):75-81.DOI: 10.13332/j.1000-1522.20170214.
[25]鄢杰明,廖月枝,嚴(yán)善春,等.甲氧蟲(chóng)酰肼對(duì)舞毒蛾解毒酶和保護(hù)酶活性的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2010,38(11):112-114.YAN J M,LIAO Y Z,YAN S C,et al.Effects of methoxyfenozide (RH-2485) on the activities of detoxifying enzymes and protective enzymes in Lymantria dispar (Lepidoptera:Lymantriidae)[J].J Northeast For Univ,2010,38(11):112-114.DOI: 10.13759/j.cnki.dlxb.2010.11.036.
[26]鄢杰明,鐘華,嚴(yán)俊鑫,等.多殺菌素對(duì)舞毒蛾幼蟲(chóng)解毒酶活性的影響[J].林業(yè)科學(xué),2012,48(9):82-87.YAN J M,ZHONG H,YAN J X,et al.Effect of spinosad to detoxifying enzymes activity in Lymantria dispar larva[J].Sci Silvae Sin,2012,48(9):82-87.DOI: 10.11707/j.1001-7488.20120913.
[27]馮春富,嚴(yán)善春,魯藝芳,等.興安落葉松誘導(dǎo)抗性對(duì)舞毒蛾幼蟲(chóng)解毒酶活性的影響[J].林業(yè)科學(xué),2011,47(8):102-107.FENG C F,YAN S C,LU Y F,et al.Effects of induced resistance of Larix gmelinii on the activities of detoxifying enzymes in Lymantria dispar[J].Sci Silvae Sin,2011,47(8):102-107.DOI: 10.11707/j.1001-7488.20110816.
[28]MA J Y,SUN L L,ZHAO H Y,et al.Functional identification and characterization of GST genes in the Asian Gypsy moth in response to poplar secondary metabolites[J].Pestic Biochem Physiol,2021,176:104860.DOI: 10.1016/j.pestbp.2021.104860.
[29]呂春鶴,張國(guó)財(cái),鄒傳山.白屈菜總堿對(duì)舞毒蛾離體酶活性的影響[J].中國(guó)林副特產(chǎn),2017(4):33-36,38.LV C H,ZHANG G C,ZOU C S.Effects of total alkaloids from the Chelidonium majus on the enzymes activities in Lymantria dispar in vitro[J].For Prod Speciality China,2017(4):33-36,38.DOI: 10.13268/j.cnki.fbsic.2017.04.009.
[30]王振越.楊樹(shù)主要次生物質(zhì)對(duì)舞毒蛾生長(zhǎng)發(fā)育及主要解毒酶影響[D].哈爾濱:東北林業(yè)大學(xué),2020.WANG Z Y.Effects of poplar secondary metabolites on performance and key detoxifying enzymatic activity of Lymantria dispar[D].Harbin:Northeast Forestry University,2020.
[31]許力山.三種次生物質(zhì)與溴氰蟲(chóng)酰胺對(duì)舞毒蛾P(guān)450和GST影響研究[D].哈爾濱:東北林業(yè)大學(xué),2021.XU L S.Study on effects of three secondary metabolites and cyanobromonamide on P450 and GST in Lymantria dispar[D].Harbin:Northeast Forestry University,2021.
[32]楊歡,郭冰,郝恩華,等.禾谷縊管蚜氣味降解酶鑒定及其與關(guān)鍵信息化學(xué)物質(zhì)的分子對(duì)接[J].植物保護(hù)學(xué)報(bào),2022,49(4):1119-1131.YANG H,GUO B,HAO E H,et al.Identification of odor degrading enzymes and molecular docking with crucial semiochemicals in bird cherry-oat aphid Rhopalosiphum padi[J].J Plant Prot,2022,49(4):1119-1131.DOI: 10.13802/j.cnki.zwbhxb.2022.2020292.
[33]LU X P,XU L,MENG L W,et al.Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly,Bactrocera dorsalis (Hendel)[J].Chemosphere,2020,242:125203.DOI: 10.1016/j.chemosphere.2019.125203.
[34]崔琳琳,宋亞剛,苗明三.基于網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接的陳皮干預(yù)COVID-19的可能機(jī)制[J].中藥藥理與臨床,2020,36(5):28-33.CUI L L,S Y,MIAO M S.Possible mechanism of citri reticulatae pericarpium intervening on COVID-19 based on network pharmacology and molecular docking[J].Pharmacology Clin Chin Materia Med,2020,36(5):28-33.DOI: 10.13412/j.cnki.zyyl.20200630.003.
[35]馬天翔,顧志榮,孫嵐萍,等.荊芥-防風(fēng)藥對(duì)治療蕁麻疹作用機(jī)制的網(wǎng)絡(luò)藥理學(xué)研究[J].中藥新藥與臨床藥理,2020,31(4):435-440.MA T X,GU Z R,SUN L P,et al.Mechanism of herb pair Schizonepetae herba-Saposhnikoviae" radix on treatment of urticaria based on network pharmacology[J].Tradit Chin Drug Res Clin Pharmacol,2020,31(4):435-440.DOI: 10.19378/j.issn.1003-9783.2020.04.011.
[36]VOGT R G.Molecular basis of pheromone detection in insects[M].Amsterdam:Elsevier,2005:753-803.DOI: 10.1016/b0-44-451924-6/00047-8.
[37]GAWANDE N D,SUBASHINI S,MURUGAN M,et al.Molecular screening of insecticides with sigma glutathione S-transferases (GST) in cotton aphid Aphis gossypii using docking[J].Bioinformation,2014,10(11):679-683.DOI: 10.6026/97320630010679.
[38]虞唯道,劉淼,宋萍,等.鞣花酸的生物活性與分析研究進(jìn)展[J].生物加工過(guò)程,2023,21(1):83-90.YU W D, LIU M, SONG P, et al. The biological activity and detection methods of ellagic acid[J]. Chi J Bio Eng, 2023,21(1):83-90.DOI:10.3969/j.issn.1672-3678.2023.01.010.
[39]史宗畔,冉永紅,張晶晶,等.中華按蚊氣味結(jié)合蛋白AsinOBP1與避蚊胺(DEET)的結(jié)合特性分析[J].昆蟲(chóng)學(xué)報(bào),2018,61(1):139-148.SHI Z P,RAN Y H,ZHANG J J,et al.Binding characteristics of the odorant binding protein AsinOBP1 of Anopheles sinensis (Diptera:Culicidae) with the mosiquito repellent DEET[J].Acta Entomol Sin,2018,61(1):139-148.DOI: 10.16380/j.kcxb.2018.01.015.
[40]LIU G X,MA H M,XIE H Y,et al.Biotype characterization,developmental profiling,insecticide response and binding property of Bemisia tabaci chemosensory proteins:role of CSP in insect defense[J].Plos One,2016,11(5):e0154706.DOI: 10.1371/journal.pone.0154706.
[41]YI X,ZHANG Y B,WANG P D,et al.Ligands binding and molecular simulation:the potential investigation of a biosensor based on an insect odorant binding protein[J].Int J Biol Sci,2015,11(1):75-87.DOI: 10.7150/ijbs.9872.
[42]AHMED T,ZHANG T T,WANG Z Y,et al.Three amino acid residues bind corn odorants to McinOBP1 in the polyembryonic endoparasitoid of Macrocentrus cingulum Brischke[J].Plos One,2014,9(4):e93501.DOI: 10.1371/journal.pone.0093501.
[43]詹麗,李敬丹,付璇,等.紫茉莉種子中對(duì)草地貪夜蛾的殺蟲(chóng)活性成分及殺蟲(chóng)機(jī)制[J].江蘇農(nóng)業(yè)學(xué)報(bào),2024,40(1):47-54.ZHAN L, LI J D, FU X, et al. Insecticidal active ingredients and mechanism against Spodoptera frugiperda in Mirabilis jalapa seeds[J]. Jiangsu J Agr Sci,2024,40(1):47-54.DOI:10.3969/j.issn.1000-4440.2024.01.005.
(責(zé)任編輯 王國(guó)棟)
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32071772);國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFC1200400)。
第一作者:謝佳銘(1095334984@qq.com)。
*通信作者:曹傳旺(chuanwangcao@nefu.edu.cn),教授。
引文格式:謝佳銘,曹傳旺,孫麗麗,等.舞毒蛾谷胱甘肽S-轉(zhuǎn)移酶的結(jié)構(gòu)預(yù)測(cè)及其與楊樹(shù)次生物質(zhì)的分子對(duì)接分析[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(5):211-220.
XIE J M, CAO C W, SUN L L, et al.Structural prediction of glutathione S-transferase (GST) in Lymantria dispar and its molecular docking analysis with poplar secondary metabolites[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(5):211-220.