摘要:【目的】對蘇云金芽孢桿菌(Bacillus thuringiensis,Bt)的殺蟲蛋白基因(Cry1A.301和Vip3A)進行原核融合表達及生物活性分析,為玉米抗蟲基因資源發(fā)掘和品種創(chuàng)制提供科學(xué)參考?!痉椒ā坷眠B接肽構(gòu)建不同殺蟲機理的Cry1A.301和Vip3A融合基因,構(gòu)建其原核表達載體,在大腸桿菌中進行誘導(dǎo)表達,對融合蛋白進行理化性質(zhì)和結(jié)構(gòu)域預(yù)測分析及定量檢測,并采用人工飼料混合飼喂法測定融合蛋白對亞洲玉米螟(Ostriniafurnacalis)、棉鈴蟲(Helicoverpaarmigera)和草地貪夜蛾(Spodoptera frugiperda)的殺蟲活性?!窘Y(jié)果】構(gòu)建的融合基因基本骨架為5'-Cry1A.301-Vip3A-3',中間由編碼連接肽(8個氨基酸)的核苷酸序列(TCCACCTGCTCCACCTGCTCCACC)組裝而成,經(jīng)誘導(dǎo)表達形成融合蛋白Cry1A.301-Vip3A。該融合蛋白含有1409個氨基酸,分子量約為157 kD,為穩(wěn)定的酸性蛋白,包含Cry1A.301和Vip3A蛋白家族的4個特征結(jié)構(gòu)域。Cry1A.301-Vip3A融合蛋白在大腸桿菌BL21(DE3)細胞中成功表達,且Cry1A.301和Vip3A蛋白的表達量無顯著差異(Pgt;0.05,下同)。飼喂Cry1A.301-Vip3A融合蛋白7 d后,亞洲玉米螟、草地貪夜蛾和棉鈴蟲幼蟲校正死亡率達100.00%。Cry1A.301-Vip3A融合蛋白與Cry1A.301蛋白對亞洲玉米螟的殺蟲活性無顯著差異,均顯著高于Vip3A蛋白(Plt;0.05,下同)。Cry1A.301-Vip3A融合蛋白、Vip3A蛋白和Cry1A.301蛋白對棉鈴蟲的殺蟲活性無顯著差異。Cry1A.301-Vip3A融合蛋白和Vip3A蛋白對草地貪夜蛾的殺蟲活性無顯著差異,均顯著高于Cry1A.301蛋白?!窘Y(jié)論】原核表達的Cry1A.301-Vip3A融合蛋白結(jié)構(gòu)穩(wěn)定,對亞洲玉米螟、棉鈴蟲和草地貪夜蛾均具有較好的殺蟲活性。
關(guān)鍵詞:蘇云金芽孢桿菌(Bt);融合蛋白;原核表達;生物活性
中圖分類號:S332.3文獻標(biāo)志碼:A文章編號:2095-1191(2024)10-3046-10
Prokaryotic expression and bioactivity analysis of the fusion in?secticidal protein of Bacillus thuringiensis Cry1A.301-Vip3A
YANG Xiao-yan,HAN Yao,WU Hong,LEI Kai-rong,XIE Shu-zhang*
(Institute of Biotechnology Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory ofAdversity Agriculture Research,Chongqing 401329,China)
Abstract:【Objective】To conduct prokaryotic fusion expression and bioactivity analysis on the insecticidal protein genes(Cry1A.301 and Vip3A)of Bacillus thuringiensis(Bt),so as to provide scientific reference for the exploration of insect-resistant gene resources and the creation of maize varieties.【Method】Utilized the connecting peptides to construct the fusion genes of Cry1A.301 and Vip3A with different insecticidal mechanisms.Then,constructed their prokaryotic ex-pression vectors and induced expression in Escherichia coli.Prediction analysis on the physicochemical properties and do-mains of the fusion proteins as well as quantitative detection was conducted.Moreover,the insecticidal activities of the fu-sion proteins against Ostriniafurnacalis,Helicoverpaarmigera and Spodoptera frugiperda were detected by the artificial diet mixed feeding method.【Result】The basic framework of the constructed fusion gene was 5'-Cry1A.301-Vip3A-3',with the nucleotide sequence(TCCACCTGCTCCACCTGCTCCACC)encoding the connecting peptide(8 amino acids)assembled in the middle.Through induced expression,the fusion protein Cry1A.301-Vip3A was formed.This fusion pro-tein contained 1409 amino acids,with a molecular weight of approximately 157 kD.It was a stable acidic protein and en-compassed 4 characteristic domains of the Cry1A.301 and Vip3A protein families.The fusion protein Cry1A.301-Vip3A could be successfully expressed in E.coli strain BL21(DE3),and there was no significant difference in the expression levels of Cry1A.301 and Vip3A proteins(Pgt;0.05,the same below).After feeding the fusion protein Cry1A.301-Vip3A for 7 d,the corrected mortality rates of O.furnacalis,H.armigera and S.frugiperda reached 100.00%.The insecticidal effect of the fusion protein Cry1A.301-Vip3A on O.furnacalis was not significantly different from that of the Cry1A.301 protein,but both were significantly higher than that of the Vip3A protein(Plt;0.05,the same below).The insecticidal ac-tivity of the fusion protein Cry1A.301-Vip3A on H.armigera was not significantly different from those of Vip3A protein and Cry1A.301 protein.The insecticidal activity of the fusion protein Cry1A.301-Vip3A on S.frugiperda was not signifi-cantly different from that of Vip3A protein,but was significantly higher than that of Cry1A.301 protein.【Conclusion】The Cry1A.301-Vip3A fusion protein expressed in prokaryotes has a stable structure and exhibits good insecticidal activities against O.furnacalis,H.armigera and S.frugiperda.
Key words:Bacillus thuringiensis(Bt);fusion protein;prokaryotic expression;biological activity
Foundation items:Chongqing Research Institute Performance Incentive Guidance Special Project(cstc2021jxjl80 005);Performance Incentive Guidance Special Project of Chongqing Academy of Agricultural Sciences(cqaas2021jxjl24);Municipal Financial Research Project Major Core Technology Research and Development Project of Chongqing Academy of Agricultural Sciences(cqaas2023sjczhx016)
0引言
【研究意義】蘇云金芽孢桿菌(Bacillus thuringien-sis,Bt)是一種普遍存在的革蘭氏陽性需氧菌,能產(chǎn)生多種對鱗翅目、鞘翅目、雙翅目等害蟲具有高效和特異殺蟲效果的蛋白,這些蛋白可分為晶體蛋白(Cry和Cyt)和營養(yǎng)殺蟲蛋白(Vip)(Chakroun et al.,2016)兩大類。目前,一些Bt的抗蟲基因cry1Ab、cry1Fa2和vip3Aa20已成功用于轉(zhuǎn)基因抗蟲玉米并商業(yè)化,如玉米品種MON810、TC1507、MIR162等,為玉米害蟲高效防治開辟了新途徑,大幅降低了化學(xué)殺蟲劑的使用(Huang et al.,2002;Pray et al.,2002)。然而,單一抗蟲基因的連續(xù)使用,易導(dǎo)致靶標(biāo)害蟲田間抗性種群的發(fā)生,故“庇護所”和“多基因”策略被廣泛應(yīng)用(王月琴等,2019)。但包括我國在內(nèi)的大多數(shù)亞洲國家當(dāng)前和今后很長一段時間均以小規(guī)模分散種植為主,為轉(zhuǎn)基因作物設(shè)置強制性“庇護所”難度較大。因此,“多基因”策略是一種更可行的抗蟲管理方案(Xu etal.,2018)。因此,在“多基因”策略指導(dǎo)下,將2種及以上不同類型的Bt抗蟲基因整合成1個基因,并進行原核表達及其生物活性研究,以期提高殺蟲蛋白的毒力并延緩昆蟲抗性的產(chǎn)生,對玉米抗蟲基因資源的發(fā)掘和創(chuàng)制具有重要意義?!厩叭搜芯窟M展】目前我國玉米生產(chǎn)上的常發(fā)性害蟲為亞洲玉米螟(Ostriniafurnacalis)和棉鈴蟲(Helicoverpaarmigera),可導(dǎo)致玉米減產(chǎn)和品質(zhì)受損(李國平等,2019;劉小貝等,2020)。自2019年1月草地貪夜蛾(Spodoptera frugiperda)入侵我國以來,迅速擴散至27個?。▍^(qū)),成為威脅我國玉米生產(chǎn)的重要新害蟲。研究表明,在非洲發(fā)現(xiàn)了對Cry1Ab轉(zhuǎn)基因玉米產(chǎn)生抗性的玉米蛀莖夜蛾(Helotrophaleucostigma Lawis)(van Rensburg,2007);在波多黎各和巴西發(fā)現(xiàn)了對cry1F轉(zhuǎn)基因玉米TC1507產(chǎn)生高抗性的草地貪夜蛾種群(Storer etal.,2012;Rose et al.,2015);在阿根廷發(fā)現(xiàn)了對Cry1A.105轉(zhuǎn)基因玉米產(chǎn)生高抗性的小蔗螟(Diatraeasaccharalis)(Grimi et al.,2018),在我國也報道了對Cry1Ac轉(zhuǎn)基因棉花產(chǎn)生抗性的棉鈴蟲(H.armigera)和粉紅色棉鈴蟲(Pectinophoragossypiella)(Wan et al.,2012)。此外,還有研究表明,美國中南部和南美洲的小蔗螟、菲律賓的亞洲玉米螟、西班牙的地中海玉米蛀莖夜蛾均對殺蟲蛋白Cry1Ab的敏感性顯著降低,但轉(zhuǎn)基因抗蟲作物對害蟲的田間防治效果沒有降低(Alcantara et al.,2011;Huang et al.,2012;Camargo et al.,2018)。為了解決單一抗蟲基因引起的靶標(biāo)害蟲田間抗性問題,已有大量學(xué)者圍繞融合蛋白開展了大量研究,包括Bt蛋白的融合表達,如cry1B和cry1Ab(Bohorova et al.,2001)、Cry1Ac和Cry1I-like(Yang et al.,2014)、Cry1Ab和Vip3A(Xu etal.,2018)、Cry1Ia和Cry2Ab(郭小琴等,2019)等;Bt蛋白與其他殺蟲蛋白的融合表達,如Cry1A和豇豆胰蛋白酶抑制劑(CpTI)(武東亮等,2001;王勝,2012)、Cry2Aa和雪花蓮凝集素(GNA)等(袁淼,2010)。已有研究證實,營養(yǎng)期殺蟲蛋白(Vip3Aa)與晶體蛋白(Cry、Cyt)的氨基酸序列無同源性,受體結(jié)合位點也不相同,具有獨特的殺蟲效果(Lee et al.,2003;Tabashnik et al.,2008),對草地貪夜蛾等Cry蛋白不敏感害蟲表現(xiàn)出高度的殺蟲活性(Estruchetal.,1996;Dono-van etal.,2001;Chakroun et al.,2012;Bernardi et al.,2016)。【本研究切入點】目前,很多融合殺蟲蛋白的獲得多以基因串聯(lián)法實現(xiàn),但存在基因表達量差異大、活性降低等問題,而利用連接肽構(gòu)建融合蛋白,并對融合蛋白中不同蛋白的協(xié)同表達及活性測定的報道較少?!緮M解決的關(guān)鍵問題】采用連接肽構(gòu)建融合基因法將本課題組前期自主改造合成的抗蟲基因Cry1A.301與Vip3A基因拼接在一起形成融合基因,對融合蛋白進行理化性質(zhì)和結(jié)構(gòu)域預(yù)測分析,并構(gòu)建原核表達載體,對表達的融合蛋白進行殺蟲活性測定,以期獲得具有Cry1A.301和Vip3A 2種殺蟲蛋白活性的抗蟲基因,從而提高殺蟲蛋白的毒力,并延緩害蟲抗性的產(chǎn)生,為玉米抗蟲基因資源的發(fā)掘和創(chuàng)制提供科學(xué)參考。
1材料與方法
1.1試驗材料
Cry1A.301基因、Vip3A基因和原核表達載體pET30a由中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所提供。供試的亞洲玉米螟、棉鈴蟲、草地貪夜蛾卵及人工飼料購自河南省濟源白云實業(yè)有限公司。所有蟲卵均在(27±1)℃、濕度(90±5)%和16 h光照/8 h黑暗下孵化。PCR相關(guān)試劑和In-Fusion?HD Cloning Kit均購自TaKaRa公司;限制性核酸內(nèi)切酶購自Thermo-Fisher Scientific公司;異丙基-β-D-硫代半乳糖苷(IPTG)購自北京鼎國生物技術(shù)有限責(zé)任公司;質(zhì)粒提取試劑盒和膠回收試劑盒均購自天根生化科技(北京)有限公司;Cry1Ab/Ac速測試紙、VIP3A速測試紙及Cry1Ab/Ac和VIP3A的酶聯(lián)免疫吸附試驗(ELISA)試劑盒購自上海佑隆生物科技有限公司。主要儀器設(shè)備:蛋白凝膠電泳儀(Bio-Rad公司)、可見分光光度計(上海菁華科技儀器有限公司)、elisa掃描儀(ThermoFisher Scientific公司)。
1.2試驗方法
1.2.1融合基因組裝本課題組前期已根據(jù)單子葉植物的密碼子偏好性對Cry1A.301和Vip3A基因的編碼序列進行優(yōu)化,并由生工生物工程(上海)股份有限公司合成(王慧等,2014)。將1對反向互補寡核苷酸連接子(F:5'-GGTGGAGCAGGTGGAGC AGGTGGAGCAGGTGGA-3';R:5'-TCCACCACCT GCTCCACCTGCTCCACC-3')在熱循環(huán)器中72℃延伸15 min,將編碼連接肽的核苷酸序列(TCCAC CTGCTCCACCTGCTCCACC)組裝到Cry1A.301基因的3'端和Vip3A基因的5'端。
1.2.2融合蛋白的理化性質(zhì)和結(jié)構(gòu)域預(yù)測分析
利用ProtParam(http://web.expasy.org/protparam/)預(yù)測融合蛋白的理化性質(zhì)、半衰期和不穩(wěn)定性。使用EBI網(wǎng)站的InterPro工具(http://www.ebi.ac.uk/inter-pro/)對融合蛋白的結(jié)構(gòu)域進行預(yù)測分析。
1.2.3原核表達載體的構(gòu)建利用In-Fusion?HD Cloning Kit將Cry1A.301、Vip3A和Cry1A.301-Vip3A基因克隆到經(jīng)NcoⅠ和XhoⅠ酶切的pET30a載體上,轉(zhuǎn)化大腸桿菌(Escherichia coli)BL21(DE3)。經(jīng)PCR初步鑒定,將篩選出的單菌落送至北京擎科生物科技股份有限公司重慶分公司進行測序驗證。
利用Primer Premier 6.0設(shè)計引物(表1),并對構(gòu)建的載體進行鑒定,引物由生工生物工程(上海)股份有限公司合成。反應(yīng)體系20.0μL:2×PCR Mix 10.0μL,上、下游引物(10 mmol/L)各1.0μL,50 ng/μL cDNA模板1.0μL,ddH2O補足至20.0μL。擴增程序:94℃預(yù)變性90 s;94℃20 s,60℃20 s,72℃110 s,進行35個循環(huán);72℃延伸5 min。
1.2.4重組蛋白原核表達及濃度測定重組蛋白原核表達參照Xu等(2018)方法:將空載體pET30a和重組質(zhì)粒pET30a-Cry1A.301、pET30a-Vip3A、pET30a-Cry1A.301-Vip3A分別轉(zhuǎn)化大腸桿菌BL21(DE3)感受態(tài)細胞;挑取陽性單克隆接種于含50mg/L卡那霉素的LB液體培養(yǎng)基中,37℃、220 r/min振蕩過夜培養(yǎng);以1%接種量轉(zhuǎn)移至相同培養(yǎng)基中,待OD600 nm達0.6~0.8時,加入IPTG(終濃度0.5 mmol/L),16℃誘導(dǎo)表達20 h。于4℃3000 r/min離心8 min,收集菌體,利用磷酸緩沖液(PBS)重懸后加入溶菌酶,冰上放置15 min后進行超聲破碎。以10000 r/min離心15 min,取上清液進行聚丙烯酰胺凝膠電泳檢測重組蛋白的表達情況;取300μL上清液轉(zhuǎn)入1.5 mL離心管,采用Cry1Ab/Ac和Vip3A速測試紙對重組蛋白進行定性檢測(Duan etal.,2015);取100μL上清液,采用Cry1Ab/Ac和Vip3A的ELISA試劑盒對重組蛋白中Cry1A.301和Vip3A濃度進行定量檢測(Margaritetal.,2006;Liu et al.,2020)。
1.2.5融合蛋白生物活性測定根據(jù)胡小華等(2013)、李國平等(2019)研究結(jié)果,將表達的重組蛋白濃度調(diào)至亞洲玉米螟和草地貪夜蛾的半數(shù)致死濃度(LC50)進行室內(nèi)生測。采用人工飼料混合喂養(yǎng)法對亞洲玉米螟、草地貪夜蛾和棉鈴蟲進行生物測定。在1 g亞洲玉米螟、草地貪夜蛾和棉鈴蟲人工飼料中加入1 mL含3種不同蛋白(濃度為128.76~203.74 ng/mL)的破碎菌液,充分混勻后分裝在24孔板內(nèi);每孔接入1頭試蟲,以PBS緩沖液(CK1)和空載體pET30a(CK2)菌液作陰性對照,每個處理設(shè)3個重復(fù),每個重復(fù)包括24頭試蟲;置于(26±1)℃和16 h光照的生化培養(yǎng)箱中培養(yǎng),于飼喂1、3、5和7 d調(diào)查并記錄幼蟲的死蟲數(shù)和活蟲數(shù),計算死亡率和校正死亡率。輕觸蟲體不動、體形小于1齡的幼蟲均為死亡(Weiet al.,2016)。
校正死亡率(%)=(蛋白菌液飼喂組死亡率-空載體菌液飼喂死亡率)/(1-PBS飼喂組死亡率)×100
1.3統(tǒng)計分析
采用DPS 9.05對試驗數(shù)據(jù)進行統(tǒng)計分析,采用最小顯著性差異法(LSD)對蛋白表達的ELISA檢測結(jié)果和蛋白生物活性測定數(shù)據(jù)進行單因素方差分析。
2結(jié)果與分析
2.1融合蛋白組裝結(jié)果
由于Vip3蛋白的C端對于維持蛋白活性至關(guān)重要,缺失或增加活性氨基酸均會使其活性降低甚至完全喪失(徐寧,2007;許超,2018),故融合基因的基本骨架為5'-Cry1A.301-Vip3A-3',中間由編碼連接肽(8個氨基酸)的核苷酸序列組裝而成,經(jīng)誘導(dǎo)表達形成融合蛋白Cry1A.301-Vip3A。
2.2融合蛋白的理化性質(zhì)及結(jié)構(gòu)域預(yù)測結(jié)果
ProtParam預(yù)測結(jié)果顯示,Cry1A.301-Vip3A融合蛋白由1409個氨基酸組成,分子量約為157 kD,理論等電點為5.19,不穩(wěn)定指數(shù)為34.48,為穩(wěn)定的酸性蛋白;在哺乳動物網(wǎng)織紅細胞中的半衰期為30 h,在酵母細胞和大腸桿菌中的半衰期分別大于20和10 h。
利用EBI網(wǎng)站的InterPro工具確定了融合蛋白含有Vip3蛋白家族和Cry蛋白家族的特征結(jié)構(gòu)域,包括Cry蛋白的N端結(jié)構(gòu)域(第50~251位氨基酸)、Cry蛋白的中心結(jié)構(gòu)域(第259~461位氨基酸)、Cry蛋白的C端結(jié)構(gòu)域(第471~608位氨基酸)及Vip3A蛋白的碳水化合物結(jié)合結(jié)構(gòu)域(第1156~1272位氨基酸)(圖1)。另外,融合蛋白含有3個同源超家族的特征結(jié)構(gòu)域:晶體蛋白的保守N端結(jié)構(gòu)域超家族(第3~251位氨基酸)、中心β-折疊結(jié)構(gòu)域超家族(第266~462位氨基酸)、半乳糖結(jié)合樣結(jié)構(gòu)域超家族(第463~610位氨基酸、第1157~1274位氨基酸),其中未整合δ內(nèi)毒素C端結(jié)構(gòu)域超家族。
2.3原核表達載體的構(gòu)建及鑒定結(jié)果
將Cry1A.301、Vip3A和Cry1A.301-Vip3A基因片段分別連接至pET30a載體上。PCR檢測結(jié)果顯示,pET30a-Cry1A.301、pET30a-Vip3A和pET30a-Cry1A.301-Vip3A重組質(zhì)粒能分別擴增出預(yù)期的1835、1205和1552bp目的條帶(圖2)。測序結(jié)果顯示目標(biāo)序列正確,表明pET30a-Cry1A.301、pET30a-Vip3A和pET30a-Cry1A.301-Vip3A原核表達載體構(gòu)建成功。
2.4重組蛋白原核表達鑒定及濃度測定結(jié)果
將pET30a-Cry1A.301、pET30a-Vip3A和pET30a-Cry1A.301-Vip3A重組質(zhì)粒分別轉(zhuǎn)化大腸桿菌BL21(DE3),經(jīng)終濃度0.5 mmol/L IPTG 16℃誘導(dǎo)過夜后,收集菌液后進行超聲破碎,收集上清液進行聚丙烯酰胺凝膠電泳(SDS-PAGE)檢測,結(jié)果顯示,Cry1A.301蛋白分子量約為69 kD,Vip3A蛋白分子量約為88 kD,融合蛋白分子量約為157 kD(圖3),與預(yù)期大小相符。
采用膠體金試紙條分別對Cry1A.301和Vip3A蛋白進行檢測,結(jié)果顯示,含重組質(zhì)粒pET30a-Cry1A.301的大腸桿菌表達了Cry1A.301蛋白,在Cry1A.301試紙條上呈陽性反應(yīng),在pET30a-Vip3A試紙條上呈陰性反應(yīng);含重組質(zhì)粒pET30a-Vip3A的大腸桿菌表達了Vip3A蛋白,在Vip3A試紙條上呈陽性反應(yīng),在Cry1A.301試紙條上呈陰性反應(yīng);含重組質(zhì)粒pET30a-Cry1A.301-Vip3A的大腸桿菌同時表達了Cry1A.301和Vip3A 2種蛋白,在Cry1A.301和Vip3A試紙條上均呈陽性反應(yīng)(圖4)。
利用Cry1A.301的ELISA試劑盒檢測結(jié)果(表2)顯示,重組質(zhì)粒pET30a-Cry1A.301表達的Cry1A.301蛋白濃度為128.76 ng/mL;重組質(zhì)粒pET30a-Cry1A.301-Vip3A表達的融合蛋白中Cry1A.301蛋白濃度為172.41 ng/mL。利用Vip3A的ELISA試劑盒檢測結(jié)果(表2)顯示,重組質(zhì)粒pET30a-Vip3A表達的Vip3A蛋白濃度為203.74 ng/mL,重組質(zhì)粒pET30a-Cry1A.301-Vip3A表達的融合蛋白中Vip3A蛋白濃度為181.39 ng/mL。融合蛋白中,Cry1A.301蛋白與Vip3A蛋白濃度無顯著差異(Pgt;0.05,下同),說明融合蛋白中Cry1A.301和Vip3A蛋白的表達量無顯著差異。
2.5融合蛋白生物活性測定
使用PBS緩沖液和人工飼料混合喂養(yǎng)亞洲玉米螟、草地貪夜蛾和棉鈴蟲,排除了PBS緩沖液和人工飼料對幼蟲生長產(chǎn)生的影響,可用于表達蛋白Cry1A.301和Vip3A的抗蟲性評價。采用人工飼料混合喂養(yǎng)法,以混有Cry1A.301蛋白、Vip3A蛋白及Cry1A.301-Vip3A融合蛋白的人工飼料飼喂亞洲玉米螟、草地貪夜蛾和棉鈴蟲初孵幼蟲,于飼喂第1、3、5和7 d調(diào)查幼蟲死亡率和校正死亡率,如表3~表5所示。
由表3可知,取食Cry1A.301蛋白的亞洲玉米螟7 d幼蟲校正死亡率達100.00%;取食Vip3A蛋白的亞洲玉米螟7 d幼蟲校正死亡率為50.00%;取食Cry1A.301-Vip3A融合蛋白的亞洲玉米螟5 d幼蟲校正死亡率達100.00%;取食Cry1A.301-Vip3A融合蛋白和取食Cry1A.301蛋白的亞洲玉米螟7 d幼蟲校正死亡率無顯著差異,但均顯著高于取食Vip3A蛋白的亞洲玉米螟7 d幼蟲校正死亡率(Plt;0.05,下同)。
由表4可知,取食Cry1A.301蛋白的棉鈴蟲7 d幼蟲校正死亡率達為100.00%;取食Vip3A蛋白的棉鈴蟲7 d幼蟲校正死亡率達100.00%;取食融合蛋白Cry1A.301-Vip3A的棉鈴蟲5 d幼蟲校正死亡率達100.00%;取食Cry1A.301-Vip3A融合蛋白與取食Vip3A蛋白和取食Cry1A.301蛋白的棉鈴蟲7 d幼蟲校正死亡率均無顯著差異。
由表5可知,取食Cry1A.301蛋白的草地貪夜蛾7 d幼蟲校正死亡率達為77.94%;取食Vip3A蛋白的草地貪夜蛾5 d幼蟲校正死亡率達100.00%;取食Cry1A.301-Vip3A融合蛋白的草地貪夜蛾5 d幼蟲校正死亡率達100.00%;取食Cry1A.301-Vip3A融合蛋白與取食Vip3A蛋白的草地貪夜蛾7 d幼蟲校正死亡率無顯著差異,但均顯著高于取食Cry1A.301蛋白的草地貪夜蛾7d幼蟲校正死亡率。
3討論
融合基因是指將2個或多個基因的編碼區(qū)連接起來,由同一個啟動子和終止子控制,其表達產(chǎn)物稱為融合蛋白(武東亮,2000)。構(gòu)建融合基因時,將編碼連接肽的24個核苷酸序列組裝到2個基因之間,可有效避免2個蛋白的三級結(jié)構(gòu)發(fā)生拮抗和擠壓導(dǎo)致外源蛋白發(fā)生降解的情況發(fā)生。由于融合基因使用同一個啟動子和終止子,因此與基因串聯(lián)法相比,連接肽構(gòu)建融合基因法具有載體結(jié)構(gòu)簡單、基因時空表達一致等優(yōu)點(Jha and Chattoo,2009;孫鶴,2012)。因此,連接肽構(gòu)建融合基因法在作物多基因轉(zhuǎn)化中廣泛應(yīng)用(趙啟超,2015;許超,2018)。本研究采用連接肽構(gòu)建融合基因法將Cry1A.301和Vip3A基因連接起來,構(gòu)建原核表達載體,并對表達產(chǎn)物進行ELISA檢測,結(jié)果顯示,融合蛋白中Cry1A.301和Vip3A蛋白的表達量差異不顯著,與許超(2018)的研究結(jié)果一致。
基因疊加策略是延緩昆蟲對Bt毒素產(chǎn)生抗性的有效方法之一(Cao et al.,2002;Zhao et al.,2003;Yang et al.,2011)。目前,已有研究證實,融合殺蟲蛋白在轉(zhuǎn)基因作物中具有較強的殺蟲活性。Xu等(2018)研究發(fā)現(xiàn),轉(zhuǎn)Cry1Ab和Vip3A融合基因的水稻植株對二化螟(Chilo suppressalis)和稻縱卷葉螟(CnaphalocrocismedinalisGuenee)具有較高的殺蟲活性。Crespo等(2010)研究發(fā)現(xiàn),轉(zhuǎn)Cry1Ab和Vip3H融合基因的水稻植株在保護水稻免受螟蟲侵害方面具有較大潛力。劉曉貝等(2020)研究發(fā)現(xiàn),轉(zhuǎn)cry1Ab和cry1Ac融合基因的玉米植株對亞洲玉米螟初孵幼蟲具有極高的殺蟲效果。岳潤清等(2023)研究發(fā)現(xiàn),轉(zhuǎn)M2cryAb和Vip3Aa融合基因的玉米植株對玉米螟和草地貪夜蛾表現(xiàn)為高抗。不同Bt殺蟲蛋白的殺蟲譜不同,如Cry1Ab蛋白對歐洲玉米螟、亞洲玉米螟和小菜蛾(Plutellaxylostella)等鱗翅目害蟲具有較強的殺蟲活性(Sayyed et al.,2005;Crespo et al.,2010;Xia et al.,2014);Vip3Aa蛋白對黏蟲(Mythimna separata)、粉紋夜蛾(Trichoplusiani)、草地貪夜蛾、煙芽夜蛾(Heliothis virescens)等多種鱗翅目害蟲具有較強的殺蟲活性,尤其是對Cry蛋白不敏感的次生害蟲如線蟲、黏蟲、耳蟲等具有抗性(Pickett et al.,2017;Yang et al.,2018)。本研究也發(fā)現(xiàn),Cry1A.301蛋白對亞洲玉米螟和棉鈴蟲具有良好抗性,Vip3A蛋白對草地貪夜蛾具有良好的抗蟲效果。此外,Vip3A蛋白已被證實與目前應(yīng)用較多的殺蟲晶體蛋白無交互抗性,且具有增效、拮抗或疊加的作用(Graser et al.,2017;Gomis-Cebolla et al.,2018)。Cry蛋白和Vip蛋白已被聯(lián)合用于轉(zhuǎn)基因棉花和玉米。本研究將大腸桿菌表達的CryA.301-Vip3A融合蛋白和人工飼料混合后,喂養(yǎng)亞洲玉米螟、草地貪夜蛾和棉鈴蟲初孵幼蟲,7 d幼蟲校正死亡率均達100.00%,表現(xiàn)出良好的殺蟲活性,為進一步利用該融合蛋白進行靶標(biāo)害蟲治理提供了科學(xué)參考。因此,今后可將CryA.301-Vip3A融合蛋白通過農(nóng)桿菌介導(dǎo)法遺傳轉(zhuǎn)化玉米,創(chuàng)制出抗蟲性好的玉米種質(zhì)。
4結(jié)論
原核表達的Cry1A.301-Vip3A融合蛋白結(jié)構(gòu)穩(wěn)定,對亞洲玉米螟、棉鈴蟲和草地貪夜蛾均具有較好的殺蟲活性。
參考文獻(References):
郭小琴,錢紅梅,郭俊佩,史宗勇,高建華,王興春.2019.Cry1Ia和Cry2Ab融合蛋白的表達[J].山西農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),39(3):101-105.[Guo X Q,Qian H M,Guo P J,Shi Z Y,Gao J H,Wang X C.2019.Expression of the fusion protein of Cry1Ia and Cry2Ab genes[J].Jour-nal of Shanxi Agriculture University(Natural Science Edi-tion),39(3):101-105.]doi:10.13842/j.cnki.issn 1671-8151.201811048.
胡小華,王振營,何康來,解海翠,王月琴.2023.Cry類和Vip3Aa類Bt殺蟲蛋白對亞洲玉米螟的毒力和增效作用[J].植物保護,49(2):310-315.[Hu X H,Wang Z Y,He K L,Xie H C,Wang Y Q.2023.Insecticidal activity andsynergism of combinations of Bacillus thuringiensis Cry and Vip3Aa against Ostriniafurnacalis[J].Plant Protec-tion,49(2):310-315.]doi:10.16688/j.zwbh.2021671.
李國平,姬婷婕,孫小旭,姜玉英,吳孔明,封洪強.2019.入侵云南草地貪夜蛾種群對5種常用Bt蛋白的敏感性評價[J].植物保護,45(3):15-20.[Li G P,Ji T J,Sun X X,Jiang YY,Wu K M,F(xiàn)eng H Q.2019.Susceptibility evalua-tion of invaded Spodoptera frugiperda population in Yun-nan Province to five Bt proteins[J].Plant Protection,45(3):15-20.]doi:10.16688/j.zwbh.2019201.
劉曉貝,白樹雄,王振營,王月琴,王勤英,何康來.2020.轉(zhuǎn)cry1Ab/cry1Ac基因玉米Cry1Ab/Cry1Ac融合蛋白表達及對亞洲玉米螟的室內(nèi)殺蟲效果[J].昆蟲學(xué)報,63(10):1201-1206.[Liu X B,Bai S X,Wang Z Y,Wang Y Q,Wang Q Y,He K L.2020.Expression of Cry1Ab/Cry1Ac fusion protein in the transgenic cry1Ab/cry1Ac maize and its control efficacy against the Asian corn borer,Ostriniafurnacalis(Lepidoptera:Crambidae),in the laboratory[J].Acta Entomologica Sinica,63(10):1201-1206.]doi:10.16380/j.kcxb.2020.10.005.
孫鶴.2012.連接肽2A和LP4/2A在玉米中的剪切分析及抗蟲耐除草劑轉(zhuǎn)基因玉米的獲得[D].北京:中國農(nóng)業(yè)科學(xué)院.[Sun H.2012.Analysis of the linker peptides 2A and LP4/2A in maize and generation of transgenic maize with insect resistance and glyphosate tolerance[D].Beijing:Chinese Academy of Agrieultural Sciences.]
王慧,楊小艷,翁建峰,宋新元,王大銘,王振華,李新海.2014.抗玉米螟基因Cry1A.301原核表達和玉米遺傳轉(zhuǎn)化[J].作物雜志,(2):34-38.[Wang H,Yang X Y,Weng J F,Song X Y,Wang D M,Wang Z H,Li X H.2014.Pro-karyotic expression and genetic transformation of corn borer resistance gene Cry1A.301 in maize[J].Crops,(2):34-38.]doi:10.16035/j.issn.1001-7283.2014.02.015.
王勝.2012.Cry1Aa-CpTI融合蛋白的原核表達及其對斜紋夜蛾殺蟲活性研究[D].海口:海南大學(xué).[Wang S.2012.Prokaryotic expression of Cry1Aa-CpTI fusion protein and its litura insecticidal activity toward Prodenialitura Fabri-cius[D].Haikou:Hainan University.]
王月琴,何康來,王振營.2019.靶標(biāo)害蟲對Bt玉米的抗性發(fā)展和治理策略[J].應(yīng)用昆蟲學(xué)報,56(1):12-23.[Wang Y Q,He K L,Wang Z Y.2019.Evolution of resistance to transgenic Bacillus thuringiensis maize in pest insects and a strategy for managing this[J].Chinese Journal of Applied Entomology,56(1):12-23.]doi:10.7679/j.issn.2095-1353.2019.01.002.
武東亮,崔洪志,郭三堆.2001.融合殺蟲基因植物表達載體的構(gòu)建及轉(zhuǎn)基因煙草的獲得[J].中國農(nóng)業(yè)科學(xué),34(5):465-468.[Wu D L,Cui H Z,Guo S D.2001.Construction of plant expression vector harboring a fused insecticidal gene and development of transgenic tobacco plants[J].Scientia Agricultura Sinica,34(5):465-468.]doi:10.3321/j.issn:0578-1752.2001.05.006.
武東亮.2000.融合殺蟲基因的分子設(shè)計、構(gòu)建及表達研究[D].北京:中國農(nóng)業(yè)科學(xué)院.[Wu D L.2000.Molecular design,construction and expression of a fused insecticidal gene[D].Beijing:Chinese Academy of Agrieultural Scien-ces.]
徐寧.2007.蘇云金芽孢桿菌營養(yǎng)期殺蟲蛋白(Vip3)突變體的殺蟲活性及其對胰蛋白酶的敏感性[D].杭州:浙江大學(xué).[Xu N.2007.Insecticidal activity and trypsin sensiti-vity of Bacillus thuringiensis Vip3 mutant proteins[D].Hangzhou:Zhejiang University.]
許超.2018.一種Bt基因融合策略在治理害蟲對轉(zhuǎn)基因玉米和水稻抗性中的應(yīng)用[D].杭州:浙江大學(xué).[Xu C.2018.A Bt fusion strategy of two Bt toxins with different modes of action for insect resistance management in transgenic corn and rice[D].Hangzhou:Zhejiang University.]
袁淼.2010.融合基因cry2Aa-gna克隆及表達的研究[D].武漢:華中農(nóng)業(yè)大學(xué).[Yuan M.2010.Study on cloning and expression of the fusion gene cry2Aa-gna[D].Wuhan:Huazhong Agricuture University.]
岳潤清,李文蘭,孟昭東.2024.轉(zhuǎn)基因抗蟲耐除草劑玉米自交系LG11的獲得及抗性分析[J].作物學(xué)報,50(1):89-99.[Yue R Q,Li W L,Meng Z D.2024.Acquisition and resistance analysis of transgenic maize inbred line LG11 with insect and herbicide resistance[J].Acta Agronomica Sinica,50(1):89-99.]doi:10.3724/SP.J.1006.2024.33016.
趙啟超.2015.基因連接法和2A策略在水稻Bt基因堆疊中的應(yīng)用[D].杭州:浙江大學(xué).[Zhao Q C.2015.Bt gene stacking in rice with linked effect genes and 2A polycis-tronic transgene[D].Hangzhou:Zhejiang University.]
Alcantara E,Estrada A,Alpuerto V,Head G.2011.Monitoring Cry1Ab susceptibility in Asian corn borer(Lepidoptera:Crambidae)on Bt corn in the Philippines[J].Crop Protec-tion,30(5):554-559.doi:10.1016/j.cropro.2010.12.019.
Bernardi O,Bernardi D,Horikoshi R J,Okuma D M,Miraldo L L,F(xiàn)atoretto J,Medeiros F C,Burd T,Omoto C.2016.Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodop-tera frugiperda[J].Pest Management Science,72(9):1794-1802.doi:10.1002/ps.4223.
Bohorova N,F(xiàn)rutos R,Royer M,Esta?ol P,Pacheco M,Rascón Q,McLean S,Hoisington D.2001.Novel syn-thetic Bacillus thuringiensis Cry1B gene and the Cry1B-cry1Ab translational fusion confer resistance to southwes-tern corn borer,sugarcane borer and fall armyworm in transgenic tropical maize[J].Theoretical and Applied Gene-tics,103:817-826.doi:10.1007/s001220100686.
Camargo A M,Andow D A,Casta?era P,F(xiàn)arinós G P.2018.First detection of a Sesamianonagrioides resistance allele to Bt maize in Europe[J].Science Report,8(1):1-7.doi:10.1038/s41598-018-21943-4.
Cao J,Zhao J Z,Tang J D,Shelton A,Earle E.2002.Broccoli plants with pyramided cry1Ac and cry1C Bt genes controldiamondback moths resistant to Cry1A and Cry1C proteins[J].Theoretical and Applied Genetics,105(2-3):258-264.doi:10.1007/s00122-002-0942-0.
Chakroun M,Banyuls N,Bel Y,Escriche B,F(xiàn)erréJ.2016.Bac-terial vegetative insecticidal proteins(Vip)from ento-mopathogenic bacteria[J].Microbiology and Molecular Biology Reviews,80(2):329-350.doi:10.1128/MMBR.00060-15.
Chakroun M,Bel Y,Caccia S,Abdelkefi-Mesrati L,Escriche B,F(xiàn)erréJ.2012.Susceptibility of Spodoptera frugiperda and S.exigua to Bacillus thuringiensis Vip3Aa insecticidal protein[J].Journal of Invertebrate Pathology,110(3):334-339.doi:10.1016/j.jip.2012.03.021.
Crespo A L B,Spencer T A,Tan S Y,Siegfried B D.2010.Fit-ness costs of Cry1Ab resistance in a field-derived strain of Ostrinianubilalis(Lepidoptera:Crambidae)[J].Journal of Economic Entomology,103(4):1386-1393.doi:10.1603/ec09158.
Donovan W P,Donovan J C,Engleman J T.2001.Gene knock-out demonstrates that vip3A contributes to the pathoge-nesis of Bacillus thuringiensis toward Agrotisipsilon and Spodoptera exigua[J].Journal of Invertebrate Pathology,78(1):45-51.doi:10.1006/jipa.2001.5037.
Duan D M,F(xiàn)an K L,Zhang D X,Tan S G,Liang M F,Liu Y,Zhang J L,Zhang P H,Liu W,Qiu X G,Kobinger G P,Gao G F,Yan X Y.2015.Nanozyme-strip for rapid local diagnosis of Ebola[J].Biosensors and Bioelectronics,74:134-141.doi:10.1016/j.bios.2015.05.025.
Estruch J J,Warren G W,Mullins M A,Nye G J,Craig J A,Koziel M G.1996.Vip3A,a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J].Proceedings of the National Academy of Sciences of the United States of America,93(11):5389-5394.doi:10.1073/pnas.93.11.5389.
Gomis-Cebolla J,Wang Y Q,Quan Y D,He K L,Walsh T,James B,Downes S,Kain W,Wang P,Leonard K,Morgan T,Oppert B,F(xiàn)erréJ.2018.Analysis of cross-resistance to Vip3 proteins in eight insect colonies,from four insect spe-cies,selected for resistance to Bacillus thuringiensis insec-ticidal proteins[J].Journal of Invertebrate Pathology,155:64-70.doi:10.1016/j.jip.2018.05.004.
Graser G,Walters F S,Burns A,Sauve A,Raybould A.2017.A general approach to test for interaction among mixtures of insecticidal proteins which target different orders of insect pests[J].Journal of Insect Science,17(2):39.doi:10.1093/jisesa/iex003.
Grimi D A,Parody B,Ramos M L,Machado M,Ocampo F,Willse A,Martinelli S,Head G.2018.Field-evolved resis-tance to Bt maize in sugarcane borer(Diatraeasacchara-lis)in Argentina[J].Pest Management Science,74(4):905-913.doi:10.1002/ps.4783.
Huang F N,Ghimire M N,Leonard B R,Daves C,Levy R,Baldwin J.2012.Extended monitoring of resistance to
Bacillus thuringiensis Cry1Ab maize inDiatraeasacchara-lis(Lepidoptera:Crambidae)[J].GM Cropsamp;Food,3(3):245-254.doi:10.4161/gmcr.20539.
Huang J K,Rozelle S,Pray C E,Wang Q F.2002.Plant bio-technology in China[J].Science,295(5555):674-677.doi:10.1126/science.1067226.
Jha S,Chattoo B B.2009.Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice[J].Rice,2(4):143-154.doi:10.1007/s 12284-009-9030-2.
Lee M K,Walters F S,Hart H,Palekar N,Chen J S.2003.The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin[J].Applied and Environmental Microbio-logy,69(8):4648-4657.doi:10.1128/AEM.69.8.4648-4657.2003.
Liu W X,Liu X R,Liu C,Zhang Z,Jin W J.2020.Develop-ment of a sensitive monoclonal antibody-based sandwich ELISA to detect Vip3Aa in genetically modified crops[J].Biotechnology Letters,42(8):1467-1478.doi:10.1007/s 10529-020-02854-9.
Margarit E,Reggiardo M I,Vallejos R H,Permingeat H R.2006.Detection of Bt transgenic maize in foodstuffs[J].Food Research International,39(2):250-255.doi:10.1016/j.foodres.2005.07.013.
Pickett B R,Gulzar A,F(xiàn)erréJ,Wright D J.2017.Bacillus thuringiensis Vip3Aa toxin resistance in Heliothisvire-scens(Lepidoptera:Noctuidae)[J].Applied and Environ Microbiol,83(9):e03506-e03516.doi:10.1128/AEM.03506-16.
Pray C E,Huang J K,Hu R F,Rozelle S.2002.Five years of Bt cotton in China-The benefits continue[J].The Plant Jour-nal,31(4):423-430.doi:10.1046/j.1365-313X.2002.014 01.x.
Rose M,Erica M,Cristina M,Paulo Q,Lilian P,Marcelo S C,Helio M,Isabella G,Joseane S,Mario S,Alejandra B,Luis J J.2015.Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Bra-zil that is still sensitive to modifedBt toxins[J].PLoS One,10(4):e0119544.doi:10.1371/journal.pone.0119544.
Sayyed A H,Roxani G,Ibiza-Palacios M S,Escriche B,Wright D J,Crickmore N.2005.Common,but complex,mode of resistance of Plutellaxylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac[J].Applied and Environmen-tal Microbiology,71(11):6863-6869.doi:10.1128/AEM.71.11.6863-6869.2005.
Storer N P,Kubiszak M E,King J E,Thompson G D,Santos A C.2012.Status of resistance to Bt maize in Spodoptera fru-giperda:Lessons from Puerto Rico[J].Journal of Inverte-brate Pathology,110(3):294-300.doi:10.1016/j.jip.2012.04.007.
Tabashnik B E,GassmannA J,Crowder D W,Carriére Y.2008.Insect resistance to Bt crops:Evidence versus theory[J].Nature Biotechnology,26(2):199-202.doi:10.1038/nbt 1382.
van Rensburg J B J.2007.First report of field resistance by thestem borer,Busseolafusca(Fuller)to Bt-transgenic maize[J].South African Journal of Plant and Soil,24(3):147-151.doi:10.1080/02571862.2007.10634798.
Wan P,Huang Y X,Wu H H,Huang M S,Cong S B,Tabashnik B E,Wu K M.2012.Increased frequency of pink boll-worm resistance to Bt toxin Cry1Ac in China[J].PLoS One,7(1):e29975.doi:10.1371/journal.pone.0029975.
Wei J Z,Liang G M,Wang B J,Zhong F,Chen L,Khaing M M,Zhang J,Guo Y Y,Wu K M,Tabashnik B E.2016.Activation of Bt protoxin Cry1Ac in resistant and suscep-tible cotton bollworm[J].PLoS One,11(6):e0156560.doi:10.1371/journal.pone.0156560.
Xia Y X,Lu Y H,Shen J,Gao X W,Qiu H,Li J H.2014.Resis-tance monitoring for eight insecticides in Plutella xylo-stella in central China[J].Crop Protection,63(9):131-137.doi:10.1016/j.cropro.2014.03.011.
Xu C,Cheng J H,Lin H Y,Lin C Y,Gao J H,Shen Z C.2018.Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J].Scientific Reports,8(1):15788.doi:10.1038/s41598-018-34104-4.
Yang J,Quan Y D,Sivaprasath P,Shabbir M Z,Wang Z Y,F(xiàn)errgbi,He K L.2018.Insecticidal activity and synergistic combinations often different Bt toxins against Mythimna separata(Walker)[J].Toxins(Basel),10(11):454.doi:10.3390/toxins 1011045.
Yang Y Y,Mei F,Zhang W,Shen Z C,F(xiàn)ang J.2014.Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter[J].Jour-nal of Economic Entomology,107(4):1674-1679.doi:10.1603/ec 13497.
Yang Z,Chen H,Tang W,Hua H X,Lin YJ.2011.Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes[J].Pest Management Science,67(4):414-422.doi:10.1002/ps.2079.
Zhao J Z,Cao J,Li Y X,Collins H L,Roush R T,Earle E D,Shelton A M.2003.Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolu-tion[J].Nature Biotechnology,21(12):1493-1497.doi:10.1038/nbt907.
(責(zé)任編輯陳燕)