摘要:【目的】構(gòu)建狂犬病病毒(RABV)突變株rRC-HL(GX074P1M1)并探究其生物學(xué)特性,分析磷蛋白(P)與基質(zhì)蛋白(M)部分區(qū)域聯(lián)合突變對(duì)RABV轉(zhuǎn)錄和復(fù)制水平的影響,以了解RABV的致病機(jī)制,為靶點(diǎn)預(yù)防與治療提供理論依據(jù)?!痉椒ā客ㄟ^(guò)反向遺傳學(xué)技術(shù),將RABV街毒株GX074的P蛋白P1區(qū)域(第48~78位氨基酸)與M蛋白M1區(qū)域(第1~22位氨基酸)聯(lián)合嵌入弱毒株RC-HL相應(yīng)位置,通過(guò)間接免疫熒光試驗(yàn)(IFA)、實(shí)時(shí)熒光定量PCR和Western blotting分別測(cè)定突變毒株和對(duì)照毒株[RC-HL、GX074、rRC-HL(GX074PM)和CVS-11]感染細(xì)胞BSR/T7-9后的病毒滴度與核蛋白(N)基因、P基因和M基因及其蛋白相對(duì)表達(dá)量?!窘Y(jié)果】通過(guò)病毒拯救成功獲得突變毒株rRC-HL(GX074P1M1)。病毒多步生長(zhǎng)曲線測(cè)定結(jié)果顯示,感染BSR/T7-9細(xì)胞24~96 h內(nèi),突變毒株rRC-HL(GX074P1M1)的病毒滴度均高于親本毒株RC-HL和GX074。通過(guò)實(shí)時(shí)熒光定量PCR檢測(cè)發(fā)現(xiàn),突變毒株rRC-HL(GX074P1M1)在感染24和48 h時(shí),N基因、P基因和M基因的相對(duì)表達(dá)量均顯著(Plt;0.05)或極顯著(Plt;0.01,下同)高于親本毒株RC-HL和GX074。Western blotting檢測(cè)結(jié)果顯示,在感染24 h時(shí),與親本毒株RC-HL相比,突變毒株rRC-HL(GX074P1M1)的N蛋白、P蛋白和M蛋白相對(duì)表達(dá)量均小幅上升;在感染48 h時(shí),突變毒株rRC-HL(GX074P1M1)的N蛋白、P蛋白和M蛋白相對(duì)表達(dá)量均極顯著高于親本毒株RC-HL與GX074。【結(jié)論】RABV街毒株GX074的P1和M1區(qū)域聯(lián)合嵌入弱毒株RC-HL獲得的突變毒株rRC-HL(GX074P1M1)復(fù)制及轉(zhuǎn)錄水平比親本毒株高,在細(xì)胞內(nèi)具有更強(qiáng)的增殖能力,表明街毒株GX074的P蛋白P1區(qū)域和M蛋白M1區(qū)域在促進(jìn)病毒轉(zhuǎn)錄及復(fù)制中發(fā)揮協(xié)同作用。
關(guān)鍵詞:狂犬病病毒(RABV);GX074;RC-HL;P1;M1;生長(zhǎng)特性;反向遺傳
中圖分類號(hào):S852.659.5文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)10-3106-11
Construction of rabies virus mutant strain rRC-HL(GX074P1M1)and its biological characteristics
LI Wen-fang1,2,PENG Jing1,2,LUO Xi1,2,YANG Wen-hao1,2,WEI Xian-kai1,2,LI Xiao-ning1,2,3*,LUO Ting-rong1,2,3,4*
(1College of Animal Science and Technology,Guangxi University,Nanning,Guangxi 530004,China;2State Key Labo-ratory for Conservation and Utilization of Subtropical Agro-bioresources,Nanning,Guangxi 530004,China;3GuangxiVeterinary Biological Products Engineering Research Center,Nanning,Guangxi 530004,China;4Guangxi Key Labora-tory of Animal Breedingamp;Disease Control and Prevention,Nanning,Guangxi 530004,China)
Abstract:【Objective】The objective of this study was to construct the rabies virus(RABV)mutant strain rRC-HL(GX074P1M1)and investigate its biological characteristics,analyzed the impact of combined mutations in the phospho-protein(P)and matrix protein(M)regions on RABV transcription and replication levels,in order to study the patho-genic mechanisms of RABV and provide theoretical basis for targeted prevention and treatment.【Method】Using reverse genetics technology,the P protein P1 region(amino acids at positions 48-78)and M protein M1 region(amino acids atpositions 1-22)of the RABV street strain GX074 were co-embedded into the corresponding positions of the attenuatedstrain RC-HL.The virus titers and the relative expression levels of the nucleoprotein(N)gene,P gene,and M gene,as well as their proteins were determined for the mutant strain and control strains[RC-HL,GX074,rRC-HL(GX074PM),and CVS-11]after infection of BSR/T7-9 cells using indirect immunofluorescence assay(IFA),real-time fluorescence quantitative PCR and Western blotting.【Result】The mutant strain rRC-HL(GX074P1M1)was successfully obtainedthrough virus rescue.Multi-step virus growth curve assays showed that the virus titer of the mutant strain rRC-HL(GX074P1M1)was higher than that of the parental strains RC-HL and GX074 within 24-96 h post infection of BSR/T7-9 cells.Real-time fluorescence quantitative PCR revealed that the relative expression levels of the N gene,P gene and M gene of the mutant strain rRC-HL(GX074P1M1)were significantly(rlt;0.05)or extremely significantly(rlt;0.01,thesame below)higher than those of the parental strains RC-HL and GX074 at 24 and 48 h post infection.Westernblottingresults indicated that at 24 hpost infection,the relative expression levels of N protein,P protein and M proteins in the mu-tant strain rRC-HL(GX074P1M1)were slightly higher than those in the parental strain RC-HL.At 48 h post infection,the relative expression levels of N protein,P protein and M proteins in the mutantstrainrRC-HL(GX074P1M1)were ex-tremely significantly higher than those in the parental strains RC-HL and GX074.【Conclusion】The mutantstrainrRC-HL(GX074P1M1),obtained by co-embedding the P1 and M1 regions of the RABV street strain GX074 into the attenuatedstrain RC-HL,exhibits higher replication and transcription levels than the parental strains,indicating a stronger intracellu-lar proliferation capability.This suggests that the P protein P1 region and M protein M1 region of the street strain GX074 play synergistic effects in promoting viral transcription and replication.
Key words:rabies virus(RABV);GX074;RC-HL;P1;M1;growth characteristics;reverse inheritance
Foundation items:National Natural Science Foundation of China(32070161,31570147);Guangxi Natural Science Foundation(2020GXNSFAA297212)
0引言
【研究意義】狂犬病是一種由狂犬病病毒(Rabies virus,RABV)引起的接觸性人獸共患傳染病,一旦出現(xiàn)臨床癥狀幾乎100%死亡,據(jù)世界衛(wèi)生組織報(bào)道,全世界每年死于狂犬病的人數(shù)高達(dá)5.9萬(wàn)。RABV因具有血腦屏障穿透性而不易用藥物治療,各國(guó)控制狂犬病流行均采用以注射疫苗為主的預(yù)防措施,進(jìn)行精細(xì)的RABV結(jié)構(gòu)研究,對(duì)提高疫苗針對(duì)性尤為重要?!厩叭搜芯窟M(jìn)展】RABV隸屬于彈狀病毒科狂犬病病毒屬,其基因組全長(zhǎng)約12 kb,為不分節(jié)段的單股負(fù)鏈RNA,從3'端至5'端依次編碼5種結(jié)構(gòu)蛋白,分別為核蛋白(N)、磷蛋白(P)、基質(zhì)蛋白(M)、糖蛋白(G)和病毒RNA聚合酶蛋白(L)(Hidaka et al.,2018)。RABV的P蛋白由297個(gè)氨基酸組成,具有高度親水性,P基因通過(guò)特定的翻譯機(jī)制可翻譯出5種不同大小的P蛋白,這些P蛋白定位在細(xì)胞的不同位置,發(fā)揮重要功能(Cheniketal.,1995)。RABV的P蛋白是與核糖核蛋白(RNP)復(fù)合物一起形成螺旋狀核殼的重要中間體,P蛋白在N-RNA模板上能正確定位,因?yàn)镻蛋白具有2個(gè)獨(dú)立的N蛋白結(jié)合區(qū)域,分別位于C端和N端,較強(qiáng)的結(jié)合區(qū)域位于P蛋白C端,與N-RNA復(fù)合物中的N蛋白結(jié)合,較弱的結(jié)合區(qū)域位于P蛋白N端,主要結(jié)合新產(chǎn)生的N蛋白(Liu et al.,2004;Mavrakis et al.,2004,2006)。P蛋白阻止N蛋白與細(xì)胞RNA結(jié)合,對(duì)病毒的復(fù)制和轉(zhuǎn)錄起重要作用(Jacob et al.,2001)。P蛋白可與信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子1(STAT1)(Vidy et al.,2005;Zhan et al.,2021)、黏著斑激酶(Fouquet et al.,2015)、熱休克蛋白90(Hsp90)(Xu et al.,2016)、自噬蛋白Beclin 1(Liu et al.,2017)、Rho家族GTP酶Rac1(徐婧,2023)等多種宿主蛋白直接或間接作用以調(diào)控宿主抗病毒功能。RABV的M蛋白是負(fù)鏈RNA病毒的重要結(jié)構(gòu)蛋白,對(duì)病毒的組裝和出芽具有重要作用。M蛋白由202個(gè)氨基酸組成,是RABV結(jié)構(gòu)蛋白中最小的,但其變異頻率卻較大(Mebatsionetal.,1999)。M蛋白位于RABV粒子的囊膜下,連接RNP和G蛋白(Guichard etal.,2011)。M蛋白通過(guò)與宿主的多種蛋白相互作用來(lái)實(shí)現(xiàn)促進(jìn)病毒轉(zhuǎn)錄與復(fù)制的功能,其利用富含脯氨酸的基序與細(xì)胞蛋白的WW結(jié)構(gòu)域相互作用,促進(jìn)病毒出芽(Hartyet al.,1999);M蛋白可與NF-κB家族蛋白R(shí)elAp43結(jié)合,抑制病毒感染后期與先天免疫相關(guān)的NF-κB依賴性基因表達(dá)(Ben Khalifa et al.,2016;Besson etal.,2017);Zan等(2016)研究發(fā)現(xiàn),M蛋白能以線粒體為靶標(biāo),在病毒感染后期誘導(dǎo)線粒體凋亡,以促進(jìn)病毒的復(fù)制和傳播;劉杏(2020)研究發(fā)現(xiàn),V型ATP酶轉(zhuǎn)運(yùn)亞基A(ATP6V1A)與M蛋白相互作用,促進(jìn)病毒的復(fù)制;張曦等(2023)研究發(fā)現(xiàn),M蛋白第74位氨基酸(組氨酸)對(duì)M蛋白定位至線粒體有重要影響;此外,Zhang等(2023)研究發(fā)現(xiàn),M蛋白可劫持宿主蛋白Desmin,實(shí)現(xiàn)病毒成分在細(xì)胞內(nèi)的有效轉(zhuǎn)運(yùn),從而幫助病毒出芽。RABV的反向遺傳學(xué)技術(shù)逐漸發(fā)展成熟,Schnell等(1994)用痘病毒感染刺激細(xì)胞從而促進(jìn)細(xì)胞表達(dá)RNA聚合酶;Buchholz等(1999)構(gòu)建了能穩(wěn)定表達(dá)T7RNA聚合酶的BSR-T7/5細(xì)胞系;Inoue等(2003)建立依賴于細(xì)胞聚合酶Ⅱ,兩端分別連接錘頭狀核酶和丁型肝炎病毒核酶,并接合在pcDNA3.1/Zeo(+)載體CMV啟動(dòng)子下游的RABV全長(zhǎng)質(zhì)粒系統(tǒng);Ito等(2003)構(gòu)建了含有RC-HL毒株全長(zhǎng)基因組的質(zhì)粒pRC-HL(+)與含有RC-HL毒株N基因、P基因和L基因序列的3個(gè)輔助質(zhì)粒pcDNA-RN、pcDNA-RP及pcDNA-RL,是RABV基因功能研究的重要工具。本課題組前期分離獲得了廣西街毒株GX074,通過(guò)反向遺傳技術(shù)將街毒株GX074的P基因和M基因替換至弱毒株RC-HL相應(yīng)位置進(jìn)行聯(lián)合突變,結(jié)果發(fā)現(xiàn)病毒致病性提高,且突變毒株rRC-HL(GX074PM)的復(fù)制水平介于親本弱毒株和街毒株之間;進(jìn)一步研究發(fā)現(xiàn),將街毒株GX074的M蛋白第1~22位氨基酸與P蛋白全長(zhǎng)聯(lián)合替換至弱毒株RC-HL相應(yīng)位置,或?qū)⒔侄局闓X074的P蛋白第48~78位氨基酸與M蛋白全長(zhǎng)聯(lián)合替換至弱毒株RC-HL相應(yīng)位置,獲得的突變毒株在細(xì)胞內(nèi)的復(fù)制能力均與親本弱毒株RC-HL相似,但明顯高于親本街毒株GX074(陸麗瑩等,2022;周桂全等,2023)?!颈狙芯壳腥朦c(diǎn)】在前期研究的基礎(chǔ)上,進(jìn)一步探究RABV的P蛋白P1區(qū)域(第48~78位氨基酸)和M蛋白M1區(qū)域(第1~22位氨基酸)聯(lián)合突變的影響?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)反向遺傳學(xué)技術(shù),將街毒株GX074的P蛋白P1區(qū)域與M蛋白M1區(qū)域聯(lián)合嵌入弱毒株RC-HL相應(yīng)位置,構(gòu)建RABV突變株并探究其生物學(xué)特性,通過(guò)間接免疫熒光試驗(yàn)(IFA)、實(shí)時(shí)熒光定量PCR和Western blotting分別測(cè)定突變毒株和對(duì)照毒株感染BSR/T7-9細(xì)胞后的病毒滴度與N基因、P基因和M基因及其蛋白相對(duì)表達(dá)量。分析P1和M1區(qū)域聯(lián)合突變對(duì)RABV轉(zhuǎn)錄和復(fù)制水平的影響,以了解RABV的致病機(jī)制,為靶點(diǎn)預(yù)防與治療提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)材料
pRC-HL質(zhì)粒與輔助質(zhì)粒pT7IRES-N、pT7IRES-P和pT7IRES-L均由日本岐阜大學(xué)源宣之教授惠贈(zèng);pRC-HL(GX074P1M)和pRC-HL(GX074PM1)感染性cDNA克隆均為本課題組前期研究構(gòu)建保存;BSR/T7-9細(xì)胞系與RABV固定毒株CVS-11和弱毒株RC-HL均由亞熱帶農(nóng)業(yè)生物資源保護(hù)與利用國(guó)家重點(diǎn)實(shí)驗(yàn)室保存提供;RABV街毒株GX074為本課題組前期研究分離保存;RABV突變毒株rRC-HL(GX074PM)為本課題組前期研究拯救保存;限制性內(nèi)切酶AgeⅠ購(gòu)自美國(guó)NEB公司;限制性內(nèi)切酶SacⅡ、PrimeSTAR MAX Premix(2×)、反轉(zhuǎn)錄酶M-MLV和RNA酶抑制劑均購(gòu)自日本TaKaRa公司;2×Universal SYBR Green Fast qPCR Mix購(gòu)自武漢愛(ài)博泰克生物科技有限公司;LipofectamineTM 2000轉(zhuǎn)染試劑、DMEM培養(yǎng)基粉末、Opti-MEMTM減血清培養(yǎng)基和GeneJET凝膠回收試劑盒均購(gòu)自美國(guó)Thermo Fisher Scientific公司;無(wú)內(nèi)毒素質(zhì)粒抽提試劑盒購(gòu)自美國(guó)Omega Bio-Tek公司;2×Taq PCR MasterMixⅡ和大腸桿菌TOP10感受態(tài)細(xì)胞均購(gòu)自天根生化科技(北京)有限公司;胎牛血清(FBS)購(gòu)自南京諾唯贊生物科技股份有限公司;RABV N蛋白鼠源單克隆抗體和免疫熒光染色試劑盒(含抗小鼠Alexa Fluor 488)均購(gòu)自上海碧云天生物技術(shù)股份有限公司;內(nèi)參蛋白β-Actin鼠源單克隆抗體購(gòu)自江蘇康為世紀(jì)生物科技股份有限公司。
1.2引物設(shè)計(jì)與合成
根據(jù)GenBank已公布的RC-HL毒株基因組序列(登錄號(hào)AB009663)和本課題組前期研究測(cè)序獲得的GX074毒株基因組序列,比對(duì)弱毒株RC-HL和街毒株GX074的P蛋白氨基酸序列P1區(qū)域及M蛋白氨基酸序列M1區(qū)域(圖1),設(shè)計(jì)將GX074毒株P(guān)基因P1片段和M基因M1片段替換至RC-HL毒株相應(yīng)位置的cDNA克隆引物(表1),委托南寧捷尼斯生物科技有限公司合成。
1.3 RABV突變株感染性cDNA克隆的構(gòu)建
以pRC-HL(GX074P1M)質(zhì)粒為模板,采用含有AgeⅠ酶切位點(diǎn)的引物AgeⅠ-F和含有重疊片段的引物P1-R擴(kuò)增P1片段,以pRC-HL(GX074PM1)質(zhì)粒為模板,利用含有SacⅡ酶切位點(diǎn)的引物SacⅡ-R和含有重疊片段的引物M1-F擴(kuò)增M1片段,通過(guò)重疊PCR將2個(gè)片段進(jìn)行連接獲得P1M1片段。采用限制性內(nèi)切酶AgeⅠ和SacⅡ?qū)RC-HL質(zhì)粒進(jìn)行雙酶切獲得線性化載體,利用同源重組一步法克隆試劑盒將P1M1片段連接至線性化載體,以連接產(chǎn)物轉(zhuǎn)化大腸桿菌TOP10感受態(tài)細(xì)胞,在LA培養(yǎng)基中培養(yǎng)過(guò)夜,挑取單菌落擴(kuò)大培養(yǎng)后進(jìn)行測(cè)序。
1.4 RABV突變株的拯救
將BSR/T7-9細(xì)胞接種至12孔細(xì)胞培養(yǎng)板進(jìn)行培養(yǎng),當(dāng)細(xì)胞密度達(dá)70%~90%時(shí)進(jìn)行轉(zhuǎn)染。感染性cDNA克隆與輔助質(zhì)粒pT7IRES-N、pT7IRES-P和pT7IRES-L分別取2.0、0.4、0.1和0.2μL,用200.0μL Opti-MEMTM減血清培養(yǎng)基溶解混勻;同時(shí),取4.0μL脂質(zhì)體LipofectamineTM 2000于200.0μLOpti-MEMTM減血清培養(yǎng)基中溶解混勻,室溫靜置5 min;將質(zhì)粒和脂質(zhì)體溶解液混合,室溫靜置20min。棄去12孔細(xì)胞培養(yǎng)板內(nèi)細(xì)胞培養(yǎng)液,用DMEM培養(yǎng)基洗滌2次,將質(zhì)粒和脂質(zhì)體混合液加入12孔細(xì)胞培養(yǎng)板中,每孔400.0μL,置于含5%CO2的37℃恒溫培養(yǎng)箱進(jìn)行培養(yǎng),6 h后棄去上清液,更換為含2%FBS的DMEM培養(yǎng)基,每孔1 mL,至培養(yǎng)第3 d時(shí)每孔再補(bǔ)充1 mL含2%FBS的DMEM。培養(yǎng)6 d后將12孔細(xì)胞培養(yǎng)板置于-80℃超低溫冰箱凍融2次,收集凍融液,4℃下12000 r/min離心5 min,-80℃保存?zhèn)溆谩?/p>
將凍融液接種至96孔細(xì)胞培養(yǎng)板培養(yǎng)的細(xì)胞中,每孔100.0μL,接種2 h后更換為含2%FBS和1%甲基纖維素的DMEM,48 h后通過(guò)IFA檢測(cè)細(xì)胞中特異性病毒熒光灶形成情況。根據(jù)檢測(cè)結(jié)果,將含有病毒粒子的凍融液接種至BSR/T7-9細(xì)胞中盲傳3代,提取盲傳3代后的細(xì)胞凍融液總RNA并反轉(zhuǎn)錄合成cDNA,用引物AgeⅠ-F和SacⅡ-R擴(kuò)增目的片段,膠回收后送至生工生物工程(上海)股份有限公司進(jìn)行測(cè)序驗(yàn)證。
1.5 RABV突變株的多步生長(zhǎng)曲線測(cè)定
測(cè)定突變毒株與對(duì)照毒株RC-HL、GX074、rRC-HL(GX074PM)和CVS-11的病毒滴度,然后按感染復(fù)數(shù)(MOI)為0.01的劑量接種至24孔細(xì)胞培養(yǎng)板培養(yǎng)的BSR/T7-9細(xì)胞中,分別收集感染后24、48、72和96 h的上清液,采用IFA測(cè)定不同感染時(shí)間的病毒滴度,使用GraphPad Prism 9.0繪制病毒的多步生長(zhǎng)曲線。
1.6 RABV突變株的結(jié)構(gòu)蛋白基因相對(duì)表達(dá)量測(cè)定
將突變病毒株與對(duì)照毒株RC-HL、GX074、rRC-HL(GX074PM)和CVS-11以0.1 MOI的劑量接種至24孔細(xì)胞培養(yǎng)板培養(yǎng)的BSR/T7-9細(xì)胞中。分別于感染后24和48h收集細(xì)胞樣品,提取樣品總RNA并反轉(zhuǎn)錄合成cDNA,采用實(shí)時(shí)熒光定量PCR檢測(cè)N基因、P基因和M基因相對(duì)表達(dá)量,引物信息見(jiàn)表2。PCR反應(yīng)體系10.0μL:cDNA模板2.0μL,2×Universal SYBR Green Fast qPCR Mix 5.0μL,上、下游引物各0.5μL,超純水2.0μL。擴(kuò)增程序:95℃預(yù)變性3min;95℃5 s,60℃30 s,進(jìn)行40個(gè)循環(huán)。采用LightCy-cler 96實(shí)時(shí)熒光定量PCR儀[羅氏診斷產(chǎn)品(上海)有限公司]進(jìn)行檢測(cè),通過(guò)2-ΔΔCt法計(jì)算目的基因相對(duì)表達(dá)量。
1.7 RABV突變株的結(jié)構(gòu)蛋白相對(duì)表達(dá)量測(cè)定
病毒接種方法同1.6,收集感染后24和48h的細(xì)胞樣品,用含10%蛋白酶抑制劑的RIPA裂解液裂解,通過(guò)Western blotting檢測(cè)突變毒株與對(duì)照毒株RC-HL、GX074、rRC-HL(GX074PM)及CVS-11的N蛋白、P蛋白和M蛋白相對(duì)表達(dá)量。
1.8統(tǒng)計(jì)分析
采用Excel 2021對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行整理,使用SPSS 26.0進(jìn)行單因素方差分析(One-way ANOVA),利用GraphPad Prism 9.0制圖。
2結(jié)果與分析
2.1 RABV突變株感染性cDNA克隆的構(gòu)建結(jié)果
RABV突變株感染性cDNA克隆的構(gòu)建策略如圖2-A所示,以pRC-HL(GX074P1M)質(zhì)粒為模板,采用引物AgeⅠ-F和P1-R擴(kuò)增出P1片段,以pRC-HL(GX074PM1)質(zhì)粒為模板,利用引物SacⅡ-R和M1-F擴(kuò)增出M1片段,產(chǎn)物大小符合預(yù)期(圖2-B);通過(guò)重疊PCR將P1和M1片段連接得到P1M1片段,與預(yù)期大小一致(圖2-C);采用限制性內(nèi)切酶AgeⅠ和SacⅡ?qū)RC-HL質(zhì)粒進(jìn)行雙酶切獲得線性化載體(圖2-D),利用同源重組一步法克隆試劑盒將P1M1片段連接至線性化載體,以連接產(chǎn)物轉(zhuǎn)化大腸桿菌TOP10感受態(tài)細(xì)胞,在LA培養(yǎng)基中培養(yǎng)過(guò)夜,挑取單菌落擴(kuò)大培養(yǎng)后進(jìn)行測(cè)序,經(jīng)鑒定成功構(gòu)建RABV突變株感染性cDNA克隆pRC-HL(GX074P1M1)。
2.2 RABV突變株的拯救結(jié)果
通過(guò)IFA檢測(cè)到拯救的RABV突變株在細(xì)胞間傳播形成特異性熒光灶,與對(duì)照毒株RC-HL、GX074、rRC-HL(GX074PM)和CVS-11在細(xì)胞間形成的熒光灶形狀相似(圖3-A),初步判斷pRC-HL(GX074P1M1)質(zhì)粒轉(zhuǎn)染BSR/T7-9細(xì)胞后有病毒粒子形成;提取接種病毒后盲傳3代的細(xì)胞凍融液總RNA并反轉(zhuǎn)錄合成cDNA,經(jīng)PCR擴(kuò)增后進(jìn)行測(cè)序,結(jié)果表明RABV突變株rRC-HL(GX074P1M1)拯救成功(圖3-B)。
2.3 RABV突變株的多步生長(zhǎng)曲線測(cè)定結(jié)果
將突變毒株rRC-HL(GX074P1M1)與對(duì)照毒株RC-HL、GX074、rRC-HL(GX074PM)和CVS-11接種至BSR/T7-9細(xì)胞,通過(guò)IFA檢測(cè)不同感染時(shí)間的病毒滴度,繪制病毒多步生長(zhǎng)曲線,結(jié)果如圖4所示。感染24~96 h內(nèi),突變毒株rRC-HL(GX074P1M1)的病毒滴度均高于親本弱毒株RC-HL和親本街毒株GX074,生長(zhǎng)趨勢(shì)與親本弱毒株RC-HL相似。對(duì)照突變毒株rRC-HL(GX074PM)在感染24h時(shí)的病毒滴度介于親本弱毒株RC-HL和親本街毒株GX074之間,感染72h后病毒滴度高于上述親本毒株。突變毒株rRC-HL(GX074P1M1)的病毒滴度在感染48 h前高于rRC-HL(GX074PM)毒株,感染72 h后病毒滴度低于rRC-HL(GX074PM)毒株。固定毒株CVS-11在病毒滴度在感染24h后快速升高,但感染24~96 h內(nèi)其病毒滴度均低于RC-HL毒株。
2.4 RABV突變株的結(jié)構(gòu)蛋白基因相對(duì)表達(dá)量測(cè)定結(jié)果
通過(guò)實(shí)時(shí)熒光定量PCR檢測(cè)突變毒株rRC-HL(GX074P1M1)與對(duì)照毒株RC-HL、GX074、rRC-HL(GX074PM)和CVS-11在感染BSR/T7-9細(xì)胞后N基因、P基因及M基因的相對(duì)表達(dá)量,結(jié)果如圖5所示。感染24 h時(shí),突變毒株rRC-HL(GX074P1M1)的N基因和M基因的相對(duì)表達(dá)量均極顯著高于親本弱毒株RC-HL(Plt;0.01,下同),P基因的相對(duì)表達(dá)量顯著高于親本弱毒株RC-HL(Plt;0.05,下同);在感染48 h時(shí),突變毒株rRC-HL(GX074P1M1)的N基因、P基因和M基因相對(duì)表達(dá)量均極顯著高于親本弱毒株RC-HL。在感染24和48 h時(shí),對(duì)照突變毒株rRC-HL(GX074PM)的N基因、P基因和M基因相對(duì)表達(dá)量均顯著或極顯著低于突變毒株rRC-HL(GX074P1M1),而與親本弱毒株RC-HL的N基因、P基因和M基因相對(duì)表達(dá)量差異較小。CVS-11毒株N基因、P基因和M基因的相對(duì)表達(dá)量在感染24和48 h時(shí)均顯著或極顯著低于突變毒株rRC-HL(GX074P1M1)。街毒株GX074的N基因、P基因和M基因相對(duì)表達(dá)量在感染24和48 h時(shí)均低于突變毒株rRC-HL(GX074P1M1),其中N基因和M基因在感染24和48 h時(shí)均差異極顯著,P基因在感染24 h時(shí)差異顯著,在感染48 h時(shí)差異極顯著。突變毒株rRC-HL(GX074P1M1)N基因、P基因和M基因的相對(duì)表達(dá)量較親本毒株RC-HL上調(diào),與多步生長(zhǎng)曲線顯示的病毒滴度上調(diào)結(jié)果一致,說(shuō)明RABV的P1和M1片段聯(lián)合突變同時(shí)提高了病毒的復(fù)制水平和轉(zhuǎn)錄水平。
2.5 RABV突變株的結(jié)構(gòu)蛋白相對(duì)表達(dá)量測(cè)定結(jié)果
突變毒株rRC-HL(GX074P1M1)與對(duì)照毒株RC-HL、GX074、rRC-HL(GX074PM)和CVS-11感染BSR/T7-9細(xì)胞后,通過(guò)Western blotting檢測(cè)病毒N蛋白、P蛋白和M蛋白的相對(duì)表達(dá)量。結(jié)果(圖6)顯示,在感染24h時(shí),突變毒株rRC-HL(GX074P1M1)的N蛋白、P蛋白和M蛋白相對(duì)表達(dá)量均較親本弱毒株RC-HL小幅上升,但差異不顯著(rgt;0.05,下同);感染48h時(shí),突變毒株rRC-HL(GX074P1M1)的N蛋白、P蛋白和M蛋白相對(duì)表達(dá)量均極顯著高于親本毒株RC-HL。感染24 h時(shí),對(duì)照突變毒株rRC-HL(GX074PM)的N蛋白和P蛋白相對(duì)表達(dá)量均與突變毒株rRC-HL(GX074P1M1)無(wú)顯著差異,但M蛋白的相對(duì)表達(dá)量較突變毒株rRC-HL(GX074P1M1)極顯著降低;感染48 h時(shí),rRC-HL(GX074PM)毒株N蛋白、P蛋白和M蛋白的相對(duì)表達(dá)量均極顯著低于突變毒株rRC-HL(GX074P1M1)。感染24 h時(shí),CVS-11毒株N蛋白和M蛋白的相對(duì)表達(dá)量均極顯著低于突變毒株rRC-HL(GX074P1M1),但P蛋白的相對(duì)表達(dá)量無(wú)顯著差異;感染48 h時(shí),CVS-11毒株N蛋白、P蛋白和M蛋白的相對(duì)表達(dá)量均顯著低于突變毒株rRC-HL(GX074P1M1)。感染24 h時(shí),GX074毒株P(guān)蛋白的相對(duì)表達(dá)量與突變毒株rRC-HL(GX074P1M1)無(wú)顯著差異,而N蛋白和M蛋白的相對(duì)表達(dá)量均極顯著低于突變毒株rRC-HL(GX074P1 M1);感染48 h時(shí),GX074毒株N蛋白、P蛋白和M蛋白的相對(duì)表達(dá)量均顯著均極顯著低于突變毒株rRC-HL(GX074P1M1)。感染24 h時(shí),突變毒株rRC-HL(GX074P1M1)的N蛋白、P蛋白和M蛋白相對(duì)表達(dá)量均高于親本弱毒株RC-HL和親本街毒株GX074,與多步生長(zhǎng)曲線顯示的病毒滴度變化趨勢(shì)一致,進(jìn)一步說(shuō)明P1和M1區(qū)域聯(lián)合突變對(duì)病毒復(fù)制有促進(jìn)作用。
3討論
RABV的RNP復(fù)合物在病毒組裝和復(fù)制中起關(guān)鍵作用,RABV的P蛋白作為病毒螺旋狀核殼的組成部分可影響病毒復(fù)制,且同為核殼重要組成部分的RNP復(fù)合物形成受N蛋白、P蛋白和L蛋白比例影響(Pattnaik and Wertz,1990;Mei et al.,2017),表明低水平的P基因表達(dá)可通過(guò)阻礙RNP形成來(lái)限制病毒復(fù)制。通過(guò)同時(shí)修飾RABV的P蛋白動(dòng)力蛋白輕鏈結(jié)合位點(diǎn)和替換G蛋白的第333位氨基酸(精氨酸)可致弱病毒(Mebatsion,2001)。P蛋白被認(rèn)為是主要的干擾素拮抗劑,因?yàn)槠淠芙Y(jié)合信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子(STAT),通過(guò)P蛋白的強(qiáng)輸出序列引起P-STAT復(fù)合物的核排斥(Wiltzeretal.,2014)。M蛋白是調(diào)節(jié)病毒轉(zhuǎn)錄與復(fù)制的重要成分。研究表明,M蛋白表達(dá)可調(diào)節(jié)RABV基因組的轉(zhuǎn)錄和復(fù)制(Finke et al.,2003);M蛋白的第58位氨基酸對(duì)RABV的復(fù)制也至關(guān)重要(Finke and Conzelmann,2003)。將M基因在RABV全基因組中的順序進(jìn)行重排能致弱病毒(Yang et al.,2014)。相關(guān)研究發(fā)現(xiàn),M蛋白能與RelAp43相互作用調(diào)節(jié)NF-κB通路,在干擾素的刺激下M蛋白和P蛋白配合與STAT1相互作用,共同調(diào)節(jié)Jak-Stat通路,P蛋白和M蛋白能調(diào)節(jié)對(duì)方少數(shù)氨基酸突變?cè)谠撏飞弦鸬母淖儯˙en Khalifa et al.,2016;Sonthonnax et al.,2019)。M蛋白的過(guò)度表達(dá)會(huì)增加組蛋白去乙?;?(HDAC6)的表達(dá),通過(guò)微管解聚增強(qiáng)RABV的轉(zhuǎn)錄和復(fù)制(Zan etal.,2017)。
本研究將街毒株GX074的P1和M1片段嵌入弱毒株RC-HL獲得突變毒株rRC-HL(GX074P1M1),在感染BSR/T7-9細(xì)胞24和48h時(shí),突變毒株rRC-HL(GX074P1M1)的N基因、P基因和M基因相對(duì)表達(dá)量均顯著或極顯著高于親本弱毒株RC-HL和親本街毒株GX074。本課題組前期研究中,將街毒株GX074的P基因和M基因聯(lián)合替換至弱毒株RC-HL獲得突變毒株rRC-HL(GX074PM),其N(xiāo)基因、P基因和M基因的相對(duì)表達(dá)量在感染24和48h時(shí)均顯著或極顯著低于突變毒株rRC-HL(GX074P1M1)。以上研究結(jié)果表明,RABV的P基因和M基因聯(lián)合突變區(qū)域不同對(duì)病毒的轉(zhuǎn)錄和復(fù)制水平調(diào)節(jié)會(huì)產(chǎn)生不同影響,可能是由于突變區(qū)域不同引起病毒蛋白參與的信號(hào)通路變化,從而影響病毒在細(xì)胞內(nèi)的復(fù)制和轉(zhuǎn)錄水平。
Tian等(2017)研究表明,RABV野毒株GD-SH-01的P基因嵌合至實(shí)驗(yàn)室減毒株HEP-Flury獲得的突變毒株rHEP-SH-P在體外的增殖能力較差;而Long等(2020)研究發(fā)現(xiàn),rHEP-SH-P毒株在體內(nèi)的生長(zhǎng)相對(duì)較慢,P基因也被抑制。本課題組前期研究中,將街毒株GX074的P基因與街毒株GX01的M基因共同嵌合至弱毒株RC-HL獲得突變毒株rRC-HL(074P-01M),將GX074毒株的M基因與GX01毒株的P基因共同嵌合至弱毒株RC-HL獲得突變毒株rRC-HL(01P-074M),突變毒株與親本弱毒株RC-HL相比復(fù)制效率均降低(陳俊蓉等,2022);此外還發(fā)現(xiàn),GX074毒株的P基因和M基因共同嵌合至RC-HL毒株獲得的突變毒株復(fù)制效率比親本毒株RC-HL低;將GX074毒株P(guān)基因的部分片段與M基因全長(zhǎng)聯(lián)合嵌入RC-HL毒株,或?qū)X074毒株的M基因部分片段與P基因全長(zhǎng)聯(lián)合嵌入RC-HL毒株,獲得的突變毒株復(fù)制能力均與親本毒株RC-HL相似(陸麗瑩等,2022;周桂全等,2023)。本研究的多步生長(zhǎng)曲線測(cè)定結(jié)果顯示,將GX074毒株的P蛋白P1區(qū)域與M蛋白M1區(qū)域聯(lián)合嵌入弱毒株RC-HL獲得的突變毒株rRC-HL(GX074P1M1)在BSR/T7-9細(xì)胞內(nèi)增殖能力比親本弱毒株RC-HL和親本街毒株GX074強(qiáng),生長(zhǎng)趨勢(shì)與親本弱毒株RC-HL相似,說(shuō)明P蛋白和M蛋白全長(zhǎng)聯(lián)合突變與部分區(qū)域聯(lián)合突變所起的作用存在差異,推測(cè)是由于蛋白內(nèi)氨基酸殘基改變后引起病毒三維結(jié)構(gòu)改變,進(jìn)而影響病毒生長(zhǎng)特性,也可能是由于改變了病毒與宿主相互作用的部分蛋白的結(jié)合位點(diǎn),從而使突變毒株呈現(xiàn)不同生長(zhǎng)特性。同時(shí),突變毒株rRC-HL(GX074P1M1)的復(fù)制和轉(zhuǎn)錄水平高于親本毒株GX074和RC-HL,具有更強(qiáng)的增殖能力,表明RABV街毒株GX074的P蛋白P1區(qū)域和M蛋白M1區(qū)域在促進(jìn)病毒轉(zhuǎn)錄和復(fù)制中發(fā)揮協(xié)同作用。后續(xù)研究將進(jìn)一步探索P1和M1區(qū)域中哪些氨基酸位點(diǎn)對(duì)協(xié)同影響病毒轉(zhuǎn)錄和復(fù)制起關(guān)鍵作用。
4結(jié)論
RABV街毒株GX074的P1和M1區(qū)域聯(lián)合嵌入弱毒株RC-HL獲得的突變毒株rRC-HL(GX074P1M1)復(fù)制及轉(zhuǎn)錄水平比親本毒株高,在細(xì)胞內(nèi)具有更強(qiáng)的增殖能力,表明街毒株GX074的P蛋白P1區(qū)域和M蛋白M1區(qū)域在促進(jìn)病毒轉(zhuǎn)錄及復(fù)制中發(fā)揮協(xié)同作用。
參考文獻(xiàn)(References):
陳俊蓉,周桂全,韋顯凱,金碩,李曉寧,羅廷榮.2022.狂犬病毒P和M基因重組突變體的拯救及特性研究[J].廣西畜牧獸醫(yī),38(6):247-250.[Chen J R,Zhou G Q,Wei X K,Jin S,Li X N,Luo T R.2022.Rescue and characterization of recombinant mutants of rabies virus P and M genes[J].Guangxi Journal of Animal Husbandryamp;Veterinary Medi-cine,38(6):247-250.]doi:10.3969/j.issn.1002-5235.2022.06.002.
劉杏.2020.宿主蛋白ATP6V1A影響狂犬病病毒復(fù)制的分子機(jī)制研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院.[Liu X.2020.Molecular mechanism of the influence of host protein ATP6V1A on rabies virus replication[D].Beijing:Chinese Academy of Agricultural Sciences.]doi:10.27630/d.cnki.gznky.2020.001041.
陸麗瑩,彭璟,李文芳,韋顯凱,李曉寧,羅廷榮.2022.狂犬病病毒GX074野毒株M基因重組病毒的拯救與鑒定[J].廣西畜牧獸醫(yī),38(5):195-197.[Lu LY,Peng J,Li W F,Wei X K,Li X N,Luo T R.2022.Rescue and characteriza-tion of recombinant virus from wild strain M of rabies virus GX074[J].Guangxi Journal of Animal Husbandryamp;VeterinaryMedicin,38(5):195-197.]doi:10.3969/j.issn.1002-5235.2022.05.001.
徐婧.2023.Rac1結(jié)合狂犬病病毒P蛋白并調(diào)控病毒感染的分子機(jī)制[D].長(zhǎng)春:吉林大學(xué).[Xu J.2023.Molecular mechanism of Rac1 binding to rabies virus P protein and regulation of viral infection[D].Changchun:Jilin Univer-sity.]doi:10.27162/d.cnki.gjlin.2022.000804.
張曦,王姝捷,周俊,高琛,劉琴,周宏婧,許運(yùn)斌.2023.狂犬病病毒基質(zhì)蛋白74位氨基酸位點(diǎn)對(duì)其線粒體定位的影響[J].中國(guó)人獸共患病學(xué)報(bào),39(12):1139-1145.[Zhang X,Wang S J,Zhou J,Gao C,Liu Q,Zhou H J,Xu Y B.2023.Effects of histidine 74 in rabies virus matrix protein on mitochondrial localization[J].Chinese Journal of Zoo-noses,39(12):1139-1145.]doi:10.3969/j.issn.1002-2694.2023.00.147.
周桂全,陳俊蓉,韋顯凱,李曉寧,羅廷榮.2023.狂犬病病毒GX074株P(guān)蛋白48~78位區(qū)域氨基酸聯(lián)合M蛋白突變株的構(gòu)建及特性研究[J].廣西畜牧獸醫(yī),39(1):3-7.[Zhou G Q,Chen J R,Wei X K,Li X N,Luo T R.2023.Construction and characterization of an Mproteinmutantstrain of rabies virus GX074 combining amino acids in the region of P protein at positions 48-78[J].Guangxi Journal of Animal Husbandryamp;Veterinary Medicine,39(1):3-7.]doi:10.3969/j.issn.1002-5235.2023.01.001.
Ben Khalifa Y,Luco S,Besson B,Sonthonnax F,Archambaud M,Grimes J M,Larrous F,Bourhy H.2016.The matrix protein of rabies virus binds to RelAp43 to modulate NF-κB-dependent gene expression related to innate immunity[J].Scientific Reports,6:39420.doi:10.1038/srep39420.
Besson B,Sonthonnax F,Duchateau M,Ben Khalifa Y,Lar-rous F,Eun H,Hourdel V,Matondo M,Chamot-Rooke J,Grailhe R,Bourhy H.2017.Regulation of NF-κB by the p105-ABIN2-TPL2 complex and RelAp43 during rabies virus infection[J].PLoS Pathogens,13(10):e1006697.doi:10.1371/journal.ppat.1006697.
Buchholz U J,F(xiàn)inke S,Conzelmann K K.1999.Generation of bovine respiratory syncytial virus(BRSV)from cDNA:BRSV NS2 is not essential for virus replication in tissue culture,and the human RSV leader region acts as a func-tional BRSV genome promoter[J].Journal of Virology,73(1):251-259.doi:10.1128/jvi.73.1.251-259.1999.
Chenik M,Chebli K,Blondel D.1995.Translation initiation at alternate in-frame AUG codons in the rabies virus phos-phoprotein mRNA is mediated by a ribosomal leaky scan-ning mechanism[J].Journal of Virology,69(2):707-712.doi:10.1128/jvi.69.2.707-712.1995.
Finke S,Conzelmann K K.2003.Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthe-sis and virus assembly[J].Journal of Virology,77(22):12074-12082.doi:10.1128/jvi.77.22.12074-12082.2003.
Finke S,Mueller-Waldeck R,Conzelmann K K.2003.Rabies virus matrix protein regulates the balance of virus tran-scription and replication[J].Journal of General Virology,84(6):1613-1621.doi:10.1099/vir.0.19128-0.
Fouquet B,Nikolic J,Larrous F,Bourhy H,Wirblich C,Lagaudrière-Gesbert C,Blondel D.2015.Focal adhesion kinase is involved in rabies virus infection through its inter-action with viral phosphoprotein P[J].Journal of Viro-logy,89(3):1640-1651.doi:10.1128/JVI.02602-14.
Guichard P,Krell T,Chevalier M,Vaysse C,Adam O,Ronzon F,Marco S.2011.Three dimensional morphology of rabies virus studied by cryo-electron tomography[J].Jour-nal of Structural Biology,176(1):32-40.doi:10.1016/j.jsb.2011.07.003.
Harty R N,Paragas J,Sudol M,Palese P.1999.A proline-rich motif within the matrix protein of vesicularstomatitis virus and rabies virus interacts with WW domains of cellular proteins:Implications for viral budding[J].Journal of Viro-logy,73(4):2921-2929.doi:10.1128/jvi.73.4.2921-2929.1999.
Hidaka Y,Lim C K,Takayama-Ito M,Park C H,Kimitsuki K,Shiwa N,Inoue K I,Itou T.2018.Segmentation of the rabies virus genome[J].Virus Research,252:68-75.doi:10.1016/j.virusres.2018.05.017.
Inoue K,Shoji Y,Kurane I,Iijima T,Sakai T,Morimoto K.2003.An improved method for recovering rabies virus from cloned cDNA[J].Journal of Virological Methods,107(2):229-236.doi:10.1016/s0166-0934(02)00249-5.Ito N,Takayama-Ito M,Yamada K,Hosokawa J,Sugiyama M,
Minamoto N.2003.Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system[J].Microbiology and Immunology,47(8):613-617.doi:10.1111/j.1348-0421.2003.tb03424.x.
Jacob Y,Real E,Tordo N.2001.Functional interaction map of lyssavirus phosphoprotein:Identification of the minimal transcription domains[J].Journal of Virology,75(20):9613-9622.doi:10.1128/jvi.75.20.9613-9622.2001.
Liu J,Wang H L,Gu J Y,Deng T J,Yuan Z C,Hu B L,Xu Y B,Yan Y,Zan J,Liao M,Dicaprio E,Li J R,Su S,Zhou J Y.2017.BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein[J].Autophagy,13(4):739-753.doi:10.1080/15548627.2017.1280220.
Liu P H,Yang J,Wu X F,F(xiàn)u Z F.2004.Interactions amongst rabies virus nucleoprotein,phosphoprotein and genomic RNA in virus-infected and transfected cells[J].Journal of General Virology,85(12):3725-3734.doi:10.1099/vir.0.80325-0.
Long T,Zhang B Y,F(xiàn)an R Q,Wu Y T,Mo M J,Luo J,Chang Y R,Tian Q,Mei M Z,Jiang H,Luo Y W,Guo X F.2020.Phosphoprotein gene of wild-type rabies virus plays a role in limiting viral pathogenicity and lowering the enhance-ment of BBB permeability[J].Frontiers in Microbiology,11:109.doi:10.3389/fmicb.2020.00109.
Mavrakis M,McCarthy A A,Roche S,Blondel D,Ruigrok R W.2004.Structure and function of the C-terminal domain of the polymerase cofactor of rabies virus[J].Journal of Molecular Biology,343(4):819-831.doi:10.1016/j.jmb.2004.08.071.
Mavrakis M,Méhouas S,Réal E,Iseni F,Blondel D,Tordo N,Ruigrok R W.2006.Rabies virus chaperone:Identifica-tion of the phosphoprotein peptide that keeps nucleopro-teinsoluble and free from non-specific RNA[J].Virology,349(2):422-429.doi:10.1016/j.virol.2006.01.030.
Mebatsion T,Weiland F,Conzelmann K K.1999.Matrix pro-tein of rabies virus is responsible for the assembly and bud-ding of bullet-shaped particles and interacts with the trans-membrane spike glycoprotein G[J].Journal of Virology,73(1):242-250.doi:10.1128/jvi.73.1.242-250.1999.
Mebatsion T.2001.Extensive attenuation of rabies virus bysimultaneously modifying the dynein light chain bindingsite in the P protein and replacing Arg333 in the G protein[J].Journal of Virology,75(23):11496-11502.doi:10.1128/jvi.75.23.11496-11502.2001.
Mei M Z,Long T,Zhang Q,Zhao J,Tian Q,Peng J J,Luo J,Wang Y F,Lin Y Y,Guo X F.2017.Phenotypic conse-quences in vivo and in vitro of rearranging the P gene of RABV HEP-Flury[J].Frontiers in Microbiology,8:120.doi:10.3389/fmicb.2017.00120.
Pattnaik A K,Wertz G W.1990.Replication and amplification of defective interfering particle RNAs of vesicularstomati-tis virus in cells expressing viral proteins from vectors con-taining cloned cDNAs[J].Journal of Virology,64(6):2948-2957.doi:10.1128/jvi.64.6.2948-2957.1990.
Schnell M J,Mebatsion T,Conzelmann K K.1994.Infectious rabies viruses from cloned cDNA[J].The EMBO Jour-nal,13(18):4195-4203.doi:10.1002/j.1460-2075.1994.tb06739.x.
Sonthonnax F,Besson B,Bonnaud E,Jouvion G,Merino D,Larrous F,Bourhy H.2019.Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway[J].Scientific Reports,9(1):12171.doi:10.1038/s41598-019-48507-4.
Tian Q,Wang Y F,Zhang Q,Luo J,Mei M Z,Luo Y W,Guo X F.2017.Rescue of a wild-type rabies virus from cloned cDNA and assessment of the proliferative capacity of recombinant viruses[J].Virus Genes,53(4):573-583.doi:10.1007/s 11262-017-1458-7.
Vidy A,Chelbi-Alix M,Blondel D.2005.Rabies virus P pro-tein interacts with STAT1 and inhibits interferon signal transduction pathways[J].Journal of Virology,79(22):14411-14420.doi:10.1128/jvi.79.22.14411-14420.2005.
Wiltzer L,Okada K,Yamaoka S,Larrous F,Kuusisto H V,Sugiyama M,Blondel D,Bourhy H,Jans D A,Ito N,Moseley G W.2014.Interaction of rabies virus P-protein with STAT proteins is critical to lethal rabies disease[J].The Journal of Infectious Diseases,209(11):1744-1753.doi:10.1093/infdis/jit829.
Xu Y B,Liu F,Liu J,Wang D D,Yan Y,Ji S L,Zan J,Zhou J Y.2016.The co-chaperone Cdc37 regulates the rabies virus phosphoprotein stability by targeting to Hsp90AA1 machinery[J].Scientific Reports,6:27123.doi:10.1038/srep27123.
Yang X F,Peng J J,Liang H R,Yang Y T,Wang Y F,Wu X W,Pan J J,Luo Y W,Guo X F.2014.Gene order rearrange-ment of the M gene in the rabies virus leads to slower rep-lication[J].VirusDisease,25(3):365-371.doi:10.1007/s13337-014-0220-1.
Zan J,Liu J,Zhou J W,Wang H L,Mo K K,Yan Y,Xu Y B,Liao M,Su S,Hu R L,Zhou J Y.2016.Rabies virus matrix protein induces apoptosis by targeting mitochondria[J].Experimental Cell Research,347(1):83-94.doi:10.1016/j.yexcr.2016.07.008.
Zan J,Liu S,Sun D N,Mo K K,Yan Y,Liu J,Hu B L,Gu J Y,Liao M,Zhou J Y.2017.Rabies virus infection induces microtubule depolymerization to facilitate viral RNA syn-thesis by upregulating HDAC6[J].Frontiers in Cellular and Infection Microbiology,7:146.doi:10.3389/fcimb.2017.00146.
Zhan J Y,Harrison A R,Portelli S,Nguyen T B,Kojima I,Zheng S Q,Yan F,Masatani T,Rawlinson S M,Sethi A,Ito N,Ascher D B,Moseley G W,Gooley P R.2021.Defi-nition of the immune evasion-replication interface of rabies virus P protein[J].PLoS Pathogens,17(7):e1009729.doi:10.1371/journal.ppat.1009729.
Zhang W,Liu Y M,Li M R,Zhu J,Li X N,Luo T R,Liang J J.2023.Host desmin interacts with RABV matrix protein and facilitates virus propagation[J].Viruses,15(2):434.doi:10.3390/v 15020434.
(責(zé)任編輯劉可丹)