国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于代謝組學(xué)分析鼠傷寒沙門氏菌感染對文昌雞盲腸代謝的影響

2024-12-28 00:00:00陳勝宏謝堯辰聞曉波冉旭華
南方農(nóng)業(yè)學(xué)報 2024年10期
關(guān)鍵詞:文昌雞代謝組學(xué)

摘要:【目的】明確鼠傷寒沙門氏菌感染后文昌雞盲腸內(nèi)容物中代謝物的變化,篩選出與沙門氏菌感染高度相關(guān)的代謝物,揭示禽沙門氏菌病對文昌雞盲腸代謝的影響,為進(jìn)一步了解及防治該病提供數(shù)據(jù)支撐?!痉椒ā恳?×109 CFU/mL的鼠傷寒沙門氏菌懸液經(jīng)口灌胃感染14日齡雄性文昌雞建立禽沙門氏菌病模型,同時設(shè)健康對照組和滅活菌對照組,感染后第8 d基于代謝組學(xué)對文昌雞盲腸內(nèi)容物進(jìn)行代謝物檢測分析,篩選出存在顯著差異的代謝物,并對差異代謝物進(jìn)行KEGG通路富集分析?!窘Y(jié)果】從文昌雞盲腸內(nèi)容物樣本共鑒定出577種代謝物,在正離子(ESI+)、負(fù)離子(ESI-)模式下鑒定到的代謝物分別為417和160種。以Plt;0.05且權(quán)重值(VIP)gt;1為篩選條件,從577種代謝物中篩選出32種差異代謝物。相對于健康對照組,感染鼠傷寒沙門組存在24種差異代謝物,滅活菌對照組存在25種差異代謝物。在感染鼠傷寒沙門氏菌組中,花生四烯酸、3-(3-羥基苯基)丙酸、D-核糖、N6-乙?;?L-賴氨酸、鳥嘌呤核苷、鄰苯二酚、黃體酮、3-甲基-L-酪氨酸和4-羥基苯乙烯等9種代謝物顯著升高(Plt;0.05,下同),而L-蘇氨酸、黃嘌呤、鳥嘌呤、次黃嘌呤、尿嘧啶和酪胺等15種代謝物顯著降低,以花生四烯酸含量升高最明顯,其與健康對照組相比的差異倍數(shù)為8.60;KEGG通路富集分析結(jié)果顯示,24種差異代謝物富集于嘌呤代謝、ABC轉(zhuǎn)運蛋白、嘧啶代謝及不飽和脂肪酸生物合成等20條通路上,其中嘌呤代謝和ABC轉(zhuǎn)運蛋白2條通路的富集程度達(dá)顯著水平?!窘Y(jié)論】鼠傷寒沙門氏菌感染能引起文昌雞機體代謝紊亂,尤其是盲腸內(nèi)容物中的花生四烯酸及其代謝產(chǎn)物或許是介導(dǎo)禽沙門氏菌性腸炎的關(guān)鍵物質(zhì),可作為解析沙門氏菌致病機制的切入點。

關(guān)鍵詞:文昌雞;鼠傷寒沙門氏菌;盲腸內(nèi)容物;代謝組學(xué);花生四烯酸

中圖分類號:S858.31文獻(xiàn)標(biāo)志碼:A文章編號:2095-1191(2024)10-3117-10

Metabolomics-based analysis on the effects of Salmonellatyphimurium infection on cecum metabolism ofWenchang chickens

CHEN Sheng-hong,XIE Yao-chen,WEN Xiao-bo,RAN Xu-hua*

(School of Tropical Agriculture and Forestry,Hainan University,Haikou,Hainan 570228,China)

Abstract:【Objective】To clarify the changes of metabolites in cecum contents of Wenchang chickens after Salmonella typhimurium infection,to screen out metabolites highly correlated with Salmonella infection,to reveal the effects of avian salmonellosis on cecum metabolism of Wenchang chickens,and to provide data support for further understanding and prevention of the disease.【Method】A model of avian salmonellosis was established by infecting 14-day-old male Wenchang chickens with S.typhimurium suspension of 8×109 CFU/mL by oral gavage,and a healthy control group and an inactivated bacterial control group were simultaneously established.Metabolite detection and analysis based on metabolo-mics was performed on the cecum contents of Wenchang chickens on the 8th d after infection,and metabolites with signifi-cant differences were screened out,and the differential metabolites were analyzed by KEGG enrichment.【Result】A total of 577 metabolites were identified in cecum content samples of Wenchang chickens,and the number of metabolites identi-fied in positive ion(ESI+)mode and negative ion(ESI-)mode were 417 and 160 respectively.A total of 32 differential metabolites were screened from the 577 metabolites using Plt;0.05 and weight(VIP)gt;1 as the screening condition.Com-pared to the healthy control group,24 differential metabolites were present in the S.typhimurium infected group and 25 differential metabolites were present in the inactivated bacterial control group.In the group infected with S.typhimurium,9 metabolites including arachidonic acid,3-(3-hydroxyphenyl)propionic acid,D-ribose,N6-acetyl-L-lysine,guano-sine,catechol,progesterone,3-methyl-L-tyrosine and 4-hydroxystyrene exhibited significant increase(Plt;0.05,the same below),while 15 metabolites including L-threonine,xanthine,guanine,hypoxanthine,uracil and tyramine demon-strated significant decline.Arachidonic acid content increase was the most obvious,the its fold difference compared to the healthy control group was 8.60.KEGG pathway enrichment analysis revealed that 24 differential metabolites enriched in 20 pathways,including purine metabolism,ABC transport protein,pyrimidine metabolism and biosynthesis of unsatu-rated fatty acid.Of these,the purine metabolism and ABC transport protein pathways reached significant level of enrich-ment.【Conclusion】S.typhimurium infection can cause metabolic disorders in the body of Wenchang chickens.Inparticu-lar,arachidonic acid and its metabolites in the contents of the cecum may be the key substances mediating avian salmo-nellaenteritis.This can provide a perspective forth study of Salmonella pathogenesis.

Key words:Wenchang chicken;Salmonella typhimurium;cecum contents;metabolomics;arachidonic acid

Foundation items:Regional Project of National Natural Science Foundation of China(32360878);Hainan Natural Science Foundation(321RC1020);Hainan Local Chicken Industry Technical System Special Project(HNARS-06-G05)

0引言

【研究意義】禽沙門氏菌病是由沙門氏菌(Sal-monella)感染引起的一種禽類疾病,根據(jù)其血清型的不同可分為雞白痢、禽傷寒和禽副傷寒(張珍等,2019)。雞白痢由雞白痢沙門氏菌引起,主要通過種蛋傳播,嚴(yán)重影響種蛋孵化率和雛雞成活率(Cariou et al.,2013);禽傷寒由雞傷寒沙門氏菌引起,通常引起3周齡以上的家禽發(fā)病,在成年雞群中有較高的發(fā)病率(崔宏曉,2022);禽副傷寒由腸炎沙門氏菌(S.enteritidis)、鼠傷寒沙門氏菌(S.typhimurium)等有鞭毛可運動的沙門氏菌引起,主要威脅2周齡左右的雛雞,在成年雞群中多表現(xiàn)為陰性感染或慢性疾病癥狀(Saad etal.,2018;李惠龍,2020)。沙門氏菌屬于革蘭氏陰性菌,已知的血清型超過2600種,最常見的血清型為腸炎沙門氏菌和鼠傷寒沙門氏菌(張珍等,2019;張璐,2021;程佳瑩等,2023)。沙門氏菌感染會進(jìn)一步引起禽類對其他病原菌感染的抵抗力下降,嚴(yán)重時引起病雞死亡(Ramtahal et al.,2022)。沙門氏菌對雛雞的高威脅性及其在成年雞群中的隱性致病狀態(tài),給家禽養(yǎng)殖業(yè)帶來巨大經(jīng)濟損失(Maroufetal.,2022),而深入了解沙門氏菌感染對禽類機體的影響是防治該病最根本的途徑和手段?!厩叭搜芯窟M(jìn)展】鼠傷寒沙門氏菌的黏附與侵襲,會導(dǎo)致宿主出現(xiàn)以腹瀉為主的臨床特征,同時誘發(fā)腸道炎癥反應(yīng)(李萍等,2022),進(jìn)而引起宿主腸道菌群失調(diào)及機體代謝紊亂等(袁曉慧等,2020;Lee et al.,2021)。代謝物變化能反映細(xì)胞功能的變化,因此通過代謝組學(xué)可快速檢測并鑒定禽沙門氏菌病所引起的代謝紊亂特征(Schrimpe-Rutledge et al.,2016),為其臨床診斷、病因與病理機制研究提供數(shù)據(jù)支持,有利于深入了解沙門氏菌感染對宿主機體代謝的影響。Antunes等(2011)通過代謝組學(xué)分析發(fā)現(xiàn),鼠傷寒沙門氏菌感染顯著影響小鼠類固醇、類花生酸、膽汁酸、碳水化合物和嘌呤類等代謝通路;Gutiérrez等(2021)研究表明,鼠傷寒沙門氏菌通過破壞胰島素信號傳導(dǎo),而損害巨噬細(xì)胞的防御功能。此外,腸道菌群衍生的代謝物對宿主免疫防御等也發(fā)揮重要作用(Wang et al.,2023)。例如,多胺能抑制促炎細(xì)胞因子產(chǎn)生,吲哚可增強上皮細(xì)胞的屏障功能(Postler and Ghosh,2017);短鏈脂肪酸能促進(jìn)抗炎因子表達(dá)(Levy et al.,2017),以及調(diào)節(jié)糖代謝紊亂(Serino,2018)、膽固醇合成(Michael et al.,2020)和緊密連接(Xia et al.,2020)等。Sokol等(2008)研究發(fā)現(xiàn),糞桿菌(Fecalbacterium)代謝產(chǎn)物能阻斷NF-κB通路并抑制IL-8產(chǎn)生;Levy等(2017)研究表明,脆弱擬桿菌(Bacteroides fragilis)分泌的聚糖A能刺激Treg細(xì)胞生成;Hu等(2021)研究證實,初級膽汁酸被腸道微生物轉(zhuǎn)化為次級膽汁酸后,可發(fā)揮抑制促炎細(xì)胞因子分泌的作用。鑒于機體代謝物及腸道微生物代謝物對宿主健康有著至關(guān)重要的影響,揭示沙門氏菌感染后雞盲腸代謝物的變化情況,不僅能豐富人們對禽沙門氏菌病的認(rèn)知,還有助于從分子層面尋求防治方法?!颈狙芯壳腥朦c】禽類盲腸是沙門氏菌的易感腸段,也是微生物豐度和數(shù)量最高的腸段(張春善等,2009),但目前關(guān)于鼠傷寒沙門氏菌感染對雞盲腸代謝影響的研究鮮見報道?!緮M解決的關(guān)鍵問題】基于代謝組學(xué)檢測分析鼠傷寒沙門氏菌感染后文昌雞盲腸內(nèi)容物中代謝物的變化,篩選出與沙門氏菌感染高度相關(guān)的代謝物,旨在揭示禽沙門氏菌病對文昌雞盲腸代謝的影響,為進(jìn)一步了解及防治該病提供數(shù)據(jù)支撐。

1材料與方法

1.1試驗材料

供試菌種為鼠傷寒沙門氏菌ATCC 14028株,購自廣東環(huán)凱微生物科技有限公司;14日齡文昌雞購自海南(潭牛)文昌雞股份有限公司;甲酸、甲醇和乙腈購自賽默飛世爾科技(中國)有限公司;2-氯-L-苯丙氨酸和甲酸銨購自上海阿拉丁生化科技股份有限公司。Q Exactive HF-X質(zhì)譜儀和Vanquish超高效液相系統(tǒng)購自美國ThermoFisher Scientific公司。

1.2試驗分組及樣本采集

選取30羽14日齡雄性文昌雞(文昌維拉德品系),隨機分為3組。健康對照組(A組):正常飼喂;滅活菌對照組(B組):經(jīng)口灌胃1 mL的8×109 CFU/mL滅活鼠傷寒沙門氏菌懸液(70℃滅活30min);攻活菌組(C組):經(jīng)口灌胃1 mL的8×109 CFU/mL鼠傷寒沙門氏菌懸液。所有試驗雞提供相同的飼料與飲水條件,分別飼養(yǎng)于溫濕度、光照等環(huán)境條件基本一致的不同房舍。試驗開始計為第0 d,于第8 d采取頸椎脫臼法安樂處死所有試驗雞,在冰上無菌采集腸道內(nèi)容物樣品用于檢測分析(n=3),代謝組學(xué)檢測委托蘇州帕諾米克生物醫(yī)藥科技有限公司完成。動物試驗由海南大學(xué)倫理委員會批準(zhǔn),許可證號HNUAUCC-2023-00080。

1.3樣本檢測

準(zhǔn)確稱取適量盲腸內(nèi)容物樣本,置于含600μL甲醇(含4 mg/L 2-氯-L-苯丙氨酸)的2 mL離心管中,渦旋振蕩30 s,4℃下12000 r/min離心10 min,取上清液,過0.22μm濾膜后用于液相色譜—質(zhì)譜檢測(LC-MS)(Turroni et al.,2016)。色譜條件:使用ACQUITYUPLC?HSS T3色譜柱(2.1 mm×150 mm,1.8μm,柱溫40℃)在Vanquish超高效液相系統(tǒng)中,以0.25 mL/min的液體流速(進(jìn)樣量2μL)進(jìn)行檢測。正離子(ESI+)模式下,流動相為0.1%甲酸乙腈和0.1%甲酸水,并通過梯度洗脫方式使用0.1%甲酸乙腈和0.1%甲酸水進(jìn)行洗脫;負(fù)離子(ESI-)模式下,流動相為乙腈和5 mmol/L甲酸銨水,同樣按梯度洗脫方式以乙腈和5 mmol/L甲酸銨水進(jìn)行洗脫(Zelena et al.,2009)。質(zhì)譜條件:使用Q Exactive HF-X質(zhì)譜儀對樣本進(jìn)行檢測,在ESI+和ESI-模式下分別采集數(shù)據(jù)(Want et al.,2013)。

1.4數(shù)據(jù)處理

使用ProteoWizard(v3.0.8789)將原始質(zhì)譜下機文件轉(zhuǎn)換為mzXML格式(Smith et al.,2006),再用XCMS對數(shù)據(jù)進(jìn)行峰檢測、峰過濾及峰對齊處理(Navarro-Reig et al.,2015),得到物質(zhì)定量列表;獲得的物質(zhì)定量列表在mzCloud和KEGG等數(shù)據(jù)庫中進(jìn)行物質(zhì)鑒定(Ogata et al.,1999;Abdelrazig et al.,2020)。采用R軟件的Ropls包對樣本數(shù)據(jù)進(jìn)行主成分分析(PCA)、偏最小二乘判別分析(PLS-DA)、正交偏最小二乘判別分析(OPLS-DA)及制圖(Thévenot et al.,2015),然后根據(jù)PLS-DA降維方法計算變量權(quán)重值(VIP),以log2 Fold Change表示組間差異倍數(shù),當(dāng)Plt;0.05且VIPgt;1時,認(rèn)為代謝物分子具有統(tǒng)計學(xué)意義。采用MetaboAnalyst v6.0對篩選出來的差異代謝分子進(jìn)行功能通路富集分析(Pang et al.,2020)。在統(tǒng)計分析過程中,通過Unpaired t檢驗或Mann-Whitney U檢驗對非正態(tài)分布的樣本進(jìn)行差異顯著性分析,涉及2組以上數(shù)據(jù)時則進(jìn)行單因素方差分析(One-way ANOVA),使用SPSS 24.0進(jìn)行非參數(shù)Kruskal-Wallis檢驗,并以GraphPad Prism 8.0進(jìn)行統(tǒng)計分析。

2結(jié)果與分析

2.1數(shù)據(jù)可靠性檢驗結(jié)果

由基峰色譜圖(圖1)可看出,各處理組色譜峰的峰值強度和保留時間趨勢基本相似,說明重復(fù)性良好,檢測結(jié)果可靠。

2.2組間差異分析結(jié)果

PLS-DA分析結(jié)果顯示,在ESI-模式下不同比較組的樣本點均分布在原點兩端,界限清晰,各組間分離較明顯,但組內(nèi)均存在樣本較分散現(xiàn)象(圖2-A~圖2-C)。模型置換檢驗可驗證PLS-DA模型的可靠性,當(dāng)R2(表示模型對數(shù)據(jù)的擬合程度)和Q2(表示建模后模型的預(yù)測能力)均低于1.0時,隨著置換保留度的降低,隨機模型Q2呈逐漸下降趨勢(圖2-D~圖2-F),說明原模型不存在過擬合現(xiàn)象,模型穩(wěn)健性良好,分析結(jié)果可靠。

2.3代謝物鑒定結(jié)果

所有文昌雞盲腸內(nèi)容物樣本共鑒定出577種代謝物,在ESI+、ESI-模式下鑒定到的代謝物數(shù)量分別為417和160種。根據(jù)化學(xué)分類歸屬信息對鑒定到的所有代謝物進(jìn)行分類統(tǒng)計,結(jié)果(圖3)顯示,有80種代謝物歸屬于羧酸及其衍生物(Carboxylic acids and derivatives),占13.86%;77種歸屬于脂肪酰基(Fatty acyls),占13.44%;42種歸屬于苯及其取代衍生物(Benzene and substituted derivatives),占7.28%;35種歸屬于類固醇及其衍生物(Steroids and steroid derivatives),占6.07%;31種歸屬于有機氧化合物(Organooxygen compounds),占5.37%;21種歸屬于腎上腺素脂質(zhì)(Prenol lipids),占3.64%;13種歸屬于酚類(Phenols),占2.25%;10種歸屬于吡啶及其衍生物(Pyridines and derivatives),占1.73%。

2.4代謝物分析結(jié)果

以rlt;0.05且VIPgt;1為篩選條件,從577種代謝物中篩選出32種差異代謝物。相對于A組,C組存在24種差異代謝物(表1),其中,花生四烯酸、3-(3-羥基苯基)丙酸、D-核糖、N6-乙?;?L-賴氨酸、鳥嘌呤核苷、鄰苯二酚、黃體酮、3-甲基-L-酪氨酸和4-羥基苯乙烯等9種代謝物顯著升高(rlt;0.05,下同),而L-蘇氨酸、黃嘌呤、鳥嘌呤、次黃嘌呤、尿嘧啶和酪胺等15種代謝物顯著降低;以花生四烯酸的差異倍數(shù)最大,為8.60。相對于A組,B組存在25種差異代謝物(表2),其中,12-酮基四氫白三烯B4、抗壞血酸鹽、赤蘚糖醇、3-(3-羥基苯基)丙酸、N6-乙?;?L-賴氨酸和壬二酸等12種代謝物顯著升高,而N-乙酰胞壁酸酯、胸腺嘧啶、鳥嘌呤、次黃嘌呤和三甲銨乙內(nèi)酯等13種代謝物顯著降低。差異代謝物Z-socre分析結(jié)果(圖4-A)及差異代謝物聚類分析結(jié)果(圖4-B)均顯示,B組和C組的差異代謝物與A組間存在明顯差異,但B組與C組間存在較相似的代謝模式。

2.5差異代謝物KEGG通路富集分析結(jié)果

KEGG通路富集分析結(jié)果(圖5)顯示,C組中的24種差異代謝物主要富集于嘌呤代謝(Purine metabolism)、ABC轉(zhuǎn)運蛋白(ABC transport proteins)、嘧啶代謝(Pyrimidine metabolism)及不飽和脂肪酸生物合成(Biosynthesis of unsaturated fatty acids)等20條通路(圖5-A)上,其中嘌呤代謝和ABC轉(zhuǎn)運蛋白2條通路的富集程度達(dá)顯著水平;B組中的25種差異代謝物主要富集于嘌呤代謝、PPAR信號通路(PPAR signaling pathway)、ABC轉(zhuǎn)運蛋白、酪氨酸代謝(Tyrosine metabolism)等16條通路(圖5-B)上,其中嘌呤代謝和PPAR信號通路的富集程度達(dá)顯著水平。

3討論

禽類腸道菌群結(jié)構(gòu)具有較高的豐度及多樣性(Bjerrum etal.,2006;Stanley et al.,2014),能分解復(fù)雜的有機質(zhì),并產(chǎn)生多種具有益生作用的次級代謝產(chǎn)物(Sun et al.,2018;Michael et al.,2020),直接或間接參與宿主的多種代謝通路調(diào)節(jié)(Zhu et al.,2023;Ren etal.,2024)。本研究結(jié)果表明,文昌雞感染鼠傷寒沙門氏菌后其盲腸內(nèi)容物中的花生四烯酸含量差異倍數(shù)為8.60(r=0.007),滅活菌對照組文昌雞盲腸內(nèi)容物中的花生四烯酸差異倍數(shù)為6.87(r=0.09),差異代謝物聚類分析也發(fā)現(xiàn)B組與C組間存在較相似的代謝模式,可能是熱滅活處理釋放了細(xì)菌脂多糖所導(dǎo)致。值得注意的是,花生四烯酸屬于不飽和脂肪酸,在生物體內(nèi)主要是以磷脂的形式存在于細(xì)胞膜上,可在磷脂酶A2(PLA2)的作用下分解成游離形式,或在多種酶的作用下通過環(huán)氧合酶(COX)、脂氧合酶(LOX)和細(xì)胞色素P450(CYP450)代謝途徑分解成具有生物活性的類花生酸(Zhang et al.,2023)。

花生四烯酸衍生的前列腺素(PGs)和白三烯(LTs)在機體腸道中發(fā)揮促炎與抗炎作用,且這些作用是由不同類型的G蛋白偶聯(lián)受體(GPRs)介導(dǎo)(Stenson,2014;Kawahara et al.,2015;Yokomizo et al.,2018)。在促進(jìn)炎癥方面,前列腺素E2(PGE2)通過中性粒細(xì)胞和腫瘤相關(guān)成纖維細(xì)胞上的前列腺素E受體2(EP2)在多個步驟中促進(jìn)炎癥反應(yīng),從而形成結(jié)直腸癌的腫瘤微環(huán)境(Aoki and Narumiya,2017)。已有研究顯示,抑制花生四烯酸衍生的類花生酸可降低Th17和Th1細(xì)胞介導(dǎo)的炎癥反應(yīng),進(jìn)而緩解結(jié)腸炎(Monk et al.,2014);而白三烯B4(LTB4)刺激樹突狀細(xì)胞上的高親和力受體BLT1,導(dǎo)致促炎細(xì)胞因子IL-6、TNF-“和IL-12分泌合成,誘導(dǎo)Th1和Th17細(xì)胞增加TNBS誘導(dǎo)的結(jié)腸炎嚴(yán)重程度(Zhou et al.,2018)。此外,類花生酸可發(fā)揮抗炎作用,在炎癥性腸病中PGE2通過其受體EP4的信號傳導(dǎo),增加上皮完整性而發(fā)揮保護作用(Kabashima et al.,2002;Jiang et al.,2007)。結(jié)腸炎患者的中性粒細(xì)胞表現(xiàn)出前列腺素D受體(DP)高水平表達(dá)(Sturm et al.,2014),而DP激動劑治療可降低腸道中的髓過氧化物酶活性,說明中性粒細(xì)胞的遷移受PGD2-DP軸抑制(Ajueboretal.,2000),對炎癥發(fā)揮控制效果。LTB4對12-羥基十七碳三烯酸(12-HHT)受體具有高親和力,當(dāng)缺乏12-HHT受體時會增加DSS誘導(dǎo)的結(jié)腸炎嚴(yán)重程度,進(jìn)一步說明LTB4和12-HHT介導(dǎo)的信號傳導(dǎo)具有抗炎特性(Iizuka et al.,2010)。LTB4還能通過其受體控制組織炎癥期間的巨噬細(xì)胞遷移(Ermis et al.,2024)??梢?,花生四烯酸的代謝產(chǎn)物既具有促炎作用,也具有抗炎作用。

炎癥反應(yīng)受多種復(fù)雜且龐大的細(xì)胞通路調(diào)控(殷斌等,2023)。已有研究表明,在巨噬細(xì)胞中ABC轉(zhuǎn)運蛋白介導(dǎo)膽固醇外流,可減少TLR4引起的炎癥信號(Sontagetal.,2010);巨噬細(xì)胞可通過調(diào)控嘌呤代謝產(chǎn)生細(xì)胞外腺苷,使巨噬細(xì)胞偏向M2極化(Ohradanova-Repic et al.,2018);PPAR可被多不飽和脂肪酸衍生物激活,進(jìn)而調(diào)節(jié)炎癥反應(yīng)(Korbecki et al.,2019)。本研究的差異代謝物KEGG通路富集分析結(jié)果顯示,經(jīng)鼠傷寒沙門氏菌感染后文昌雞盲腸中的多種差異代謝物富集于嘌呤代謝、ABC轉(zhuǎn)運蛋白及PPAR信號通路上,故推測禽沙門氏菌性腸炎的發(fā)生受多種代謝通路調(diào)控。因此,通過代謝組學(xué)篩選可進(jìn)一步明確與禽沙門氏菌性腸炎高度相關(guān)的分子,結(jié)合選擇性育種在禽類抗病育種方面的應(yīng)用(Berghofetal.,2019),有利于加速推進(jìn)禽類抗沙門氏菌病育種進(jìn)程。

綜上所述,鼠傷寒沙門氏菌感染導(dǎo)致文昌雞盲腸內(nèi)容物中的花生四烯酸含量顯著升高,而花生四烯酸的代謝產(chǎn)物廣泛參與炎癥反應(yīng),故推測花生四烯酸及其代謝產(chǎn)物介導(dǎo)了禽沙門氏菌性腸炎的發(fā)生與發(fā)展,因此,通過干預(yù)花生四烯酸的代謝途徑有助于防治禽沙門氏菌性腸炎。

4結(jié)論

鼠傷寒沙門氏菌感染能引起文昌雞機體代謝紊亂,尤其是盲腸內(nèi)容物中的花生四烯酸及其代謝產(chǎn)物或許是介導(dǎo)禽沙門氏菌性腸炎的關(guān)鍵物質(zhì),可作為解析沙門氏菌致病機制的切入點。

參考文獻(xiàn)(References):

程佳瑩,肖夢詩,任昕淼,于穎,付曉丹,牟海津.2023.基于轉(zhuǎn)錄組學(xué)分析腸道菌群發(fā)酵褐藻膠寡糖對沙門氏菌的作用機制[J].河南農(nóng)業(yè)科學(xué),52(6):139-149.[Cheng J Y,Xiao M S,Ren X M,Yu Y,F(xiàn)u X D,Mou H J.2023.Mechanism of alginate oligosaccharides fermented with gut microbiota inoculum against Salmonella enterica by transcriptomic analysis[J].Journal of Henan Agricultural Sciences,52(6):139-149.]doi:10.15933/j.cnki.1004-3268.2023.06.015.

崔宏曉.2022.沙門氏菌外膜囊泡對雞單核吞噬細(xì)胞免疫激活的作用研究[D].楊凌:西北農(nóng)林科技大學(xué).[Cui H X.2022.Immune activation of Salmonella outer membrane vesicles on chicken mononuclear phagocytes[D].Yang-ling:Northwest Aamp;F University.]doi:10.27409/d.cnki.gxbnu.2022.000088.

李惠龍.2020.腸炎沙門氏菌感染后不同時間點雞盲腸組織轉(zhuǎn)錄組分析[D].泰安:山東農(nóng)業(yè)大學(xué).[Li H L.2020.Temporal transcriptome following Salmonella enteritidis infection in chicken cecum[D].Tai?an:Shandong Agricul‐tural University.]doi:10.27277/d.cnki.gsdnu.2020.000536.

李萍,蘇佳麗,杜欣軍,王碩.2022.大豆豆粕及赤小豆膳食補充對鼠傷寒沙門氏菌侵染小鼠腸道炎癥的影響[J].天津科技大學(xué)學(xué)報,37(3):12-20.[Li P,Su J L,Du X J,WangS.2022.Effects of dietary supplementation of soybean and red bean on intestinal inflammation in mice infected with Salmonella enterica serotype Typhimurium[J].Journal of Tianjing University of Scienceamp;Technology,37(3):12-20.]doi:10.13364/j.issn.1672-6510.20210302.

殷斌,雋昌寧,秦雨,鐘誠,趙增成,黃中利,沈濤,周慧爽,鄭乾坤,林樹乾.2023.基于系統(tǒng)生物學(xué)分析探究熱應(yīng)激誘導(dǎo)雞腸道損傷的作用機制[J].南方農(nóng)業(yè)學(xué)報,54(4):969-981.[Yin B,Juan C N,Qin Y,Zhong C,Zhao Z C,Huang Z L,Shen T,Zhou H S,Zheng Q K,Lin S Q.2023.Exploring the mechanism of heat stress-induced intestinal injury in chickens based on systems biology analysis[J].Journal of Southern Agriculture,54(4):969-981.]doi:10.3969/j.issn.2095-1191.2023.04.001.

袁曉慧,薛寒,張云增,潘志明,焦新安.2020.腸道菌群代謝產(chǎn)物在鼠傷寒沙門菌感染中的作用研究進(jìn)展[J].中國微生態(tài)學(xué)雜志,32(8):966-970.[Yuan X H,Xue H,Zhang Y Z,Pan Z M,Jiao X A.2020.The role of gut microbiota metabolites in Salmonella enterica serovar Typhimurium infection:Research progress[J].Chinese Journal of Microe-cology,32(8):966-970.]doi:10.13381/j.cnki.cjm.20200 8021.

張春善,蔣燕俠,王博,王汝都,申紅星.2009.銅、維生素A及互作效應(yīng)對肉仔雞腸壁組織結(jié)構(gòu)、腸道微生物和血清生長激素的影響[J].中國農(nóng)業(yè)科學(xué),42(4):1485-1493.[Zhang C S,Jiang Y X,Wang B,Wang R D,Shen H X.2009.Influence of various dietary copper and vitamin Alevels on intestinal wall structure,cecal gut flora and GHin serum in broilers[J].Scientia Agricultura Sinica,42(4):1485-1493.]doi:10.3864/j.issn.0578-1752.2009.04.046.

張璐.2021.雞源沙門氏菌血清型、耐藥性及分子流行病學(xué)研究[D].北京:中國獸醫(yī)藥品監(jiān)察所.[Zhang L.2021.Study on serotypes,antimicrobial resistance and molecular epidemiology of Salmonella spp.from chicken[D].Bei‐jing:China Institute of Veterinary Drug Control.]doi:10.27645/d.cnki.gzsys.2021.000004.

張珍,施開創(chuàng),王孝德,黎宗強,尹彥文,屈素潔,陸文俊.2019.2015—2017年廣西雞源沙門氏菌耐藥性與致病性的相關(guān)性分析[J].南方農(nóng)業(yè)學(xué)報,50(10):2350-2358.[Zhang Z,Shi K C,Wang X D,Li Z Q,Yin Y W,Qu S J,Lu W J.2019.Correlation between antimicrobial resis‐tance and pathogenicity of Salmonella from chicken in Guangxi during 2015-2017[J].Journal of Southern Agri‐culture,50(10):2350-2358.]doi:10.3969/j.issn.2095-1191.2019.10.28.

Abdelrazig S,Safo L,Rance G A,F(xiàn)ay M W,Theodosiou E,Topham P D,Kim D H,F(xiàn)ernández-CastanéA.2020.Meta‐boliccharacterisation of Magnetospirillumgryphiswal-dense MSR-1 using LC-MS-based metabolite profiling[J].RSC Advances,10(54):32548-32560.doi:10.1039/d0ra 05326k.

Ajuebor M N,Singh A,Wallace J L.2000.Cyclooxygenase-2-derived prostaglandin D2 is an early anti-inflammatory signal in experimental colitis[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,279(1):G238-G244.doi:10.1152/ajpgi.2000.279.1.G238.

Antunes L C M,Arena E T,Menendez A,Han J,F(xiàn)erreira R B R,Buckner M M C,Loli?P,Madilao L L,Bohlmann J,Borchers C H,Brett Finlay B.2011.Impact of Salmonella infection on host hormone metabolism revealed by metabo‐lomics[J].Infection and Immunity,79(4):1759-1769.doi:10.1128/iai.01373-10.

Aoki T,Narumiya S.2017.Prostaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microen‐vironment[J].Inflammation and Regeneration,37:4.doi:10.1186/s41232-017-0036-7.

Berghof T V L,Matthijs M G R,Arts J A J,Bovenhuis H,Dwars R M,van der Poel J J,Visker M H P W,Parmentier H K.2019.Selective breeding for high natural antibody level increases resistance to avian pathogenic Escherichia coli(APEC)in chickens[J].Developmentalamp;Compara‐tive Immunology,93:45-57.doi:10.1016/j.dci.2018.12.007.

Bjerrum L,Engberg R M,Leser T D,Jensen B B,F(xiàn)inster K,Pedersen K.2006.Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques[J].Poultry Science,85(7):1151-1164.doi:10.1093/ps/85.7.1151.

Cariou N,Christensen H,Salandre O,Albaric O,Bisgaard M,Malher X.2013.Genital form of pasteurellosis inbreeding turkeys infected during artificial insemination and isolation of an unusual strain of Pasteurella multocida[J].Avian Diseases,57(3):693-697.doi:10.1637/10471-121812-Case.1.

Ermis E,Nargis T,Webster K,Tersey S A,Anderson R M,Mirmira R G.2024.Leukotriene B4 receptor 2 governs macrophage migration during tissue inflammation[J].Jour‐nal of Biological Chemistry,300(1):105561.doi:10.1016/j.jbc.2023.105561.

Gutiérrez S,F(xiàn)ischer J,Ganesan R,Hos N J,Cildir G,Wolke M,Pessia A,F(xiàn)rommolt P,Desiderio V,Velagapudi V,Robin‐son N.2021.Salmonella typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macro‐phage defense[J].PLoS Pathogens,17(9):e1009943.doi:10.1371/journal.ppat.1009943.

Hu J P,Wang C K,Huang X Y,Yi S L,Pan S,Zhang Y T,Yuan G X,Cao Q F,Ye X S,Li H.2021.Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J].Cell Reports,36(12):109726.doi:10.1016/j.celrep.2021.109726.

Iizuka Y,Okuno T,Saeki K,Uozaki H,Okada S,Misaka T,Sato T,Toh H,F(xiàn)ukayama M,Takeda N,Kita Y,Shimizu T,Nakamura M,Yokomizo T.2010.Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory coli‐tis[J].FASEB Journal,24(12):4678-4690.doi:10.1096/fj.10-165050.

Jiang G L,Nieves A,Im W B,Old D W,Dinh D T,Wheeler L.2007.The prevention of colitis by E prostanoid receptor 4 agonist through enhancement of epithelium survival and regeneration[J].The Journal of Pharmacology and Experi‐mental Therapeutics,320(1):22-28.doi:10.1124/jpet.106.111146.

Kabashima K,Saji T,Murata T,Nagamachi M,Matsuoka T,Segi E,Tsuboi K,Sugimoto Y,Kobayashi T,Miyachi Y,Ichikawa A,Narumiya S.2002.The prostaglandin receptor EP4 suppresses colitis,mucosal damage and CD4 cell acti‐vation in the gut[J].The Journal of Clinical Investigation,109(7):883-893.doi:10.1172/jci 14459.

Kawahara K,Hohjoh H,Inazumi T,Tsuchiya S,Sugimoto Y.2015.Prostaglandin E2-induced inflammation:Relevance of prostaglandin E receptors[J].Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids,1851(4):414-421.doi:10.1016/j.bbalip.2014.07.008.

Korbecki J,Bobiński R,Dutka M.2019.Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors[J].Inflammation Research,68(6):443-458.doi:10.1007/s00011-019-01231-1.

Lee M,Hosseindoust A,Oh S M,Ko H S,Cho E S,Sa S,Kim Y I,Choi J W,Kim J S.2021.Impact of an anti-Salmonella typhimurium Bacteriophage on intestinal microbiota and immunity status of laying hens[J].Journal of Animal Phy-siology and Animal Nutrition,105(5):952-959.doi:10.1111/jpn.13424.

Levy M,Blacher E,Elinav E.2017.Microbiome,metabolites and host immunity[J].Current Opinion in Microbiology,35:8-15.doi:10.1016/j.mib.2016.10.003.

Marouf S,Ibrahim H M,El-Naggar M S,Swelum A A,Alqhtani A H,El-Saadony M T,El-Tarabily K A,Salem H M.2022.Inactivated pentavalent vaccine against myco‐plasmosis and salmonellosis for chickens[J].Poultry Scien-ce,101(11):102139.doi:10.1016/j.psj.2022.102139.

Michael O S,Dibia C L,Soetan O A,Adeyanju O A,Oyewole A L,Badmus O O,Adetunji C O,Soladoye A O.2020.Sodium acetate prevents nicotine-induced cardiorenal dys‐metabolism through uric acid/creatine kinase-dependent pathway[J].Life Sciences,257:118127.doi:10.1016/j.lfs.2020.118127.

Monk J M,Turk H F,F(xiàn)an Y Y,Callaway E,Weeks B,Yang P Y,McMurray D N,Chapkin R S.2014.Antagonizing ara‐chidonic acid-derived eicosanoids reduces inflammatory Th17 and Th1 cell-mediated inflammation and colitis severity[J].Mediators of Inflammation,2014:917149.doi:10.1155/2014/917149.

Navarro-Reig M,Jaumot J,García-Reiriz A,Tauler R.2015.Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies[J].Analytical and Bioanalyti‐cal Chemistry,407(29):8835-8847.doi:10.1007/s00216-015-9042-2.

Ogata H,Goto S,Sato K,F(xiàn)ujibuchi W,Bono H,Kanehisa M.1999.KEGG:Kyoto encyclopedia of genes and genomes[J].Nucleic Acids Research,27(1):29-34.doi:10.1093/nar/27.1.29.

Ohradanova-Repic A,Machacek C,Charvet C,Lager F,Le Roux D,Platzer R,Leksa V,Mitulovic G,Burkard T R,Zlabinger G J,F(xiàn)ischer M B,F(xiàn)euillet V,Renault G,Blüml S,Benko M,Suchanek M,Huppa J B,Matsuyama T,Cavaco-Paulo A,Bismuth G,Stockinger H.2018.Extracel‐lular purine metabolism is the switchboard of immunosup‐pressive macrophages and a novel target to treat diseases with macrophage imbalances[J].Frontiers in Immuno-logy,9:852.doi:10.3389/fimmu.2018.00852.

Pang Z Q,Chong J,Li S Z,Xia J G.2020.MetaboAnalystR 3.0:Toward an optimized workflow for global metabolo‐mics[J].Metabolites,10(5):186.doi:10.3390/metabo 10 050186.

Postler T S,Ghosh S.2017.Understanding the holobiont:How microbial metabolites affect human health and shape the immune system[J].Cell Metabolism,26(1):110-130.doi:10.1016/j.cmet.2017.05.008.

Ramtahal M A,Amoako D G,Akebe A L K,Somboro A M,Bester L A,Essack S Y.2022.A public health insight into Salmonella in poultry in Africa:A review of the pastdecade:2010-2020[J].Microbial Drug Resistance,28(6):710-733.doi:10.1089/mdr.2021.0384.

Ren Y L,Shi X Y,Mu J,Liu S Y,Qian X,Pei W L,Ni S H,Zhang Z D,Li L,Zhang Z.2024.Chronic exposure to parabens promotes non-alcoholic fatty liver disease in asso‐ciation with the changes of the gut microbiota and lipid metabolism[J].Foodamp;Function,15(3):1562-1574.doi:10.1039/d3fo04347a.

Saad N J,Lynch V D,Antillón M,Yang C G,Crump J A,Pitzer V E.2018.Seasonal dynamics of typhoid and paratyphoid fever[J].Scientific Reports,8(1):6870.doi:10.1038/s41598-018-25234-w.

Schrimpe-Rutledge A C,Codreanu S G,Sherrod S D,McLean J A.2016.Untargeted metabolomics strategies-challenges and emerging directions[J].Journal of the American So-ciety for Mass Spectrometry,27(12):1897-1905.doi:10.1007/s 13361-016-1469-y.

Serino M.2018.Molecular paths linking metabolic diseases,gut microbiota dysbiosis and enterobacteria infections[J].Journal of Molecular Biology,430(5):581-590.doi:10.1016/j.jmb.2018.01.010.

Smith C A,Want E J,O’Maille G,Abagyan R,Siuzdak G.2006.XCMS:Processing mass spectrometry data for me-tabolite profiling using nonlinear peak alignment,matc-hing,and identification[J].Analytical Chemistry,78(3):779-787.doi:10.1021/ac051437y.

Sokol H,Pigneur B,Watterlot L,Lakhdari O,Bermúdez-Humarán L G,Gratadoux J J,Blugeon S,Bridonneau C,F(xiàn)uret J P,Corthier G,Grangette C,Vasquez N,Pochart P,Trugnan G,Thomas G,Blottière H M,DoréJ,Marteau P,Seksik P,Langella P.2008.Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J].Pro‐ceedings of the National Academy of Sciences of the United States of America,105(43):16731-16736.doi:10.1073/pnas.0804812105.

Sontag T J,Reardon C A,Getz G S.2010.ABC transporters:Lipid transport and inflammation[J].Current Opinion in Lipidology,21(2):159-160.doi:10.1097/MOL.0b013e32 83376910.

Stanley D,Hughes R J,Moore R J.2014.Microbiota of the chicken gastrointestinal tract:Influence on health,produc‐tivity and disease[J].Applied Microbiology and Biotech‐nology,98:4301-4310.doi:10.1007/s00253-014-5646-2.

Stenson W F.2014.The universe of arachidonic acid metabo‐lites in inflammatory bowel disease:Can we tell the goodfrom the bad?[J].Current Opinion inGastroenterology,30(4):347-351.doi:10.1097/mog.0000000000000075.

Sturm E M,Radnai B,Jandl K,Stan?i?A,Parzmair G P,H?genauer C,Kump P,Wenzl H,Petritsch W,Pieber T R,Schuligoi R,Marsche G,F(xiàn)erreirós N,Heinemann A,Schicho R.2014.Opposing roles of prostaglandin D2 receptors in ulcerative colitis[J].The Journal of Immuno-logy,193(2):827-839.doi:10.4049/jimmunol.1303484.

Sun L L,Xie C,Wang G,Wu Y,Wu Q,Wang X M,Liu J,Deng YY,Xia J L,Chen B,Zhang S Y,Yun C Y,Lian G,Zhang X J,Zhang H,Bisson W H,Shi J M,Gao X X,Ge P P,Liu C H,Krausz K W,Nichols R G,Cai J W,Rimal B,Patterson A D,Wang X,Gonzalez F J,Jiang C T.2018.Gut microbiota and intestinal FXR mediate the clinicalbenefits of metformin[J].Nature Medicine,24(12):1919-1929.doi:10.1038/s41591-018-0222-4.

Thévenot E A,Roux A,Xu Y,Ezan E,Junot C.2015.Analysis of the human adult urinary metabolome variations with age,body mass index,and gender by implementing a com‐prehensive workflow for univariate and OPLS statistical analyses[J].Journal of Proteome Research,14(8):3322-3335.doi:10.1021/acs.jproteome.5b00354.

Turroni S,F(xiàn)iori J,Rampelli S,Schnorr S L,Consolandi C,Ba-rone M,Biagi E,F(xiàn)anelli F,Mezzullo M,Crittenden A N,Henry A G,Brigidi P,Candela M.2016.Fecal metabo‐lome of the Hadza hunter-gatherers:A host-microbiome integrative view[J].Scientific Reports,6:32826.doi:10.1038/srep32826.

Wang X L,Niu L L,Wang Y X,Zhan S Y,Wang L J,Dai D H,Cao J X,Guo J Z,Li L,Zhang H P,Zhong T.2023.Com‐bining 16S rRNA sequencing and metabolomics data to decipher the interactions between gut microbiota,hostimmunity,and metabolites in diarrheic young small rumi‐nants[J].International Journal of Molecular Sciences,24(14):11423.doi:10.3390/ijms241411423.

Want E J,Masson P,Michopoulos F,Wilson I D,Theodoridis G,Plumb R S,Shockcor J,Loftus N,Holmes E,Nicholson J K.2013.Global metabolic profiling of animal and human tissues via UPLC-MS[J].Nature Protocols,8(1):17-32.doi:10.1038/nprot.2012.135.

Xia W R,Khan I,Li X A,Huang G X,Yu Z L,Leong W K,Han R X,Ho L T,Wendy Hsiao W L.2020.Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers,strengthening the epithelial tight junction complex and immune responses[J].Pharmaco‐logical Research,159:104809.doi:10.1016/j.phrs.2020.104809.

Yokomizo T,Nakamura M,Shimizu T.2018.Leukotriene receptors as potential therapeutic targets[J].Journal of Clinical Investigation,128(7):2691-2701.doi:10.1172/jci97946.

Zelena E,Dunn W B,Broadhurst D,F(xiàn)rancis-McIntyre S,Car‐roll K M,Begley P,O'Hagan S,Knowles J D,Halsall A,Consortium H,Wilson I D,Kell D B.2009.Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum[J].Analytical Chemistry,81(4):1357-1364.doi:10.1021/ac8019366.

Zhang Y R,Liu Y X,Sun J,Zhang W,Guo Z,Ma Q.2023.Ara‐chidonic acid metabolism in health and disease[J].Med-Comm,4(5):e363.doi:10.1002/mco2.363.

Zhou J F,Lai W M,Yang W J,Pan J P,Shen H,Cai YY,Yang C X,Ma N J,Zhang Y,Zhang R,Xie X,Dong Z J,Gao Y,Du C S.2018.BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis[J].Cellularamp;Molecular Immunology,15(12):1047-1056.doi:10.1038/s41423-018-0030-2.

Zhu J X,Liu W B,Bian Z,Ma Y M,Kang Z X,Jin J H,Li X Y,Ge S Y,Hao Y L,Zhang H X,Xie Y H.2023.Lactoba-cillus plantarum Zhang-LL inhibits colitis-related tumori‐genesis by regulating arachidonic acid metabolism and CD22-mediated B-cell receptor regulation[J].Nutrients,15(21):4512.doi:10.3390/nu 15214512.

(責(zé)任編輯蘭宗寶)

猜你喜歡
文昌雞代謝組學(xué)
文昌雞造就“百億產(chǎn)業(yè)”
海南人的第一味
百強品牌故事吃樹籽長大的文昌雞
基于UPLC—Q—TOF—MS技術(shù)的牛血清白蛋白誘導(dǎo)過敏反應(yīng)的代謝組學(xué)研究
基于UPLC—Q—TOF—MS技術(shù)的牛血清白蛋白誘導(dǎo)過敏反應(yīng)的代謝組學(xué)研究
藥用植物代謝組學(xué)研究
枯草芽孢桿菌代謝組樣品前處理方法的比較研究
海南龍泉文昌雞基地被評為國家級肉雞標(biāo)準(zhǔn)化示范場
鎘超富集植物東南景天根系分泌物的代謝組學(xué)研究
PAMPERED POULTRY 享受“高級待遇”的文昌雞
漢語世界(2012年2期)2012-03-25 13:01:29
北安市| 巴马| 交口县| 防城港市| 定西市| 芜湖市| 海原县| 肇庆市| 邵阳县| 苏州市| 达孜县| 兰坪| 夹江县| 汝城县| 教育| 河东区| 法库县| 金华市| 潼南县| 柘城县| 兴文县| 汶川县| 闽清县| 西丰县| 阳泉市| 岢岚县| 托克逊县| 辽阳县| 泸州市| 平南县| 东至县| 桃园县| 华阴市| 永川市| 天等县| 石林| 伊川县| 罗平县| 左云县| 通渭县| 泸定县|