摘 要:【目的】為揭示梭梭在不同平茬強(qiáng)度下葉片對(duì)環(huán)境的適應(yīng)策略,并為更好地?fù)嵊嘶斯に笏罅痔峁┛茖W(xué)依據(jù)?!痉椒ā恳詾跆m布和沙漠東北緣附近20年生人工梭梭林為研究對(duì)象,按不同比例平茬后測定葉片功能性狀共9個(gè)指標(biāo),探討平茬對(duì)梭梭葉功能性狀的影響,并分析平茬后不同生長時(shí)期之間的差異性,旨在揭示梭梭平茬后對(duì)干旱荒漠環(huán)境的適應(yīng)策略?!窘Y(jié)果】不同比例平茬梭梭均出現(xiàn)不同程度的補(bǔ)償性生長,留茬0%的超補(bǔ)償生長現(xiàn)象最為明顯;所測的9個(gè)葉性狀在相同比例平茬處理下,不同生長時(shí)期間的差異性較大;在同一生長時(shí)期內(nèi),留茬0%與其他(25%、50%、75%)平茬強(qiáng)度和CK之間的葉鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積均存在顯著性差異(P<0.05)。除留茬0%外,其他處理及CK的葉性狀變異系數(shù)均<50%,屬于中等變異,留茬0%的葉性狀最易出現(xiàn)強(qiáng)變異。梭梭各個(gè)葉功能性狀間均存在一定的相關(guān)性,平茬可一定程度上增加葉性狀間的相關(guān)性;通過主成分分析表明:葉鮮質(zhì)量和葉飽和鮮質(zhì)量可作為平茬梭梭葉功能性狀評(píng)價(jià)的主要指標(biāo)?!窘Y(jié)論】研究表明對(duì)退化、干枯衰老的梭梭有必要進(jìn)行適當(dāng)合理的平茬,烏蘭布和沙漠人工梭梭林可采取留茬0%的高度進(jìn)行平茬,以促進(jìn)林分生長和可持續(xù)發(fā)展,有利于恢復(fù)其在荒漠生態(tài)系統(tǒng)中的功能。
關(guān)鍵詞:梭梭;烏蘭布和沙漠;平茬;葉功能性狀
中圖分類號(hào):S718.3 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)11-0029-11
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(32001374);內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2023QN03008);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(CAFYBB2021MA005)。
Study on functional traits of Haloxylon ammodendron leaves with different stubble strength in Ulanbuhe desert
HAO Xuting1,2,3, HUANG Yaru1,2, CUI Jian1,2, ZHANG Shuai1, LIU Yanan1, ZHENG Dongshen1, HAO Huizhong4, LI Xueming1, MA Yingbin1,2,3
(1. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannur 015200, Inner Mongolia, China; 2. Combat Desertification Engineering Technology Research Center, National Forestry and Grassland Administration, Bayannur 015200, Inner Mongolia, China; 3. Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, National Forestry and Grassland Administration, Bayannur 015200, Inner Mongolia, China; 4. Changji Canal Water Supply Station of Wulate Sub Center of Water Resources Development Center of Hetao Irrigation District, Bayannur 014400, Inner Mongolia, China)
Abstract:【Objective】To reveal the adaptation strategies of Haloxylon ammodendron leaves to the environment at different stubble strength and provide scientific basis for better nurturing degraded artificial H. ammodendron forests.【Method】Taking a 20 year old artificial H. ammodendron forest near the northeast edge of the Ulanbuhe desert as the research object, a total of 9 indicators of leaf functional traits were measured after different proportions of flat cropping. The changes in leaf functional traits of H. ammodendron were explored and the differences between different growth periods after flat cropping were analyzed, aiming to reveal the adaptation strategies of H. ammodendron to arid desert environments after flat cropping.【Result】Different proportions of flat stubble H. ammodendron showed varying degrees of compensatory growth, with the most obvious phenomenon of over compensatory growth observed in 0% of stubble; The 9 leaf traits tested showed significant differences between different growth stages under the same proportion of flat cropping treatment; During the same growth period, there were significant differences (P<0.05) in leaf fresh mass, saturated fresh mass, dry mass, and leaf area between 0% stubble and other (25%, 50%, 75%) stubble strength and CK. Except for 0% stubble, the coefficient of variation of leaf traits under other treatments and CK was less than 50%, belonging to moderate variation. The leaf traits with 0% stubble were most prone to strong variation. There was a certain correlation between the functional traits of various leaves of H. ammodendron, and flat cropping increased the correlation between leaf traits to a certain extent; Principal component analysis showed that fresh leaf mass and saturated fresh leaf mass could be used as the main indicators for evaluating the functional traits of flat cut H. ammodendron leaves.【Conclusion】Research has shown that it is necessary to carry out appropriate and reasonable pruning for degraded, withered and aging H. ammodendron. Ulanbuhe desert artificial H. ammodendron forests can adopt pruning with a height of 0% to promote forest growth and sustainable development, which is conducive to restoring their functions in desert ecosystems.
Keywords: Haloxylon ammodendron; Ulanbuhe desert; stubble; leaf functional traits
烏蘭布和沙漠位于黃河“幾字彎”西側(cè),是黃河泥沙的主要來源之一,屬于我國北方敏感脆弱的生態(tài)過渡帶,也是“三北”重點(diǎn)生態(tài)工程建設(shè)區(qū)之一,由于該區(qū)自然環(huán)境惡劣,加之常年氣候干旱,降水稀少,水分虧缺成為影響植物生長的主要限制因素,產(chǎn)生了許多生態(tài)環(huán)境問題。梭梭(Haloxylon ammodendron)是藜科(Chenopodiaceae)、梭梭屬(Haloxylon)多年生小喬木或灌木,是國家瀕危保護(hù)植物[1],其根系發(fā)達(dá),具有耐鹽堿、抗風(fēng)蝕、抗逆性強(qiáng)等生物生態(tài)學(xué)特點(diǎn),是烏蘭布和沙漠及以西沙區(qū)主要的防風(fēng)固沙優(yōu)良樹種。由于近年來對(duì)梭梭進(jìn)行大面積的推廣種植及不合理建設(shè)[2],部分人工梭梭林出現(xiàn)了生長速度變緩、群落物種多樣性降低、天然更新困難等現(xiàn)象,導(dǎo)致防風(fēng)固沙等生態(tài)功能下降等問題[3-4]。因此,亟待對(duì)該區(qū)衰退的人工梭梭林進(jìn)行撫育管理,以保證防風(fēng)固沙林的可持續(xù)發(fā)展。
灌木平茬是荒漠植物更新復(fù)壯的主要方式,灌木經(jīng)平茬處理后能進(jìn)行自我更新、資源重新分配,再萌生能力增強(qiáng),提高生產(chǎn)力和光合速率,可有效防止灌木林衰退、老化等問題[5-6]。魏亞娟等[7]通過對(duì)吉蘭泰鹽湖花棒(Hedysarum scoparium)進(jìn)行研究發(fā)現(xiàn),平茬可以改變林內(nèi)生境,增加林下植物多樣性、改變植物群落結(jié)構(gòu)且有利于土壤養(yǎng)分積累。張志強(qiáng)等[8]對(duì)檸條錦雞兒(Caragana korshinskii)研究發(fā)現(xiàn),平茬后可有效提高根系的生長速度,改善根系分支結(jié)構(gòu),增強(qiáng)次級(jí)分支生長。另有相關(guān)研究顯示,沙棘(Hippophae rhamnoides)經(jīng)平茬處理后不僅可以有效刺激枝條萌發(fā)、促進(jìn)細(xì)根生長[9],還可以提高根系的抗拉、抗剪特性[10]。以上生產(chǎn)實(shí)踐及科學(xué)研究表明,平茬通過改變植物的功能性狀,進(jìn)而改變其對(duì)資源獲取和利用的策略[8-11]。目前,關(guān)于植物平茬的研究集中在平茬方式[12-14]、平茬時(shí)間[15]、平茬高度[11,16]、平茬后植物生長狀況[17]等方面,而對(duì)梭梭的研究則主要集中在光合[18-19]、生理[19-21]、土壤理化性質(zhì)及微生物[22-25]、葉片解剖結(jié)構(gòu)[26]等方面。由于平茬措施在梭梭上的應(yīng)用相對(duì)較少,故而對(duì)荒漠生態(tài)系統(tǒng)生長過程中平茬后梭梭葉片功能性狀的變化還未有研究,尤其是不同比例平茬梭梭葉功能性狀差異及其各性狀間相互關(guān)系還尚不清楚。因此,對(duì)于了解不同比例平茬梭梭葉功能性狀變化規(guī)律及其對(duì)干旱環(huán)境的響應(yīng)機(jī)制是需要深入探討的問題。
鑒于此,本研究從葉功能性狀角度探討烏蘭布和沙漠梭梭對(duì)不同比例平茬措施的響應(yīng),揭示平茬后梭梭對(duì)干旱荒漠區(qū)惡劣環(huán)境的生存適應(yīng)策略,以期為該區(qū)優(yōu)化梭梭平茬的管理和應(yīng)用及生態(tài)恢復(fù)和抗旱林業(yè)資源的保護(hù)與利用等領(lǐng)域提供科學(xué)依據(jù)。
1 材料與方法
1.1 研究區(qū)概況
本文試驗(yàn)研究區(qū)位于烏蘭布和沙漠東北緣,處于內(nèi)蒙古磴口荒漠生態(tài)系統(tǒng)定位研究站附近,行政區(qū)隸屬于內(nèi)蒙古巴彥淖爾市磴口縣,地理位置為40°43′80″N,106°77′58″E,海拔高度為1 060 m。該地區(qū)屬于溫帶大陸性干旱氣候,具有冷熱巨變,風(fēng)大沙多等氣候特征。據(jù)內(nèi)蒙古磴口荒漠生態(tài)站多年氣象觀測資料顯示:該區(qū)年平均氣溫7.8 ℃,最高氣溫39.0 ℃,最低氣溫-29.6 ℃,年均降水量約145 mm,降水主要集中在6—9月,約占全年降水量的70%~80%,年均蒸發(fā)量約2 380.6 mm,日照時(shí)長約3 200 h,年均風(fēng)速3.70 m·s-1,瞬時(shí)風(fēng)速最高可達(dá)24.0 m·s-1。試驗(yàn)地為該區(qū)約20年生的人工固沙梭梭林,為防止人為及牲畜的干擾和破壞,對(duì)樣地四周建起鐵絲圍欄進(jìn)行封閉式管理。該區(qū)土壤類型主要以風(fēng)沙土為主,雨后林下常伴生有草本植物:霧冰藜(Bassia dasyphylla)、沙鞭(Psammochloa villosa),半灌木植物:油蒿(Artemisia ordosica)。
1.2 樣地設(shè)置與樣品采集
于2022年3月進(jìn)行樣地設(shè)置及調(diào)查,共選取15株健康、長勢良好、胸徑大小基本一致的植株進(jìn)行試驗(yàn),平茬按預(yù)留樹冠高度的0%、25%、50%、75%計(jì)算(每個(gè)比例3株),如圖2所示,對(duì)照為不平茬的梭梭。在平茬當(dāng)年5月(生長季初期)、7月(生長季旺盛期)、9月(生長季末期)進(jìn)行調(diào)查采樣。于每株植株東、南、西、北四個(gè)方向及頂部中心位置采樣,每一株梭梭取20根發(fā)育良好、無病蟲害、完整的葉片裝入標(biāo)記好的自封袋,裝入保鮮箱后帶回實(shí)驗(yàn)室處理。采用精度為0.000 1 g電子天平稱量葉鮮質(zhì)量(leaf fresh weight,LFW),采用Winseedle種子和針葉圖像分析系統(tǒng)軟件獲得葉面積(leaf area,LA),隨后立即將葉片在黑暗環(huán)境中浸泡12 h至飽和,然后用濾紙輕輕擦干其表面水分,立即稱量得出葉飽和鮮質(zhì)量(leaf saturated fresh weight,LSFW)。再置于105 ℃烘箱殺青30 min,將烘箱調(diào)至65 ℃烘干葉片,稱量得出葉干質(zhì)量(leaf dry mass,LDM)。
1.3 數(shù)據(jù)處理與統(tǒng)計(jì)分析
采用Excel 2016軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)與處理。采用SPSS 27.0軟件進(jìn)行數(shù)據(jù)分析,用單因素方差法(One-way analysis of variance,ANOVA)和變異系數(shù)(Coefficient of variation,CV)對(duì)各個(gè)生長階段不同平茬處理下梭梭葉性狀進(jìn)行差異顯著性分析,采用Duncan法對(duì)不同數(shù)據(jù)組間進(jìn)行方差分析與多重比較,用Pearson相關(guān)系數(shù)檢驗(yàn)各葉功能性狀間的相關(guān)性。采用主成分分析法(Principal Component Analysis,PCA)篩選梭梭葉功能性狀對(duì)平茬處理后變化的主要指標(biāo),用Origin 2022軟件繪圖。變異系數(shù)是反應(yīng)數(shù)據(jù)離散程度的絕對(duì)值,通常情況下,弱變異的范圍為CV≤20%,中等變異的范圍為20%
2 結(jié)果與分析
2.1 不同生長時(shí)期梭梭葉功能性狀特征
由表1可知,隨著時(shí)間的推移,CK、留茬0%、25%的梭梭葉片鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積均呈現(xiàn)逐步升高的趨勢,留茬0%的各項(xiàng)指標(biāo)都高于CK和其他平茬強(qiáng)度的梭梭葉片,增長最為明顯,其中葉面積增長最高,分別表現(xiàn)為9月較5月增長了21.279 3 cm2、9月較7月增長了13.509 2 cm2;留茬50%、75%的梭梭葉片各指標(biāo)則是在5—7月緩慢上升,7月生長旺盛期出現(xiàn)峰值,7—9月開始緩慢下降。根據(jù)方差分析結(jié)果顯示:梭梭葉片鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積在相同比例平茬處理下不同月份間大部分均存在顯著性差異,而在相同月份內(nèi)不同處理之間的關(guān)系則表現(xiàn)為留茬0%與留茬25%、50%、75%和CK之間的葉鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積均存在顯著性差異。
由圖2可知,含水率和比葉面積在各個(gè)平茬處理下均隨著生長時(shí)期的推移整體上呈現(xiàn)逐漸減小的趨勢,而葉干物質(zhì)含量、比葉重、相對(duì)水分虧缺則整體呈現(xiàn)出相反的趨勢,經(jīng)方差分析顯示得知:CK、留茬0%、25%的梭梭葉片含水率、比葉面積、葉干物質(zhì)含量、比葉重在各個(gè)不同生長階段間差異性均較大,而50%和75%梭梭葉片含水率、比葉面積、葉干物質(zhì)含量、比葉重表現(xiàn)為5月與7月、9月之間存在顯著性差異,相對(duì)水分虧缺則表現(xiàn)為CK在不同生長階段無顯著性差異,留茬0%、50%在不同月份間有顯著性差異;在相同月份內(nèi)不同處理下也存在一定的顯著性差異,但無明顯規(guī)律。
各比例留茬梭梭葉性狀增量中(表2),留茬0%的梭梭出現(xiàn)比較明顯的超補(bǔ)償生長現(xiàn)象,表明留茬0%的高度可以較好地促進(jìn)梭梭植株地上部分快速生長,尤其是7—9月之間留茬0%的增長量較高,其中,葉面積增長最多,5月到7月之間增長了7.77 cm2,7—9月之間增長了13.509 cm2。留茬50%和75%在7—9月生長過程中鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積這幾項(xiàng)指標(biāo)均出現(xiàn)負(fù)增長。
根據(jù)變異系數(shù)法分析(表3)的結(jié)果發(fā)現(xiàn):平茬后梭梭的各性狀變異系數(shù)介于0.60%~77.68%之間,以9月份生長季末期留茬0%的梭梭葉干質(zhì)量變異程度最大,變異程度最小的是5月份生長季初期留茬0%的葉含水率,其中所有平茬及 CK的梭梭葉含水率和葉干物質(zhì)含量的變異系數(shù)均<10%,變異程度最小,且除留茬0%的梭梭外,其他處理下及CK的梭梭比葉面積和比葉重的變異系數(shù)均<20%,均屬于弱變異;除留茬0%的梭梭外,其他處理下及CK的梭梭葉鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積、相對(duì)水分虧缺的變異系數(shù)均<50%,屬于中等變異;留茬0%的梭梭葉性狀最容易出現(xiàn)強(qiáng)變異,由此可見,留茬0%的梭梭葉性狀受平茬措施影響較大。
2.2 梭梭葉功能性狀間相關(guān)性與主成分分析
2.2.1 梭梭葉功能性狀間相關(guān)關(guān)系
由圖3可知,各葉功能性狀間存在不同程度的相關(guān)性。對(duì)照與平茬梭梭的飽和鮮質(zhì)量與鮮質(zhì)量,干質(zhì)量與鮮質(zhì)量、飽和鮮質(zhì)量,葉面積與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量,比葉重與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量,均呈極顯著正相關(guān)(P<0.001);平茬梭梭含水率與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量呈顯著負(fù)相關(guān)(P<0.05),而對(duì)照梭梭含水率與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積呈極顯著負(fù)相關(guān)(P<0.001);對(duì)照與平茬梭梭的比葉面積與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積呈極顯著負(fù)相關(guān)(P<0.001),而與含水率呈極顯著正相關(guān)(P<0.001);對(duì)照梭梭的葉干物質(zhì)含量與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積均呈極顯著正相關(guān)(P<0.001),平茬梭梭葉干物質(zhì)含量與葉面積呈正相關(guān)但不顯著,對(duì)照和平茬梭梭的葉干物質(zhì)含量均與含水率、比葉面積呈極顯著負(fù)相關(guān)(P<0.001);對(duì)照和平茬梭梭的比葉重與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積、葉干物質(zhì)含量呈極顯著正相關(guān)(P<0.001),與含水率、比葉面積呈極顯著負(fù)相關(guān)(P<0.001);平茬梭梭的相對(duì)水分虧缺與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量呈正相關(guān)但不顯著,與葉面積呈顯著正相關(guān)(P<0.05),與葉干物質(zhì)含量和比葉重呈極顯著正相關(guān)(P<0.001),與含水率、比葉面積呈極顯著負(fù)相關(guān)(P<0.001),而對(duì)照梭梭的相對(duì)水分虧缺只與葉含水率呈顯著性負(fù)相關(guān)(P<0.01)。
各葉功能性狀的相關(guān)分析結(jié)果表明,梭梭9種葉功能性狀間的36個(gè)葉功能性狀組對(duì)中,對(duì)照梭梭有29對(duì)達(dá)到顯著水平,占80.56%,平茬梭梭有31對(duì)達(dá)到顯著水平,占86.11%,平茬對(duì)各葉性狀組隊(duì)中的正相關(guān)與負(fù)相關(guān)關(guān)系無改變,對(duì)顯著性有一定的影響,這說明在平茬處理下,可進(jìn)一步增強(qiáng)梭梭葉功能性狀間的相關(guān)性。
2.2.2 梭梭葉功能性狀主成分分析比較
對(duì)所有功能性狀進(jìn)行PCA分析(表4),消除不同性狀間的相關(guān)性對(duì)梭梭評(píng)價(jià)的影響。對(duì)照梭梭葉功能性狀各指標(biāo)的公因子方差平均值為0.893 4,其中最小的是比葉面積,為0.845。同樣也提取2個(gè)主成分,特征值分別為7.031、1.009,貢獻(xiàn)率分別為78.127%、11.213%,累計(jì)貢獻(xiàn)率為89.341%,也是>85.00%,同樣可以說明這2個(gè)主成分因素是未平茬梭梭葉功能性狀變化的主要因素,隨后通過對(duì)綜合得分進(jìn)行排名得出綜合位次,含水率>鮮質(zhì)量>干質(zhì)量>飽和鮮質(zhì)量>比葉重>葉面積>比葉面積>葉干物質(zhì)含量>相對(duì)水分虧缺,與平茬梭梭得出的綜合位次不同,未平茬梭梭的含水率排名靠前,通過分析可知指標(biāo)因子排名越靠前則表示其在各指標(biāo)中占據(jù)更重要的比重。平茬梭梭葉功能性狀各指標(biāo)的公因子方差均比較大,平均值為0.895 4,在觀測的9個(gè)葉功能性狀中,相對(duì)水分虧缺的公因子方差最小,為0.695。按照特征值>1為原則,則可以提取出2個(gè)主要成分,特征值分別為5.365、2.693,并且這兩個(gè)主成分貢獻(xiàn)率分別為59.608%、29.924%,總計(jì)累計(jì)貢獻(xiàn)率為89.533%,>85.00%,由此可以說明這2個(gè)主成分因素是平茬后梭梭葉功能性狀變化的主要因素,通過對(duì)綜合得分進(jìn)行排名得出綜合位次,即:鮮質(zhì)量>飽和鮮質(zhì)量>干質(zhì)量>含水率>葉干物質(zhì)含量>比葉面積>葉面積>相對(duì)水分虧缺>比葉重。
由PCA排序圖(圖4)結(jié)合表4可知,對(duì)照梭梭中主成分1能明顯區(qū)分不同生長時(shí)期下梭梭葉性狀指標(biāo)的差異,對(duì)照梭梭第1主成分包括鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積、含水率、比葉面積、葉干物質(zhì)含量、比葉重,特征值均大于0.9,這8個(gè)成分主要反映了梭梭葉干質(zhì)量因素;而平茬梭梭中主成分1則能夠明顯區(qū)分留茬0%與其他不同比例平茬梭梭葉性狀指標(biāo)的差異,平茬梭梭第1主成分包括鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、比葉重,特征值均大于0.8,這4個(gè)主成分主要反映了平茬梭梭比葉重因素。
3 討 論
3.1 平茬梭梭葉功能性狀隨生長時(shí)期變化特征
葉鮮質(zhì)量、葉干質(zhì)量、比葉面積、葉干物質(zhì)含量等各項(xiàng)葉性狀指標(biāo)均能夠反映出植物對(duì)環(huán)境的適應(yīng)策略及自身資源獲取與利用的能力,且葉性狀指標(biāo)均與植物自身的生長發(fā)育、生存與否有著密切的關(guān)系[27-28]。本研究發(fā)現(xiàn),對(duì)照梭梭與平茬梭梭的葉鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量和葉面積均隨生長發(fā)育階段逐漸增長,而平茬對(duì)各指標(biāo)有顯著影響,留茬程度越少增長量越多,其中留茬0%的變化最為明顯,各比例之間增量變化的關(guān)系基本表現(xiàn)為0%>25%>CK>50%>75%,說明不同比例平茬對(duì)植物的生存策略有差異。
相關(guān)研究表明,沙棘[29]、沙拐棗(Calligonum mongolicum)[30]、檸條[31]在不同平茬強(qiáng)度下均發(fā)生不同程度超補(bǔ)償生長現(xiàn)象,本文中,留茬0%的梭梭出現(xiàn)明顯地超補(bǔ)償生長現(xiàn)象,表明留茬0%的高度可以較好的促進(jìn)梭梭植株地上部分快速生長,其原因可能是留茬0%的梭梭去除掉的頂端優(yōu)勢最多,刺激主干快速萌生出大量新的枝葉,而留茬50%和75%在7—9月生長過程中鮮質(zhì)量等指標(biāo)出現(xiàn)負(fù)增長,這是因?yàn)樗笏笸閼?yīng)對(duì)干旱貧瘠的環(huán)境已經(jīng)開始了木質(zhì)化過程,相比其他平茬強(qiáng)度出現(xiàn)的時(shí)間較早。隨著時(shí)間的增加,梭梭的葉含水率、比葉面積呈下降趨勢,而葉干物質(zhì)含量和比葉重呈上升趨勢,整體來看,平茬后的梭梭葉含水率、比葉面積均比CK小,葉干物質(zhì)含量和比葉重都比CK大,即平茬有利于梭梭水分利用效率的提高,平茬處理后的梭梭具有更好地獲取資源的能力,從而增強(qiáng)對(duì)干旱貧瘠環(huán)境的適應(yīng)性[32]。葉干物質(zhì)含量在不同比例平茬和隨著生長階段變化趨勢與比葉面積相反(圖2),表明梭梭在平茬刺激恢復(fù)生長過程中,增大受光面積和葉片的生產(chǎn)能力,以增強(qiáng)對(duì)外界環(huán)境變化的防御能力[32-33]。
植物功能性狀同時(shí)受內(nèi)在遺傳因素和外界環(huán)境條件的共同影響[34],遺傳因素對(duì)植物功能性狀影響更大,其差異性的影響高達(dá)95%[35],環(huán)境條件的變異程度為28%~52%,屬于中等變異水平[36-37]。董雪等[32]通過對(duì)西鄂爾多斯不同平茬年限的沙冬青(Ammopiptanthus mongolicus)葉功能性狀進(jìn)行研究發(fā)現(xiàn),平茬對(duì)葉片形態(tài)指標(biāo)有顯著影響,其中葉長、葉寬、葉厚度、葉面積、長寬比、比葉面積、葉干物質(zhì)含量變異程度介于6.26%~25.85%之間。本研究結(jié)果表明,不同平茬比例(留茬0%、25%、50%、75%)梭梭的9個(gè)葉功能性狀在整個(gè)生長發(fā)育期內(nèi)的變異系數(shù)范圍為0.60% ~ 77.68%,均存在不同程度的變異,變異幅度較大,其中留茬0%的梭梭葉功能性狀的變異范圍最大,這可能與平茬強(qiáng)度以及烏蘭布和沙漠嚴(yán)酷的生境條件有關(guān),從而導(dǎo)致植物葉功能性狀具有較強(qiáng)的可塑性。
3.2 平茬梭梭葉功能性狀的相關(guān)性與主成分分析
植物各個(gè)葉功能性狀之間關(guān)系密切且相互作用,為適應(yīng)內(nèi)在生理和外在環(huán)境的變化逐漸形成許多應(yīng)對(duì)策略,從而提高植物的適應(yīng)能力[38-39],平茬與未平茬梭梭葉功能性狀間在某種程度上均存在一定的正相關(guān)或負(fù)相關(guān),即梭梭葉功能性狀具有協(xié)同變化的特點(diǎn)。本研究中,比葉面積與葉干物質(zhì)含量呈極顯著負(fù)相關(guān)(P<0.01),與前人研究結(jié)果一致[40-41],也有研究表明比葉面積較小、干物質(zhì)含量較大的葉片反而更能適應(yīng)貧瘠的環(huán)境[42],說明這種關(guān)系是陸生植物在適應(yīng)環(huán)境中普遍存在的共性。平茬梭梭與對(duì)照相比,比葉面積與相對(duì)水分虧缺呈極顯著負(fù)相關(guān),葉干物質(zhì)含量、比葉重與相對(duì)水分虧缺呈極顯著正相關(guān),說明平茬后梭梭在復(fù)雜的生存環(huán)境下,具有更強(qiáng)的持水能力,會(huì)投入更多的資源到葉片構(gòu)建中,即植物會(huì)不斷改變?nèi)ソ⒏m應(yīng)自身的防御體系,并且會(huì)通過增加干物質(zhì)含量從而進(jìn)一步防止更多資源的流失[43]。平茬處理后的梭梭通過調(diào)節(jié)葉片功能性狀間的關(guān)系去適應(yīng)環(huán)境的變化,以形成葉性狀間的最優(yōu)功能組合。本研究中,平茬和對(duì)照梭梭分別有31、29對(duì)葉性狀存在顯著的相關(guān)關(guān)系,其中,平茬梭梭中與鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉干物質(zhì)含量相關(guān)的都有7對(duì),與葉面積、含水率、比葉面積、比葉重、相對(duì)水分虧缺相關(guān)的分別有6、7、8、8、5對(duì);對(duì)照梭梭中與葉面積、比葉面積、比葉重相關(guān)的有7對(duì),與含水率相關(guān)的有8對(duì),而與相對(duì)水分虧缺相關(guān)的僅有1對(duì)。在相同條件下,一般選取與其他性狀相關(guān)性較高的作為以后功能性狀的主要研究對(duì)象[44]。本研究發(fā)現(xiàn),平茬后梭梭相對(duì)水分虧缺與其他葉性狀的相關(guān)關(guān)系顯著增加,因此可以考慮將相對(duì)水分虧缺作為梭梭對(duì)平茬措施做出響應(yīng)的重點(diǎn)衡量指標(biāo)。主成分分析表明,葉鮮質(zhì)量和葉飽和鮮質(zhì)量可作為平茬梭梭葉功能性狀變化的主要指標(biāo),葉含水量和葉鮮質(zhì)量可作為影響未平茬梭梭葉功能性狀變化的主要指標(biāo),與前人研究結(jié)果基本一致[42]。葉鮮質(zhì)量和葉飽和鮮質(zhì)量綜合反映梭梭平茬后對(duì)水分的保存和利用以及資源獲取能力,使其更有利于耐受干旱脅迫和快速生長。
平茬措施對(duì)梭梭葉性狀有顯著影響,本研究中,不同比例平茬的梭梭葉片均可產(chǎn)生不同程度的補(bǔ)償性生長,其中留茬0%的梭梭恢復(fù)生長速度最快,葉鮮質(zhì)量、葉面積等指標(biāo)增長速度最快。由于本文研究指標(biāo)有限,時(shí)間周期短,隨生長年限的延長,不同平茬強(qiáng)度對(duì)梭梭的影響程度在未來還需持續(xù)觀測,下一步增加平茬梭梭同化枝切片組織結(jié)構(gòu)、葉組織密度、氣孔數(shù)量和特征等小尺度上的測量,從多維度、深層次探究平茬后梭梭生長的變化趨勢,需要深入研究分析其與極端干旱環(huán)境的關(guān)聯(lián)。
4 結(jié) 論
梭梭在不同比例平茬強(qiáng)度下均發(fā)生不同程度補(bǔ)償生長現(xiàn)象,即平茬后梭梭的葉功能性狀發(fā)育都得到了顯著提高,在同一生長發(fā)育階段內(nèi),留茬0%的鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積、葉干物質(zhì)含量、比葉重、均高于其他處理,留茬0%與留茬25%、50%和75%存在顯著性差異(P<0.05);與CK相比留茬0%的整體變異性最強(qiáng)。留茬0%、25%的葉功能生長動(dòng)態(tài)一致,均表現(xiàn)為:葉鮮質(zhì)量、飽和鮮質(zhì)量、干質(zhì)量、葉面積、葉干物質(zhì)含量、比葉重均隨著時(shí)間的增長而增大,含水率、比葉面積隨著時(shí)間的增長而減小。平茬可增加葉功能性狀間的相關(guān)性。綜上,為確保梭梭林防風(fēng)固沙的生態(tài)效益,并解決梭梭植株老化衰退現(xiàn)象,提高梭梭快速再生能力,在未來實(shí)踐中開展平茬工作時(shí),建議根據(jù)梭梭林的株行距配置情況,如隔株、隔行或分年度實(shí)施,盡量避免大范圍一次性全部平茬,平茬高度應(yīng)為留茬0%(去除整株樹冠)為最佳。
參考文獻(xiàn):
[1] 劉哲榮,劉果厚,高潤宏.內(nèi)蒙古珍稀瀕危植物瀕?,F(xiàn)狀及優(yōu)先保護(hù)評(píng)估[J].應(yīng)用生態(tài)學(xué)報(bào),2019,30(6):1974-1982. LIU Z R, LIU G H, GAO R H. Assessment of the endangered status and conservation priorities for the rare and endangered plant species in Inner Mongolia, China[J]. Chinese Journal of Applied Ecology,2019,30(6):1974-1982.
[2] 張劍揮,馬全林,李得祿,等.烏蘭布和沙漠天然梭梭種群動(dòng)態(tài)及空間分布[J].西北植物學(xué)報(bào),2023,43(7):1198-1207. ZHANG J H, MA Q L, LI D L, et al. Dynamic state and spatial distribution of natural Haloxylon ammodendron in ulan buhe desert[J]. Northwest Botanical Journal,2023,43(7):1198-1207.
[3] 石義強(qiáng),熱孜也木·阿布力孜,玉米提·哈力克,等.胡楊葉功能性狀差異及其與樹形因子的關(guān)系[J].森林與環(huán)境學(xué)報(bào), 2023,43(1):1-7. SHI Y Q, REZIYEMU·ABLT, YUMITI·HLK, et al. Differences in leaf functional traits of Populus euphratica at different growth stages and its relationship with tree shape factors[J]. Journal of Forest and Environment,2023,43(1):1-7.
[4] 朱教君.防護(hù)林學(xué)研究現(xiàn)狀與展望[J].植物生態(tài)學(xué)報(bào),2013, 37(9):872-888. ZHU J J. A review of the present situation and future prospect of science of protective forest[J]. Chinese Journal of Plant Ecology, 2013,37(9):872-888.
[5] 海龍,王曉江,張文軍,等.毛烏素沙地人工沙柳(Salix psammophila)林平茬復(fù)壯技術(shù)[J].中國沙漠,2016,36(1): 131-136. HAI L, WANG X J, ZHANG W J, et al. Stumping rejuvenation technology of Salix psammophila artificial shrubbery in the mu us sandy land[J]. Journal of Desert Research,2016,36(1):131-136.
[6] DINH T T, KAJIKAWA C, AKAJI Y, et al. Stump sprout dynamics of Quercus serata and Q. cutissima four years after cutting in an abandoned coppice forest in western Japan[J]. Forest Ecology and Management,2019,435(1):45-56.
[7] 魏亞娟,劉美英,左小鋒,等.平茬對(duì)吉蘭泰鹽湖花棒防護(hù)林植被特征和土壤理化性質(zhì)的影響[J].水土保持學(xué)報(bào),2023, 37(4):250-257. WEI Y J, LIU M Y, ZUO X F, et al. Effects of prune measure on vegetation characteristics and soil physical and chemical properties of Hedysarum scoparium protection forest in Jilantai salt lake[J]. Journal of Soil and Water Conservation,2023,37(4): 250-257.
[8] 張志強(qiáng),郭月峰,祁偉,等.不同平茬模式對(duì)檸條細(xì)根構(gòu)型及土壤養(yǎng)分的影響[J/OL].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),1-9[2024-10-13]. http://kns.cnki.net/kcms/detail/42.1181.S.20240912.1605.002.html. ZHANG Z Q, GUO Y F, QI W, et al. Effects of the modes of stumping on configuration of fine root and nutrients in soil of Caragana korshinskii[J]. Journal of Huazhong Agricultural University,1-9[2024-10-13].http://kns.cnki.net/kcms/detail/ 42.1181.S. 20240912.1605.002.html.
[9] 郭月峰,祁偉,姚云峰,等.留茬高度對(duì)砒砂巖區(qū)沙棘生理特征的影響[J].生態(tài)環(huán)境學(xué)報(bào),2020,29(6):1116-1122. GUO Y F, QI W, YAO Y F, et al. Effect of stubble height on the physiological characteristics of Hippophae rhamnoides in the sandstone region[J]. Ecology and Environmental Sciences, 2020,29(6):1116-1122.
[10] 崔天民,格日樂,毅勃勒,等.沙棘根系固土力學(xué)特性對(duì)其平茬復(fù)壯的響應(yīng)[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2024,43(1):108-114. CUI T M, GE R L, YI B L, et al. Response of soil consolidation mechanical properties of Hippophae rhamnoides roots to rejuvenation of mowing[J]. Journal of Huazhong Agricultural University, 2024,43(1):108-114.
[11] 王東清,溫學(xué)飛.留茬高度對(duì)小葉錦雞兒葉片部分光合指標(biāo)及土壤水分的影響[J].植物資源與環(huán)境學(xué)報(bào),2021,30(6):47-57. WANG D Q, WEN X F. Effect of stubble height on some photosynthetic indexes of leaves and soil water of Caragana microphylla[J]. Journal of Plant Resources and Environment, 2021,30(6):47-57.
[12] 張小菊,每杭,沈艷.平茬方式對(duì)寧夏荒漠草原人工檸條林土壤物理性質(zhì)及持水能力的影響[J].草原與草坪,2020,40(4): 73-79. ZHANG X J, MEI H, SHEN Y. Effects of stubble on soil physical properties and water holding capacity of artificial Caragana in Ningxia desert steppe[J]. Grassland and Lawn, 2020,40(4):73-79.
[13] 李金山,馬旭君,吳晶,等.不同強(qiáng)度平茬對(duì)檸條生長及養(yǎng)分歸還的影響[J].西部林業(yè)科學(xué),2023,52(1):57-63. LI J S, MA X J, WU J, et al. Effects of different intensities of thinning on the growth and nutrient return of Caragana korshinskii[J]. Journal of West China Forestry Science, 2023,52(1):57-63.
[14] 遲旭,崔向新,黨曉宏,等.機(jī)械平茬對(duì)花棒生長狀況的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2021,49(11):30-34,38. CHI X, CUI X X, DANG X H, et al. Effect of mechanical stubble response on Hedysarum scoparium growth[J]. Journal of Northeast Forestry University,2021,49(11):30-34,38.
[15] 田英,許喆,朱麗珍,等.生長季不同月份平茬對(duì)檸條人工林地土壤細(xì)菌群落特性的影響[J].草業(yè)學(xué)報(bào),2022,31(5):40-50. TIAN Y, XU Z, ZHU L Z, et al. Effect of cutting time during the growing season on the soil bacterial community under an artificial Caragana intermedia plantation[J]. Acta Prataculturae Sinica, 2022,31(5):40-50.
[16] 田登娟,白雙成,聶愷宏,等.平茬高度對(duì)中國沙棘萌枝能力及非結(jié)構(gòu)性碳水化合物積累與分配的影響[J].西北植物學(xué)報(bào), 2021,41(4):627-634. TIAN D J, BAI S C, NIE K H, et al. Effects of stubble height on sprouting ability and non-structural carbohydrates accumulation and distribution of Hippophae rhamnoides ssp. sinensis[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(4):627-634.
[17] 賈希洋,周靜靜,宿婷婷,等.平茬密度對(duì)荒漠草原人工檸條林間生境的影響[J].生態(tài)學(xué)報(bào),2020,40(12):4126-4136. JIA X Y, ZHOU J J, SU T T, et al. Effect of different cropping densities on the habitat of artificial Caragana intermedia in desert steppe[J]. Journal of Ecology,2020,40(12):4126-4136.
[18] 張華,吳睿,康雅茸.民勤綠洲梭梭同化枝光合生理特性與形態(tài)[J].草業(yè)科學(xué),2018,35(2):371-379. ZHANG H, WU R, KANG Y R. Photosynthetic physiological and morphological characteristics of Haloxylon ammodendron assimilation twigs in Minqin oasis[J]. Pratacultural Science, 2018,35(2):371-379.
[19] 張錦春,徐先英,孫學(xué)兵,等.民勤荒漠梭梭莖干液流動(dòng)態(tài)[J].草業(yè)科學(xué),2023,40(1):169-178. ZHANG J C, XU X Y, SUN X B, et al. Dynamic changes in the sap flow of Haloxylon ammodendron in the Minqin desert region[J]. Pratacultural Science,2023,40(1):169-178.
[20] QIANG Y, ZHANG M , ZHANG Y, et al. Estimation of water consumption of Haloxylon ammodendron sand-fixing forest in Minqin oasis-desert ecotone of China based on leaf index[J]. Forests,2023,15(1):1-13.
[21] 周潔,楊曉東,王雅蕓,等.梭梭和駱駝刺對(duì)干旱的適應(yīng)策略差異[J].植物生態(tài)學(xué)報(bào),2022,46(9):1064-1076. ZHOU J, YANG X D, WANG Y Y, et al. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought[J]. Chinese Journal of Plant Ecology, 2022,46(9):1064-1076.
[22] LI C H, LI Y, TANG L S, et al. Soil microbial community shifts explain habitat heterogeneity in two Haloxylon species from a nutrient perspective[J]. Ecology and Evolution,2023,13(1):9727.
[23] 王安林,馬瑞,馬彥軍,等.民勤荒漠綠洲過渡帶人工梭梭林土壤細(xì)菌群落結(jié)構(gòu)及功能預(yù)測[J].環(huán)境科學(xué),2024,45(1): 508-519. WANG A L, MA R, MA Y J, et al. Prediction of soil bacterial community structure and function in Minqin desert-oasis ecotone artificial Haloxylon ammodendron forest[J]. Environmental Science,2024,45(1):508-519.
[24] ZHOU D M,SI J H,HE X H, et al. Response of soil water content temporal stability to stand age of Haloxylon ammodendron plantation in Alxa desert, China[J]. Frontiers in Plant Science, 2023,14:1099217.
[25] 徐高興,付貴全,張雯,等.梭梭固沙林演替過程中土壤粒徑與碳氮含量的變化規(guī)律[J].安徽農(nóng)業(yè)科學(xué),2022,50(20): 50-53,58. XU G X, FU G Q, ZHANG W, et al. Changes of soil particle size and carbon and nitrogen content during the succession of Haloxylon ammodendron sand-fixing forest[J]. Journal of Anhui Agricultural Sciences,2022,50(20):50-53,58.
[26] 王飛,郭樹江,張衛(wèi)星,等.不同年代梭梭同化枝解剖結(jié)構(gòu)特征及其對(duì)土壤條件的響應(yīng)[J].西北植物學(xué)報(bào),2021,41(3): 473-479. WANG F, GUO S J, ZHANG W X, et al. Anatomic structure characteristics of assimilating shoots of Haloxylon ammodendron in different ages and their response to soil conditions[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(3):473-479.
[27] 鐘巧連,劉立斌,許鑫,等.黔中喀斯特木本植物功能性狀變異及其適應(yīng)策略[J].植物生態(tài)學(xué)報(bào),2018,42(5):562-572. ZHONG Q L, LIU L B, XU X, et al. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou province, southwestern China[J]. Chinese Journal of Plant Ecology,2018,42(5):562-572.
[28] 王飛,郭樹江,紀(jì)永福,等.不同演替階段白刺灌叢沙堆土壤因子與葉功能性狀關(guān)系研究[J].干旱區(qū)地理,2022,45(1): 176-184. WANG F, GUO S J, JI Y F, et al. Relationship between soil factors and leaf functional traits of Nitraria tangutorum shrub at different succession stages[J]. Arid Land Geography,2022,45(1): 176-184.
[29] 王鑫,郭月峰,祁偉,等.不同留茬高度對(duì)沙棘補(bǔ)償生長和土壤理化性質(zhì)的影響[J].揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2023,44(2):131-137,146. WANG X, GUO Y F, QI W, et al. Influence of different stubble heights on compensatory growth of Hippophae rhamnoides as well as the physical and chemical properties of soil[J]. Journal of Yangzhou University (Agriculture and Life Sciences Edition), 2023,44(2):131-137,146.
[30] 趙連鑫,劉偉,王鑫,等.民勤荒漠區(qū)人工沙拐棗林平茬更新復(fù)壯技術(shù)試驗(yàn)研究[J].中國水土保持,2023(1):52-56. ZHAO L X, LIU W, WANG X, et al. Experimental study on the flat crop regeneration and rejuvenation technology of artificial sand jujube forest in Minqin desert area[J]. Soil and Water Conservation in China,2023(1):52-56.
[31] 劉偉,何彩,周永海,等.民勤荒漠區(qū)檸條防護(hù)林平茬復(fù)壯技術(shù)研究[J].中國水土保持,2021(5):32-35. LIU W, HE C, ZHOU Y H, et al. Research on the flat crop rejuvenation technology of Caragana protective forest in Minqin desert area[J]. Soil and Water Conservation in China,2021(5): 32-35.
[32] 董雪,郝玉光,辛智鳴,等.平茬年限和林齡對(duì)沙冬青葉片功能性狀及土壤化學(xué)計(jì)量特征的影響[J].草業(yè)學(xué)報(bào),2019,28(10): 122-133. DONG X, HAO Y G, XIN Z M, et al. Effects of time after rejuvenation pruning and stand age on leaf functional traits of Ammopiptanthus mongolicus and stoichiometric characteristics of rhizosphere soil[J]. Acta Prataculturae Sinica,2019,28(10): 122-133.
[33] 馬迎賓,黃雅茹,蘇智,等.烏蘭布和沙漠綠洲3種楊樹葉片性狀研究[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2019,39(8):10-15. MA Y B, HUANG Y R, SU Z, et al. Study on leaf trait of three kinds of poplar in Ulan Buh desert oasis[J]. Journal of Central South University of Forestry Technology,2019,39(8):10-15.
[34] 堯婷婷,孟婷婷,倪健,等.新疆準(zhǔn)噶爾荒漠植物葉片功能性狀的進(jìn)化和環(huán)境驅(qū)動(dòng)機(jī)制初探[J].生物多樣性,2010,18(2): 201-211. YAO T T, MENG T T, NI J, et al. Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar basin, NW China[J]. Biodiversity Science,2010,18(2):201-211.
[35] HALLIK L, NIINEMETS U, WRIGHT I J. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in northern Hemisphere temperate woody flora?[J]. New Phytologist,2009,184(1):257-274.
[36] JIANG Y, CHEN X B, MA J M, et al. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, southwest China[J]. Tropical Conservation Science, 2016,9(4):1-9.
[37] 唐青青,黃永濤,丁易,等.亞熱帶常綠落葉闊葉混交林植物功能性狀的種間和種內(nèi)變異[J].生物多樣性,2016,24(3): 262-270. TANG Q Q, HUANG Y T, DING Y, et al. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests[J]. Biodiversity Science,2016,24(3):262-270.
[38] 余華,鐘全林,黃云波,等.不同種源刨花楠林下幼苗葉功能性狀與地理環(huán)境的關(guān)系[J].應(yīng)用生態(tài)學(xué)報(bào),2018,29(2): 449-458. YU H, ZHONG Q L, HUANG Y B, et al. Relationships between leaf functional traits of Machilus pauhoi understory seedlings from different provenances and geographical environmental factors[J]. Chinese Journal of Applied Ecology,2018,29(2): 449-458.
[39] XING Y Z, JIA X X, XIAO F H , et al. Linking leaf functional traits with soil and climate factors in forest ecosystems in China[J]. Plants,2022,11(24):3545.
[40] RONK A, BOLDGIV B, CASPER B B, et al. Leaf trait plasticity reveals interactive effects of temporally disjunct grazing and warming on plant communities[J]. Oecologia,2024,204(4): 833-843.
[41] LU L, YUE F G, XIAO Y L, et al. Coordinated variation in root and leaf functional traits of Hippophae rhamnoides treated at different stump heights in feldspathic sandstone areas of Inner Mongolia[J]. Frontiers in Plant Science,2023, 141104632.
[42] 王飛,郭樹江,樊寶麗,等.不同年代梭梭葉功能性狀差異及其與土壤因子的關(guān)系[J].草業(yè)科學(xué),2020,37(12):2486-2496. WANG F, GUO S J, FAN B L, et al. Variation in leaf functional traits of different-aged Haloxylon ammodendron communities, and the relationship with soil factors[J]. Pratacultural Science, 2020,37(12):2486-2496.
[43] 李金航,朱濟(jì)友,Jandug C M,等.干旱脅迫環(huán)境中黃櫨幼苗葉功能性狀變異與產(chǎn)地地理-氣候因子的關(guān)系[J].北京林業(yè)大學(xué)學(xué)報(bào),2020,42(2):68-78. LI J H, ZHU J Y, JANDUG C M B, et al. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University,2020,42(2):68-78.
[44] 董雪,辛智鳴,李永華,等.沙冬青(Ammopiptanthus mongolicus)葉性狀對(duì)環(huán)境因子的響應(yīng)[J].中國沙漠,2019,39(6):126-134. DONG X, XIN Z M, LI Y H, et al. Responses of Ammopiptanthus mongolicus leaf traits to environmental factors[J]. Journal of Dersert Research,2019,39(6):126-134.
[本文編校:吳 毅]
中南林業(yè)科技大學(xué)學(xué)報(bào)2024年11期