薛 燁
[摘 要]教育心理學(xué)研究表明,在小學(xué)數(shù)學(xué)教學(xué)中,讓學(xué)生充分運(yùn)用學(xué)具動(dòng)手操作,由具體操作到形象思維,再由形象思維到抽象思維,有利于學(xué)生思維的發(fā)展。 “做中學(xué)” 作為探究一種有效教育形式,既是一種教育理念,又是一種教育方法,也是一種教育過(guò)程,它體現(xiàn)著素質(zhì)教育的目的和精神。
[關(guān)鍵詞]數(shù)學(xué)課堂教學(xué) 做中學(xué) 教學(xué)模式
《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“要讓學(xué)生在參與特定的數(shù)學(xué)活動(dòng),在具體情景中初步認(rèn)識(shí)對(duì)象的特征,獲得一些體驗(yàn)?!弊寣W(xué)生親自動(dòng)手操作,不僅有助于通過(guò)各種活動(dòng)探究和獲得數(shù)學(xué)知識(shí),更重要的是學(xué)生在體驗(yàn)中能夠逐步掌握數(shù)學(xué)學(xué)習(xí)的一般規(guī)律和方法。
“做中學(xué)”就是在教學(xué)活動(dòng)中尊重學(xué)生的差異性,強(qiáng)調(diào)學(xué)生發(fā)展中的體驗(yàn)和交往,使學(xué)生成為發(fā)展和變化的主體,讓學(xué)生經(jīng)歷學(xué)習(xí)過(guò)程,充分體驗(yàn)數(shù)學(xué)學(xué)習(xí),感受成功的喜悅,增強(qiáng)信心,從而達(dá)到學(xué)會(huì)學(xué)習(xí)的目的。
一、“做中學(xué)”的理論依據(jù)
荷蘭數(shù)學(xué)家弗賴登塔爾說(shuō)過(guò):“學(xué)習(xí)數(shù)學(xué)的唯一正確方法是實(shí)現(xiàn)再創(chuàng)造,也就是由學(xué)生把本人要學(xué)習(xí)的東西自己去發(fā)現(xiàn)或者創(chuàng)造出來(lái);教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進(jìn)行這種再創(chuàng)造工作,而不是把現(xiàn)成的知識(shí)灌注給學(xué)生?!?/p>
瑞士?jī)和睦韺W(xué)家皮亞杰在他的《心理學(xué)與認(rèn)識(shí)的批判》中指出:思維是從動(dòng)作開(kāi)始的,切斷了動(dòng)作和思維的聯(lián)系,思維就不能得到發(fā)展。動(dòng)手操作是學(xué)生思維從具體形象向抽象邏輯過(guò)度的基礎(chǔ),它能把抽象的知識(shí)轉(zhuǎn)化成學(xué)生能看的見(jiàn)、摸得著和容易理解的知識(shí)。
我國(guó)教育家陶行知先生也很早就提出“教學(xué)做合一”的觀點(diǎn),在美國(guó)也流行“木匠教學(xué)法”,讓學(xué)生找找、量量、拼拼……因?yàn)椤澳阕隽四悴拍軐W(xué)會(huì)”。“做”就是讓學(xué)生動(dòng)手操作,在操作中體驗(yàn)數(shù)學(xué)。通過(guò)做可以使學(xué)生獲得大量的感性知識(shí),同時(shí)也有助于激發(fā)學(xué)生的求知欲。
二、做中學(xué)的教學(xué)方式
“做中學(xué)”教育不注重教育的結(jié)果,而是強(qiáng)調(diào)讓學(xué)生親身經(jīng)歷探究和發(fā)現(xiàn)過(guò)程,獲得有關(guān)的經(jīng)驗(yàn),獲得探究解決問(wèn)題的方法。讓學(xué)生在觀察、提問(wèn)、設(shè)想、動(dòng)手實(shí)驗(yàn)、表達(dá)、交流的探究活動(dòng)中,體驗(yàn)學(xué)習(xí),探究的樂(lè)趣,建構(gòu)基礎(chǔ)性的知識(shí)。 即:自主探究實(shí)踐操作合作交流聯(lián)系生活,全方位充分體驗(yàn)數(shù)學(xué)學(xué)習(xí),達(dá)到教學(xué)目的。
(一)自主探究,讓學(xué)生“再創(chuàng)造”。
實(shí)踐證明,學(xué)生在學(xué)習(xí)時(shí)不實(shí)行“再創(chuàng)造”,對(duì)學(xué)習(xí)的內(nèi)容就難以真正理解,更談不上靈活運(yùn)用了。例如學(xué)了“圓的面積”后,出示:一個(gè)圓,從圓心沿半徑切割后,拼成了近似長(zhǎng)方形,已知長(zhǎng)方形的周長(zhǎng)比圓的周長(zhǎng)大6厘米,求圓的面積。乍一看,似乎無(wú)從下手,但學(xué)生經(jīng)過(guò)自主探究,便能想到:長(zhǎng)方形的周長(zhǎng)比圓周長(zhǎng)多出兩條寬,也就是兩條半徑,一條半徑的長(zhǎng)度是3厘米,問(wèn)題迎刃而解。
教師作為教學(xué)內(nèi)容的加工者,應(yīng)站在發(fā)展學(xué)生思維的高度,相信學(xué)生的認(rèn)知潛能。對(duì)于難度不大的問(wèn)題,應(yīng)大膽舍棄過(guò)多、過(guò)細(xì)的鋪墊,盡量對(duì)學(xué)生少一些暗示、干預(yù),正如“教學(xué)不需要精雕細(xì)刻,學(xué)生不需要精心打造”,要讓學(xué)生像科學(xué)家一樣去自己研究、發(fā)現(xiàn),在自主探究中體驗(yàn),在體驗(yàn)中主動(dòng)建構(gòu)知識(shí)。
(二)實(shí)踐操作,讓學(xué)生“做中學(xué)”。
現(xiàn)代教育理論主張讓學(xué)生動(dòng)手去 “做中學(xué)”,而不是用耳朵 “聽(tīng)中學(xué)”。教學(xué)時(shí)要留給學(xué)生足夠的時(shí)間和空間,讓每個(gè)學(xué)生都有參與活動(dòng)的機(jī)會(huì),使學(xué)生在動(dòng)手中學(xué)習(xí),在動(dòng)手中思維,在操作中體驗(yàn),在體驗(yàn)中發(fā)現(xiàn)、創(chuàng)造。通過(guò)實(shí)踐活動(dòng),使學(xué)生獲得大量的感性知識(shí),提高學(xué)生的學(xué)習(xí)興趣,激發(fā)求知欲。
例如:一張長(zhǎng)30厘米,寬20厘米的長(zhǎng)方形紙,在它的四個(gè)角上各剪去一個(gè)邊長(zhǎng)5厘米的小正方形后圍成的長(zhǎng)方體的體積、表面積各是多少?直接解答有困難,若讓學(xué)生親自動(dòng)手做一做,在實(shí)踐操作的過(guò)程中體驗(yàn)長(zhǎng)方形紙是怎樣圍成長(zhǎng)方體紙盒的,相信大部分學(xué)生都能輕松解決問(wèn)題,而且掌握牢固。
對(duì)于動(dòng)作思維占優(yōu)勢(shì)的小學(xué)生來(lái)說(shuō),聽(tīng)過(guò)了,可能就忘記;看過(guò)了,可能會(huì)明白;只有做過(guò)了,才會(huì)真正理解。教師要善于用實(shí)踐的眼光處理教材,力求把教學(xué)內(nèi)容設(shè)計(jì)成物質(zhì)化活動(dòng),讓學(xué)生體驗(yàn) “做中學(xué)”的快樂(lè)。
(三)合作交流,讓學(xué)生“說(shuō)中學(xué)”。
這里的“說(shuō)中學(xué)”指數(shù)學(xué)交流。課堂上利用師生之間、生生之間的多邊互動(dòng)的合作交流來(lái)促進(jìn)學(xué)生的學(xué)習(xí),能讓學(xué)生充分發(fā)揮自己的個(gè)性,使其處于積極、活躍、自由的狀態(tài),能出現(xiàn)始料未及的體驗(yàn)和思維火花的碰撞,使不同的學(xué)生得到不同的發(fā)展。因?yàn)椤皞€(gè)人創(chuàng)造的數(shù)學(xué)必須取決于數(shù)學(xué)共同體的 ‘裁決,只有為數(shù)學(xué)共同體所一致接受的數(shù)學(xué)概念、方法、問(wèn)題等,才能真正成為數(shù)學(xué)的成分?!?因此,個(gè)體的經(jīng)驗(yàn)需要與同伴和教師交流,才能順利地共同建構(gòu)。
例如:媽媽給了小強(qiáng)10元錢,讓他買文具?,F(xiàn)在知 道鉛筆3元1盒、鋼筆4元1支、橡皮2元2塊、三角尺1元2個(gè)。問(wèn):小強(qiáng)用10元錢每樣買2副,你認(rèn)為錢夠嗎?如果不夠,怎樣調(diào)整?有幾種不同的買法?讓學(xué)生在合作交流中充分地表達(dá)、爭(zhēng)辯,在體驗(yàn)中“說(shuō)中學(xué)”,能更好地鍛煉其創(chuàng)新思維能力。
(四)聯(lián)系生活,讓學(xué)生“用中學(xué)”。
教學(xué)中,教師要?jiǎng)?chuàng)設(shè)條件,重視從學(xué)生的生活經(jīng)驗(yàn)和已有知識(shí)出發(fā),引導(dǎo)學(xué)生學(xué)習(xí)和理解數(shù)學(xué),要善于引導(dǎo)學(xué)生把課堂中所學(xué)的數(shù)學(xué)知識(shí)和方法應(yīng)用于生活實(shí)際。這樣,既可加深對(duì)知識(shí)的理解,又能讓學(xué)生切實(shí)體驗(yàn)到生活中處處有數(shù)學(xué),體驗(yàn)到數(shù)學(xué)的價(jià)值。
例如教了“比和比例”后,問(wèn):“如何測(cè)量教學(xué)樓前旗桿的高?”多數(shù)學(xué)生覺(jué)得無(wú)法測(cè)量。教師拿出一根課前準(zhǔn)備好的長(zhǎng)2米的竹竿,筆直地豎在地上,測(cè)量出竹竿影長(zhǎng)1米。然后啟發(fā)學(xué)生思考:從竿長(zhǎng)是影長(zhǎng)的2倍,你能想出測(cè)旗桿高的辦法嗎?學(xué)生很容易聯(lián)想到旗桿高也應(yīng)是它的影長(zhǎng)的2倍。教師強(qiáng)調(diào)“在同一時(shí)間內(nèi)”,并對(duì)學(xué)生的想法給予肯定。學(xué)生很快測(cè)量出旗桿影長(zhǎng),算出了旗桿高。接著又問(wèn):你們能用比例的知識(shí)寫出求旗桿高的公式嗎-”根據(jù)比例知識(shí),學(xué)生很快得出,竿長(zhǎng):竿影長(zhǎng)=旗桿高∶旗桿影長(zhǎng),或旗桿高:竿長(zhǎng)=旗桿影長(zhǎng)∶竿影長(zhǎng)。
三、“做中學(xué)”的教學(xué)效果
(一)通過(guò)“做”,激發(fā)了學(xué)生的好奇心和求知欲。
在傳統(tǒng)的教育中,我們更多采用“聽(tīng)”中學(xué),即聽(tīng)老師講授某些知識(shí)在通過(guò)大量練習(xí),讓學(xué)生記住。而“做”中學(xué)是讓學(xué)生直面真實(shí)的數(shù)學(xué),在探索中理解數(shù)學(xué)。正如杜威所說(shuō):“從做中學(xué)的時(shí)候,他精神上肉體上都在體驗(yàn)人類有重要意義的經(jīng)驗(yàn);他所經(jīng)歷的心理過(guò)程與最早做那些事情的人所經(jīng)歷的心理過(guò)程完全相同。”我們?cè)诮虒W(xué)中,就應(yīng)讓學(xué)生親歷感受、親身去做,去實(shí)踐,激發(fā)他們心靈深處都有的一種需要。我在教學(xué)《圓柱體的體積》一課時(shí),讓學(xué)生動(dòng)手操作,從“做”中激起學(xué)生探求的需要。
首先,我讓學(xué)生弄清什么是圓的體積,然后我請(qǐng)學(xué)生自己動(dòng)腦筋求出手中圓柱的體積。有學(xué)生把圓柱放進(jìn)水槽,根據(jù)水上升的高度,求出圓柱的體積。也有學(xué)生把沙子灌進(jìn)圓柱體內(nèi),然后倒入長(zhǎng)方體內(nèi),求出體積。當(dāng)時(shí),我對(duì)學(xué)生的方法都作了肯定,我又提出:你能用同樣方法測(cè)出大石柱的體積嗎?學(xué)生思考后,馬上回答不能。這就為學(xué)生創(chuàng)造了一種需要:如何求出大石柱的體積?此時(shí)我說(shuō):“如果我們能探索出一種適應(yīng)于計(jì)算任何圓柱的體積的規(guī)律那多好??!”有學(xué)生馬上提出:我們可以來(lái)研究?。∮谑?,我請(qǐng)學(xué)生先測(cè)出手中圓柱的體積,思考圓柱的體積可能與什么有關(guān)?有什么樣的關(guān)系?這樣在學(xué)生最迫切地想知道的時(shí)候,又給了他們一次“做”的機(jī)會(huì),再次激起了學(xué)生的求知欲。正如教育家蘇霍姆林斯基所說(shuō):“在人的心靈深處,都有一種根深蒂固的需要,就是希望自己是一個(gè)發(fā)現(xiàn)者和探索者,在人的精神世界中,這種需要特別強(qiáng)烈。”
(二)通過(guò)“做”,培養(yǎng)了學(xué)生探究新知的思維方法。
“做中學(xué)”就是要讓學(xué)生在事實(shí)現(xiàn)象面前,感到驚異,嘗試去做,認(rèn)真假設(shè),小心求證。讓學(xué)生對(duì)觀察的初步描繪,形成猜想。
例如:在教學(xué)《長(zhǎng)方體、立方體的體積》一課時(shí),我讓學(xué)生對(duì)長(zhǎng)方體的體積可能與誰(shuí)有關(guān)進(jìn)行了猜想。學(xué)生提出了自己的看法,有的學(xué)生認(rèn)為長(zhǎng)方體體積與它的形狀有關(guān),還有的學(xué)生到了有長(zhǎng)方體的長(zhǎng)有關(guān),也有的說(shuō)到與寬有關(guān),還有的說(shuō)與高有關(guān)。還有學(xué)生提出:把長(zhǎng)方體的木塊鋸掉一半,變成小的長(zhǎng)方體,它的體積變小了,長(zhǎng)方體的高也變小了。通過(guò)學(xué)生的這樣猜想,更多的學(xué)生提出:長(zhǎng)方體的體積與長(zhǎng)、寬、高都有關(guān)系,如果長(zhǎng)方體長(zhǎng)變小,寬也變小,高也變小,那么它的體積就會(huì)變的更小了。
(三)通過(guò)“做”,培養(yǎng)了學(xué)生思維能力。
“兒童的智慧在手指上”,這就告訴我們學(xué)生的各種能力的培養(yǎng),提高是從動(dòng)手操作開(kāi)始的。
例如:在教學(xué)《平行四邊形面積》時(shí),學(xué)生就進(jìn)行了猜測(cè):“可以轉(zhuǎn)化為正方形、長(zhǎng)方形等圖形來(lái)進(jìn)行計(jì)算。學(xué)生通過(guò)動(dòng)手剪、拼、后發(fā)現(xiàn)平行四邊形的底就是長(zhǎng)方形的長(zhǎng),平行四邊形的高就是長(zhǎng)方形的寬。也有學(xué)生提出拼成正方形等。在已有長(zhǎng)方形面積、正方形面積計(jì)算的公式上,經(jīng)過(guò)知識(shí)的遷移,學(xué)生推導(dǎo)出了平行四邊形的計(jì)算公式。這樣,學(xué)生通過(guò)“做”將抽象的數(shù)學(xué)公式上升到了理性認(rèn)識(shí)。同時(shí)也學(xué)會(huì)了重要的學(xué)習(xí)方法。
著名教育家陶行知所認(rèn)為的思維方式是:行動(dòng)生困難,困難生疑問(wèn),疑問(wèn)生假設(shè),假設(shè)生試驗(yàn),試驗(yàn)生斷定,斷定生行動(dòng)。在老師的引導(dǎo)下,學(xué)生學(xué)會(huì)正確地貫徹,學(xué)會(huì)提出問(wèn)題,學(xué)會(huì)尋找答案,驚異、發(fā)問(wèn)、探索、實(shí)驗(yàn)、歸納、推理等這就是教育應(yīng)經(jīng)歷的過(guò)程。
美國(guó)教育家研究發(fā)現(xiàn):聽(tīng),會(huì)忘記;看,會(huì)記住;做,才能會(huì)。由此可見(jiàn),“做中學(xué)“能激發(fā)學(xué)生的好奇心和求知欲。體現(xiàn)了以人為本的教學(xué)思想,通過(guò)學(xué)生主動(dòng)參與,主動(dòng)實(shí)踐,教學(xué)的效果體現(xiàn)在學(xué)生身上,正如德國(guó)教育家第斯多惠所說(shuō):教育的藝術(shù)在與傳授知識(shí),而在呼醒,激發(fā),鼓舞”。在新世紀(jì)曙光下,讓課堂成為我們老師和學(xué)生共同成長(zhǎng)的舞臺(tái),讓學(xué)生從“做”中來(lái)學(xué)習(xí)數(shù)學(xué),在“做”中領(lǐng)悟數(shù)學(xué),在“做”中體驗(yàn)成功,讓我們?cè)凇白觥敝信c數(shù)學(xué)牽手。
“做中學(xué)” 作為探究一種有效教育形式,既是一種教育理念,又是一種教育方法,也是一種教育過(guò)程,它體現(xiàn)著素質(zhì)教育的目的和精神。小學(xué)數(shù)學(xué)教學(xué)中運(yùn)用“做中學(xué)”的教學(xué)理念,不是為了教會(huì)學(xué)生知識(shí),而是讓學(xué)生親身經(jīng)歷探究和發(fā)現(xiàn)過(guò)程,獲得有關(guān)的經(jīng)驗(yàn),獲得探究解決問(wèn)題的方法。
參考文獻(xiàn)
[1] 李秀芳,數(shù)學(xué)教學(xué)要重視體驗(yàn). 青海教育[J], 2006, (03)
[2] 李云杰,多給學(xué)生發(fā)展、張揚(yáng)、提升的空間. 福建中學(xué)數(shù)學(xué)[J] , 2004, (04)
[3] 徐晶晶,王大任:為學(xué)生發(fā)展而努力. 上海教育[J] , 2004, (06)
[4] 夏曉華,關(guān)注學(xué)生發(fā)展的數(shù)學(xué)課堂教學(xué). 中學(xué)教研(數(shù)學(xué)) [J] , 2004, (03)
[5] 張春花,讓每個(gè)學(xué)生體驗(yàn)數(shù)學(xué). 湖南教育[J] , 2003, (15)
作者簡(jiǎn)介:薛燁(1981-),女, 浙江桐廬人,杭州明珠實(shí)驗(yàn)學(xué)校教科研主任,校本培訓(xùn)負(fù)責(zé)人,專業(yè)研究方向:小學(xué)數(shù)學(xué)。