林立,唐宏偉,邱雄邇
(邵陽學(xué)院 電氣工程系,湖南 邵陽422004)
由于能源和環(huán)境問題的日益嚴(yán)重,國內(nèi)外正在研究用混合動(dòng)力電動(dòng)汽車與純電動(dòng)汽車代替內(nèi)燃機(jī)汽車,又由于純電動(dòng)汽車?yán)m(xù)行里程比較短,混合動(dòng)力電動(dòng)汽車是目前研究的熱點(diǎn),而電機(jī)及其驅(qū)動(dòng)系統(tǒng)是制約混合動(dòng)力電動(dòng)汽車發(fā)展的關(guān)鍵技術(shù)之一。內(nèi)置式永磁同步電機(jī)(IPMSM)具有高轉(zhuǎn)矩/慣量比,高功率密度,恒功率寬調(diào)速等特點(diǎn),成為混合動(dòng)力電動(dòng)汽車驅(qū)動(dòng)用電機(jī)的理想型電機(jī)[1-2]。針對(duì)IPMSM 這樣一個(gè)多變量、強(qiáng)耦合的非線性系統(tǒng),一些高性能控制策略被應(yīng)用到IPMSM牽引系統(tǒng)控制當(dāng)中,如反步自適應(yīng)控制[3],滑模變結(jié)構(gòu)控制[4],魯棒控制[5],非線性輸入輸出解耦控制[6],智能控制[7]等。文獻(xiàn)[6]利用輸入輸出解耦控制技術(shù)將IPMSM電動(dòng)汽車牽引系統(tǒng)解耦成勵(lì)磁電流id和轉(zhuǎn)速ωr2個(gè)子系統(tǒng),然后利用極點(diǎn)配置按照線性系統(tǒng)的規(guī)律進(jìn)行控制。然而基于微分幾何理論的輸入輸出解耦控制技術(shù),本質(zhì)上是通過狀態(tài)反饋,將非線性項(xiàng)進(jìn)行抵消從而達(dá)到線性化的目的,一旦被控系統(tǒng)的參數(shù)發(fā)生變化,解耦控制性能變差,甚至發(fā)生惡化。文獻(xiàn)[7]將H∞魯棒控制規(guī)律運(yùn)用到IPMSM輸入輸出解耦控制中,IPMSM電動(dòng)汽車牽引系統(tǒng)的機(jī)械參數(shù)在一定范圍變化時(shí),系統(tǒng)的魯棒性得到提高,但系統(tǒng)參數(shù)變化超出設(shè)定的范圍時(shí),魯棒性得不到保證。電動(dòng)汽車工作過程中乘客上下車將導(dǎo)致負(fù)載變化,具有變速箱機(jī)構(gòu)的電動(dòng)汽車換擋時(shí)轉(zhuǎn)動(dòng)慣量也會(huì)發(fā)生變化,因此本文在輸入輸出解耦的基礎(chǔ)上,利用狀態(tài)觀測理論觀測負(fù)載轉(zhuǎn)矩,利用自適應(yīng)控制理論在線辨識(shí)轉(zhuǎn)動(dòng)慣量,然后將觀測到的負(fù)載轉(zhuǎn)矩和轉(zhuǎn)動(dòng)慣量運(yùn)用到解耦的勵(lì)磁電流子系統(tǒng)和轉(zhuǎn)速子系統(tǒng)狀態(tài)反饋當(dāng)中,提高系統(tǒng)的魯棒性。仿真實(shí)驗(yàn)結(jié)果表明,基于轉(zhuǎn)矩觀測和轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)的輸入輸出解耦控制系統(tǒng)在保持系統(tǒng)響應(yīng)快速性和良好速度跟蹤性特點(diǎn)上,對(duì)負(fù)載變化和轉(zhuǎn)動(dòng)慣量等機(jī)械參數(shù)攝動(dòng)有較好的魯棒性,為實(shí)現(xiàn)混合動(dòng)力電動(dòng)汽車高性能控制提供了新的思路。
在d-q旋轉(zhuǎn)坐標(biāo)系下,按轉(zhuǎn)子磁場定向的IPMSM 電動(dòng)汽車牽引系統(tǒng),其狀態(tài)方程[5-6]為
狀態(tài)方程式(1)由于存在勵(lì)磁電流id或轉(zhuǎn)矩電流iq與轉(zhuǎn)子轉(zhuǎn)速ωr的乘積耦合項(xiàng),是一個(gè)典型的仿射非線性系統(tǒng),可以寫成如下標(biāo)準(zhǔn)仿射非線性系統(tǒng)的形式:
其中
式中:u1,u2為電機(jī)外部所施加的控制輸入量;Rs為定子電阻;id,iq,ud,uq,Ld,Lq分別為d 軸與q軸電流、電壓和電感;np為極對(duì)數(shù);ωr為轉(zhuǎn)子電角速度;Ψmag為永磁磁鏈;Jm為轉(zhuǎn)動(dòng)慣量;TL為負(fù)載轉(zhuǎn)矩;Br為摩擦系數(shù)。
基于微分幾何理論的輸入輸出解耦技術(shù),可以將仿射非線性系統(tǒng)式(2)通過狀態(tài)反饋技術(shù)線性化為2個(gè)獨(dú)立的子系統(tǒng):勵(lì)磁電流子系統(tǒng)和轉(zhuǎn)速子系統(tǒng)。然后利用線性控制理論對(duì)系統(tǒng)進(jìn)行校正設(shè)計(jì)以獲取高性能控制。仿射非線性系統(tǒng)式(2)在輸入輸出解耦矩陣D(x)作用下,可以線性化為勵(lì)磁電流id和轉(zhuǎn)速ωr2個(gè)子系統(tǒng):
相應(yīng)的解耦控制規(guī)律為
其中
利用極點(diǎn)配置方法,分別對(duì)勵(lì)磁電流id和轉(zhuǎn)速ωr2個(gè)子系統(tǒng)配置極點(diǎn)為
其中,k1,k2,k3為待定參數(shù),這些參數(shù)應(yīng)按以下原則選取,使得方程
其原點(diǎn)是漸近穩(wěn)定的,并且具有良好的響應(yīng)特性。
依據(jù)車用IPMSM牽引系統(tǒng)運(yùn)動(dòng)方程,可以構(gòu)造全階狀態(tài)觀測器[8-10]為
式(9)可以重新改寫為
由式(1)減式(10)可得IPMSM系統(tǒng)動(dòng)態(tài)誤差方程為
式(11)的特征方程式為
選取合適的比例增益k保證A-kC特征根穩(wěn)定,并使系統(tǒng)有較好的動(dòng)態(tài)性能,則誤差變量會(huì)衰減到零,設(shè)狀態(tài)偏差變量的期望極點(diǎn)為α,β,γ,則期望極點(diǎn)的特征方程為
比較式(12)和式(13)的系數(shù),求解可得比例增益k為
模型參考自適應(yīng)控制方法(MRAC)是自適應(yīng)控制領(lǐng)域中應(yīng)用比較成熟的方案之一。該方法是以超穩(wěn)定性理論為基礎(chǔ)的設(shè)計(jì)方法,因此,在進(jìn)行參數(shù)辨識(shí)時(shí),能夠保證參數(shù)漸進(jìn)收斂。模型參考自適應(yīng)辨識(shí)(MRAI)是由模型參考自適應(yīng)控制的思想衍化而來,其主要思想為:將含有待估計(jì)參數(shù)的方程作為參考模型,不含未知參數(shù)的方程作為可調(diào)模型,兩模型具有相同物理意義的輸入與輸出量。利用兩模型輸出量的誤差來實(shí)時(shí)調(diào)節(jié)可調(diào)模型的參數(shù),從而實(shí)現(xiàn)可調(diào)模型的輸出跟蹤控制對(duì)象的輸出[11]。
車用IPMSM牽引系統(tǒng)的機(jī)械運(yùn)動(dòng)方程為
忽略摩擦系數(shù)Br的影響,將式(15)離散化有
由式(16)容易得出
將式(16)減去式(17),并經(jīng)整理后有
在快速響應(yīng)的伺服驅(qū)動(dòng)系統(tǒng)中,采樣頻率T很高,由此可以假設(shè)負(fù)載轉(zhuǎn)矩TL在一個(gè)采樣周期內(nèi)保持不變,即TL(k-2)=TL(k-1),則式(18)簡化為
使用朗道離散時(shí)間遞推參數(shù)辨識(shí)機(jī)制可以設(shè)計(jì)模型參考自適應(yīng)算法
將式(18)作為參考模型,式(20)作為可調(diào)模型,式(21)作為自適應(yīng)機(jī)制,則可實(shí)現(xiàn)模型參考自適應(yīng)辨識(shí)。其實(shí)現(xiàn)原理框圖如圖1所示。而轉(zhuǎn)動(dòng)慣量可以很容易由下式得出:
圖1 轉(zhuǎn)動(dòng)慣量辨識(shí)框圖Fig.1 Block diagram of inertia identification
基于負(fù)載轉(zhuǎn)矩觀測和轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)的輸入輸出解耦I(lǐng)PMSM電動(dòng)汽車牽引系統(tǒng)控制框圖如圖2所示。牽引控制系統(tǒng)由極點(diǎn)配置、E(x)計(jì)算、D-1(x)計(jì)算、Clarke變換、Park變換及其逆變換、SVPWM模塊、負(fù)載轉(zhuǎn)矩觀測及轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)等模塊組成。
圖2 轉(zhuǎn)矩觀測和慣量辨識(shí)的IPMSM牽引系統(tǒng)非線性控制圖Fig.2 Nonlinear control diagram for torque observation and inertia identification for IPMSM traction system
某電動(dòng)汽車用IPMSM牽引系統(tǒng)的參數(shù)為[12]:np=4,m=3,Rs=0.004 02Ω,Ld=0.099mH,BmN=0.01N·ms/rad,Lq=0.293mH,JmN=0.062 kg·m2,Ψmag=0.056V·s/rad,ωrN=418rad/s,TLN=200N·m。
極點(diǎn)配置參數(shù):k1=13 338;k2=7 886 666;k3=17 065。
轉(zhuǎn)動(dòng)慣量辨識(shí)參數(shù):采用周期T=0.000 03;β=200 000。
負(fù)載轉(zhuǎn)矩觀測參數(shù):k4=3 000;k5=3×106;k6=-6.2×107。
由圖2在 Matlab/Simulink中進(jìn)行仿真,仿真時(shí)逆變器SVPWM控制載波頻率10kHz,采用定步長(30μs)ode1(Euler)算法。
圖3是基于負(fù)載轉(zhuǎn)矩觀測和轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)時(shí)IPMSM牽引系統(tǒng)輸入輸出解耦線性化非線性控制在負(fù)載變化時(shí)的響應(yīng)曲線。速度給定為1 000r/min,仿真運(yùn)行時(shí)間為2s:在0~1s負(fù)載為100N·m;1~2s負(fù)載為200N·m。圖3a表明,全階狀態(tài)觀測器能準(zhǔn)確觀測負(fù)載轉(zhuǎn)矩,負(fù)載變化時(shí),觀測響應(yīng)速度快;圖3b表明,基于負(fù)載轉(zhuǎn)矩觀測和慣量識(shí)別的IPMSM輸入輸出解耦非線性控制系統(tǒng),速度響應(yīng)能準(zhǔn)確跟蹤速度給定,精度高,在負(fù)載變化(t=1s)時(shí),有較小的速度波動(dòng),但速度很快就恢復(fù)到速度給定值,表現(xiàn)出較好的抗負(fù)載擾動(dòng)的能力;圖3c表明,勵(lì)磁電流id和轉(zhuǎn)矩電流iq符合最大轉(zhuǎn)矩比電流MTPA控制規(guī)律,有利于提高恒轉(zhuǎn)矩區(qū)調(diào)速的轉(zhuǎn)矩輸出能力;圖3d表明,轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)器能準(zhǔn)確辨識(shí)出轉(zhuǎn)動(dòng)慣量。
圖4是基于負(fù)載轉(zhuǎn)矩觀測和轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)時(shí)IPMSM牽引系統(tǒng)輸入輸出解耦線性化非線性控制在轉(zhuǎn)動(dòng)慣量變化時(shí)的響應(yīng)曲線。速度給定為1 000r/min,仿真運(yùn)行時(shí)間為2s,負(fù)載為200 N·m,0~1.02s轉(zhuǎn)動(dòng)慣量為0.062kg·m2,1.02~2 s時(shí)轉(zhuǎn)動(dòng)慣量為0.5×0.062kg·m2。圖4a表明,自適應(yīng)辨識(shí)觀測器能準(zhǔn)確識(shí)別轉(zhuǎn)動(dòng)慣量,轉(zhuǎn)動(dòng)慣量變化時(shí),識(shí)別速度快;圖4b表明,基于負(fù)載轉(zhuǎn)矩觀測和慣量識(shí)別的IPMSM輸入輸出解耦非線性控制系統(tǒng),速度響應(yīng)能準(zhǔn)確跟蹤速度給定,精度高,在轉(zhuǎn)動(dòng)慣量變化(t=1.02s)時(shí),有較小的速度波動(dòng),但速度很快就恢復(fù)到速度給定值,表現(xiàn)出較好的抗轉(zhuǎn)動(dòng)慣量變化的能力;圖4c表明,勵(lì)磁電流id和轉(zhuǎn)矩電流iq符合最大轉(zhuǎn)矩比電流MTPA控制規(guī)律,有利于提高恒轉(zhuǎn)矩區(qū)調(diào)速的轉(zhuǎn)矩輸出能力;圖4d表明,全階狀態(tài)觀測器能準(zhǔn)確觀測負(fù)載轉(zhuǎn)矩。
圖3 負(fù)載轉(zhuǎn)矩變化時(shí)IPMSM牽引系統(tǒng)響應(yīng)曲線Fig.3 Response of traction system when load torque varies
圖4 轉(zhuǎn)動(dòng)慣量變化時(shí)IPMSM牽引系統(tǒng)響應(yīng)曲線Fig.4 Response of traction system when intertia varies
圖5 是否考慮參數(shù)變化時(shí)IPMSM牽引系統(tǒng)響應(yīng)曲線Fig.5 Response of IPMSM traction system if speaking of parameters
圖5為是否綜合考慮負(fù)載變化和進(jìn)行轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)時(shí),IPMSM牽引系統(tǒng)輸入輸出解耦非線性控制系統(tǒng)速度響應(yīng)比較曲線。速度給定為1 000r/min,運(yùn)行時(shí)間2s。圖5a速度響應(yīng)是在0~1s負(fù)載為100N·m,1~2s負(fù)載變?yōu)?00N·m時(shí),是否基于負(fù)載觀測時(shí)得到的,圖5a表明IPMSM牽引系統(tǒng)輸入輸出解耦在不考慮負(fù)載變化時(shí),速度穩(wěn)態(tài)誤差較大,基于負(fù)載觀測的IPMSM牽引系統(tǒng)非線性控制有效地減小了穩(wěn)態(tài)誤差,提高速度控制精度。圖5b是負(fù)載給定200 N·m,帶額定轉(zhuǎn)動(dòng)慣量與2倍轉(zhuǎn)動(dòng)慣量時(shí),是否進(jìn)行慣量辨識(shí)的速度響應(yīng)曲線,圖5b表明,基于轉(zhuǎn)動(dòng)慣量辨識(shí)的IPMSM牽引系統(tǒng)輸入輸出解耦明顯地降低了啟動(dòng)時(shí)的超調(diào)量,改善了啟動(dòng)性能。圖5c是負(fù)載100N·m,200N·m,額定轉(zhuǎn)動(dòng)慣量,2倍轉(zhuǎn)動(dòng)慣量兩種情況下,是否綜合考慮時(shí)的速度響應(yīng)曲線。圖5c表明,同時(shí)進(jìn)行負(fù)載轉(zhuǎn)矩觀測和慣量自適應(yīng)辨識(shí)的IPMSM牽引系統(tǒng)輸入輸出解耦控制速度穩(wěn)態(tài)誤差小,啟動(dòng)快速性好,轉(zhuǎn)速無超調(diào),有效地改善了牽引系統(tǒng)的控制性能。
本文提出電動(dòng)汽車用IPMSM牽引系統(tǒng)基于負(fù)載轉(zhuǎn)矩觀測和轉(zhuǎn)動(dòng)慣量自適應(yīng)辨識(shí)的非線性輸入輸出解耦控制策略,能準(zhǔn)確地在線辨識(shí)轉(zhuǎn)動(dòng)慣量,能快速準(zhǔn)確地辨識(shí)負(fù)載轉(zhuǎn)矩,并將在線辨識(shí)的轉(zhuǎn)動(dòng)慣量和觀測到的負(fù)載轉(zhuǎn)矩運(yùn)用于輸入輸出解耦非線性控制系統(tǒng),在保證輸入輸出解耦系統(tǒng)快速響應(yīng)和速度跟蹤的同時(shí),提高了非線性解耦控制系統(tǒng)對(duì)機(jī)械參數(shù)變化的不敏感性,提高系統(tǒng)的魯棒性。仿真實(shí)驗(yàn)結(jié)果證明了理論分析的有效性,為解決作為電動(dòng)汽車三大核心技術(shù)之一的電機(jī)驅(qū)動(dòng)系統(tǒng)提供了新的控制策略,為下一步采用dSPACE快速控制原型(RCP)驗(yàn)證控制策略打下基礎(chǔ),有助于實(shí)現(xiàn)電動(dòng)汽車的產(chǎn)業(yè)化,為工農(nóng)業(yè)生產(chǎn)服務(wù)。
[1]余群明,喻偉雄,嚴(yán)欽山,等.基于模糊邏輯的混聯(lián)式電動(dòng)汽車控制策略研究[J].系統(tǒng)仿真學(xué)報(bào),2008,20(3):711-715.
[2]楊孝綸.電動(dòng)汽車技術(shù)發(fā)展趨勢及前景(下)[J].汽車科技,2008(1):1-7.
[3]林立,黃蘇融.內(nèi)置式永磁同步電機(jī)牽引系統(tǒng)寬調(diào)速非線性控制器[J].電力自動(dòng)化設(shè)備,2009,26(5):23-28.
[4]童克文,張興,張昱,等.基于新型趨近律的永磁同步電動(dòng)機(jī)滑模變結(jié)構(gòu)控制[J].中國電機(jī)工程學(xué)報(bào),2008,28(21):102-106.
[5]林立,黃蘇融.永磁同步電機(jī)系統(tǒng)線性化H∞魯棒控制[J].電機(jī)與控制學(xué)報(bào),2009,13(4):541-547.
[6]LIN Li,Huang Su-rong.Precision Linearization Control of Inner Permanent Magnet Synchronous Motor for Electrical Vehicle Drive System[C]∥IEEE 6th International Power Electronics and Motion Control Conference,Wuhan,China,2009:1822-1826.
[7]張昌凡,王耀南,何靜.永磁同步電機(jī)的變結(jié)構(gòu)智能控制[J].中國電機(jī)工程學(xué)報(bào),2002,22(7):13-17.
[8]Lee K B,Yoo J Y,Song J H,et al.Choy Improvement of Low Speed Operation of Electric Machine with an Inertia Identification Using ROELO[J].IEE Proc.-Electr.Power Appl.,2004,151(1):116-120.
[9]Choi J W,Lee S C,Kim H G.Inertia Identification Algorithm for High-performance Speed Control of Electric Motors[J].IEE Proc.-Electr.Power Appl.,2006,153(3):379-380.
[10]LI Shi-h(huán)ua,LIU Zhi-gang.Adaptive Speed Control for Permanent-magnet Synchronous Motor System with Variations of Load Inertia[J].IEEE Transactions on Industrial Electronics,2009,56(8):3050-3059.
[11]郭宇婕,黃立培,邱陽.交流伺服系統(tǒng)的轉(zhuǎn)動(dòng)慣量辨識(shí)及調(diào)節(jié)器參數(shù)自整定[J].清華大學(xué)學(xué)報(bào):自然科學(xué)版,2002,42(9):1180-1183.
[12]錢慧杰,黃蘇融.“超越三號(hào)”用IPM同步牽引電機(jī)設(shè)計(jì)與控制策略研究[D].上海:上海大學(xué),2007.