国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

膿毒性休克微循環(huán)改變相關(guān)研究進(jìn)展

2013-04-07 13:41段美麗
山東醫(yī)藥 2013年48期
關(guān)鍵詞:膿毒性休克毛細(xì)血管

劉 威,段美麗,李 昂

(首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院,北京100050)

研究表明,膿毒性休克即使達(dá)到了早期的目標(biāo)治療,仍然可能存在微循環(huán)功能障礙,進(jìn)而影響局部組織細(xì)胞的氧供,導(dǎo)致器官功能障礙。因此,改善微循環(huán)成為治療膿毒性休克的關(guān)鍵。但臨床監(jiān)測微循環(huán)是一個(gè)難題,即便血流動(dòng)力學(xué)參數(shù)在正常范圍內(nèi),膿毒性休克患者可能已經(jīng)發(fā)生微循環(huán)的損害。本文對膿毒性休克微循環(huán)改變相關(guān)研究進(jìn)展作一綜述。

1 膿毒性休克微循環(huán)改變機(jī)制

微循環(huán)的改變是在炎癥介質(zhì)作用下多種機(jī)制共同作用的結(jié)果[1]:①縮血管物質(zhì)(如內(nèi)皮素)使微血管收縮;②毛細(xì)血管內(nèi)皮細(xì)胞間的連接發(fā)生改變;③毛細(xì)血管網(wǎng)絡(luò)對局部刺激的自身調(diào)節(jié)功能受到損害[2];④微血栓形成以及白細(xì)胞、紅細(xì)胞對毛細(xì)血管壁黏附性增加,微循環(huán)血流出現(xiàn)障礙[3]。同時(shí),微循環(huán)血流存在不均一性,即同時(shí)存在灌注毛細(xì)血管和非灌注毛細(xì)血管,即便在臟器灌注充分情況下仍然會(huì)存在局部組織缺氧[4]。毛細(xì)血管密度降低,進(jìn)一步導(dǎo)致氧輸送距離的增加,在器官功能衰竭發(fā)展過程中起著重要作用。微循環(huán)的改變導(dǎo)致細(xì)胞損傷[5],而這些改變與血乳酸及NADH有關(guān),表明微循環(huán)的改變直接損傷組織氧合功能。

2 微循環(huán)狀態(tài)評估在膿毒性休克治療中的意義[6]

De Backer等的研究發(fā)現(xiàn),膿毒癥患者微血管密度及灌注血管比例明顯下降,這些改變與患者的病死率明顯相關(guān),而在膿毒癥早期全身性的血流動(dòng)力學(xué)指標(biāo)不能及時(shí)準(zhǔn)確地反映微循環(huán)的狀態(tài)及組織灌注情況。Sakr等[7]通過觀察舌下微循環(huán)發(fā)現(xiàn),與死亡患者比較,存活患者微血管灌注比例增加。類似的研究同樣證實(shí),隨著膿毒性休克病程進(jìn)展,微循環(huán)改變隨之加重,主要表現(xiàn)為灌注血管密度下降、灌注血管比例以及微血管流動(dòng)指數(shù)減少、微循環(huán)不均一性增加[8],與 Top 等[9]在兒童膿毒性休克患者中觀察到的結(jié)果一致。不均一的血流灌注使得氧合不均一,較于均勻減少的灌注能夠?qū)е赂訃?yán)重的變化[10]。Trzeciak 等[11]觀察到在復(fù)蘇早期(3 h 內(nèi)),舌下微循環(huán)的改善和臟器功能的改善相關(guān),反之,往往產(chǎn)生器官功能進(jìn)一步損害。因此,微循環(huán)的監(jiān)測能使我們更早觀察到組織灌注的減少,并且微循環(huán)衰竭的嚴(yán)重程度與器官功能衰竭及病死率相關(guān)[12~14]。鑒于微循環(huán)的特征,監(jiān)測微循環(huán)的理想工具應(yīng)該具有足夠的空間分辨率,能夠敏銳地觀察到微循環(huán)的這種灌注及氧合的不均一特點(diǎn)。

3 微循環(huán)的監(jiān)測方法

3.1 激光多普勒技術(shù) 這種技術(shù)被用于觀察危重癥患者皮膚微血管的灌注情況。這種技術(shù)僅僅能夠觀察容量0.5~1 mm3的組織情況,不能評估單個(gè)血管的情況,因此不能夠評估微循環(huán)的不均一性。隨著這種技術(shù)的發(fā)展,出現(xiàn)了掃描激光多普勒技術(shù),特點(diǎn)是能夠?qū)崟r(shí)形成圖像。在動(dòng)物實(shí)驗(yàn)研究中,這種技術(shù)被證實(shí)能夠監(jiān)測到膿毒癥引起的微循環(huán)的不均一特性。在臨床中,這種技術(shù)只能被用來監(jiān)測皮膚的微循環(huán)情況以及評估視網(wǎng)膜和腦血流圖像。

3.2 活體顯微鏡技術(shù) 該技術(shù)直接應(yīng)用于活體組織,使得直視下觀察微血管成為可能。但是,應(yīng)用這種技術(shù)同樣面臨許多困難,如被觀察的組織需要有外來光源、反射光必須足夠清晰來形成清楚的畫面、避免組織的污染等。

3.3 正交極化光譜(OPS)以及旁流暗視野(SDF)成像技術(shù) OPS和SDF成像技術(shù)是新近出現(xiàn)的非侵入性的觀察方法。原理即把發(fā)光體置于組織表面,光在組織表面會(huì)發(fā)生反射,在深層組織發(fā)生散射,同時(shí)使組織表面成為半透明狀態(tài)[15];反射光被極化濾波器濾過[16],而深入到組織的光會(huì)遇到多種細(xì)胞,因此就會(huì)失去極化特性而成像,使得我們能夠觀察到深部血管的情況。波長為530 nm的光能夠被血紅蛋白吸收(與血紅蛋白的氧合狀態(tài)無關(guān)),這樣我們就能夠觀察到微血管。SDF技術(shù)同樣是采用光被血紅蛋白吸收的原理,只是在成像元件周圍放置許多發(fā)光二極管,使得外部光源的反射光不能進(jìn)入成像系統(tǒng),使得畫面更清晰。這兩種技術(shù)能夠用于研究凡是有上皮包被的組織,比如黏膜表面。在許多動(dòng)物實(shí)驗(yàn)中已經(jīng)被廣泛應(yīng)用,包括腦、腸系膜及肝臟。在危重癥患者中,舌下是較為理想的操作部位,但是回腸、結(jié)腸、直腸和陰道也是可以觀察的部位。通過這兩種技術(shù),我們能夠觀察到毛細(xì)血管和小靜脈,而小動(dòng)脈由于位置較深,一般不易觀察到。紅細(xì)胞在畫面中呈現(xiàn)為黑色,組織的灌注情況通過單個(gè)血管的血流特點(diǎn)得到反映,并以半定量的方式被評估,是目前監(jiān)測微循環(huán)的最好方法。

4 改善微循環(huán)的治療方法

4.1 液體復(fù)蘇和血管活性藥物應(yīng)用 補(bǔ)液和血管活性藥物是以增加組織灌注為目標(biāo)的循環(huán)復(fù)蘇的關(guān)鍵。研究表明,補(bǔ)液能夠改善微循環(huán)灌注,增加灌注毛細(xì)血管比例,減少微循環(huán)異質(zhì)性,而微循環(huán)的改善與宏循環(huán)的變化并不相關(guān)[17,18]。另有研究表明,補(bǔ)液對于微循環(huán)的改善作用主要是在膿毒癥的早期階段(24 h內(nèi)),48 h以后補(bǔ)液并不能對微循環(huán)起到好的效果[19]。不同液體的選擇對微循環(huán)復(fù)蘇的影響尚存爭議,有動(dòng)物實(shí)驗(yàn)顯示,與晶體液相比,膠體液更能增加微循環(huán)灌注[20],但并未在膿毒癥患者中得到證實(shí)[17]。研究證實(shí),β-腎上腺素受體激動(dòng)劑能夠改善微循環(huán)灌注[19,21],而且微循環(huán)的改善并不與宏循環(huán)同步[21]。但毛細(xì)血管不存在β-腎上腺素受體,這些作用可能是通過降低白細(xì)胞黏附來實(shí)現(xiàn)的,因?yàn)榘准?xì)胞表面存在β-腎上腺素受體。糾正嚴(yán)重的低血壓可改善微循環(huán)灌注,可能是通過達(dá)到器官最低灌注壓恢復(fù)臟器灌注實(shí)現(xiàn)的[22,23]。但是,持續(xù)增加的血壓能否增加微循環(huán)灌注,在個(gè)體間差異很大[24,25]。有研究表明,動(dòng)脈血壓的升高會(huì)損傷患者的舌下微循環(huán),但對重癥患者是有益的[25]??傊瑐鹘y(tǒng)的血流動(dòng)力學(xué)干預(yù)手段對膿毒性休克患者微循環(huán)的作用是易變的。

4.2 血管舒張藥 血管過度收縮可能是導(dǎo)致灌注血管密度減低和毛細(xì)血管斷流的原因,擴(kuò)張血管藥物可以緩解上述原因而發(fā)揮作用。研究表明,重癥膿毒癥合并嚴(yán)重微循環(huán)改變的患者,局部給予大劑量的乙酰膽堿,能使微循環(huán)恢復(fù)到和健康志愿者及非膿毒癥ICU患者相似的水平[26]。這表明,膿毒癥導(dǎo)致的微循環(huán)改變是可以糾正的,而且內(nèi)皮功能雖然失調(diào),仍可對超生理刺激產(chǎn)生反應(yīng)。Spronk等[27]研究指出,硝酸甘油能夠迅速改善微循環(huán);但也有研究表明,使用硝酸甘油和安慰劑的膿毒性休克患者微循環(huán)改變沒有差異[28];這兩種不同的研究結(jié)果可能跟采用的硝酸甘油劑量不同有關(guān)。Salgado等[29]發(fā)現(xiàn),與對照組相比,使用了血管緊張素抑制劑的實(shí)驗(yàn)組動(dòng)物舌下微循環(huán)輕度改善,但是這些作用并不與器官功能改善同步。因此,目前并不推薦使用血管擴(kuò)張劑,原因是血管擴(kuò)張劑不具有選擇性,非灌注、灌注血管同時(shí)被擴(kuò)張,可能導(dǎo)致局部過度灌注。4.3 活化蛋白C(APC)APC改善微循環(huán)的作用在不同的動(dòng)物實(shí)驗(yàn)?zāi)P图案鞣N器官研究中得到反復(fù)證實(shí)[13,30,31]。也有研究顯示,去除血管內(nèi)皮結(jié)合位點(diǎn)但保留抗凝活性的抗凝劑并不能改善內(nèi)毒素誘導(dǎo)的膿毒癥大鼠的微循環(huán)[32,33]。除此之外,水蛭素同樣不能改善膿毒癥動(dòng)物的微循環(huán)[34]。因此,APC和抗凝血酶并不是通過抗凝來改善微循環(huán)的,可能與降低白細(xì)胞及血小板黏附、增加血管內(nèi)皮活性有關(guān)[35]。

4.4 激素 氫化可的松可能會(huì)引起小動(dòng)脈收縮、改變毛細(xì)血管灌注,同時(shí)可改善血管內(nèi)皮功能、減少白細(xì)胞黏附,進(jìn)而減輕血流分布不均,常被用于膿毒性休克的輔助治療[36,37]。在健康志愿者局部注射炎癥因子損害血管內(nèi)皮后,應(yīng)用氫化可的松可以迅速改善癥狀[38]。Buchele 等[39]發(fā)現(xiàn),氫化可的松可以增加膿毒性休克患者的微循環(huán)灌注,這種改善作用在給藥后1 h出現(xiàn),在整個(gè)觀察過程中持續(xù)存在,而且與動(dòng)脈血壓無相關(guān)性。

4.5 維生素C和四氫生物蝶呤 維生素C和四氫生物蝶呤通過調(diào)整血管內(nèi)皮的一氧化氮合酶來發(fā)揮作用,膿毒癥患者可能存在這兩種物質(zhì)的缺乏。動(dòng)物實(shí)驗(yàn)表明,給予維生素C可以改善微循環(huán)灌注,增加毛細(xì)血管密度,減少不良血管灌注[40,41],但尚未有人體試驗(yàn)證明。

5 結(jié)語

微循環(huán)的改變在膿毒性休克的發(fā)生、發(fā)展中起到關(guān)鍵性作用。微循環(huán)的重建和開放是遏制膿毒性休克進(jìn)展的首要措施;微循環(huán)的監(jiān)測能夠讓我們更早地發(fā)現(xiàn)組織灌注的不足,為早期干預(yù)提供依據(jù);而以改善組織灌注為目標(biāo)的循環(huán)復(fù)蘇方法需要我們進(jìn)一步深入研究。

[1]De Backer D,Donadello K,Taccone FS,et al.Microcirculatory alterations:potential mechanisms and implications for therapy[J].Ann Intensive Care,2011,1(1):1-27.

[2]Tyml K,Wang X,Lidington D,et al.Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo[J].Am J Physiol Heart Circ Physiol,2001,281(3):1397-406.

[3]Drost EM,Kassabian G,Meiselman HJ,et al.Increased rigidity and priming of polymorphonuclear leukocytes in sepsis[J].Am J Respir Crit Care Med,1999,159(6):1696-1702.

[4]Edul VS,Enrico C,Laviolle B,et al.Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock[J].Crit Care Med,2012,40(5):1443-1448.

[5]Eipel C,Bordel R,Nickels RM,et al.Impact of leukocytes and platelets in mediating hepatocyte apoptosis in a rat model of systemic endotoxemia[J].Am J Physiol Gastrointest Liver Physiol,2004,286(5):769-776.

[6]De Backer D,Crcteur J,Preiser JC,et al.Microvascular blood flow is altered in patients with sepsis[J].Am J Respir Crit Care Med,2002,166(1):166:98.

[7]Sakr Y,Dubois MJ,De Backer D,et al.Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock[J].Crit Care Med,2004,32(9):1825-1831.

[8]Trzeciak S,Dellinger RP,Parrillo JE,et al.Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock:relationship to hemodynamics,oxygen transport,and survival[J].Ann Emerg Med,2007,49(1):88-98.

[9]Top AP,Ince C,de Meij N,et al.Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care[J].Crit Care Med,2011,39(1):8-13.

[10] Walley KR.Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues:theory[J].J Appl Physiol,1996,81(2):885-894.

[11]Trzeciak S,McCoy JV,Phillip Dellinger R,et al.Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis[J].Intensive Care Med,2008,34(12):2210-2217.

[12]Doerschug KC,Delsing AS,Schmidt GA,et al.Impairments in microvascular reactivity are related to organ failure in human sepsis[J].Am JPhysiol Heart Circ Physiol,2007,293(2):1065-1071.

[13]Shapiro NI,Arnold R,Sherwin R,et al.The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes,organ dysfunction and mortality in emergency department patients with sepsis[J].Crit Care,2011,15(5):R223.

[14]Trzeciak S,McCoy JV,Phillip Dellinger R,et al.Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis[J].Intensive Care Med,2008,34(12):2210-2217.

[15]Groner W,Winkelman JW,Harris AG,et al.Orthogonal polarization spectral imaging:a new method for study of the microcirculation[J].Nat Med,1999,5(10):1209-1212.

[16]Goedhart PT,Khalilzada M,Bezemer R,et al.Sidestreal Dark Field(SDF)imaging:a novel stroboscopic LED ring-based ima-ging modality for clinical assessment of the microcirculation[J].Opt Express,2007,15(23):15101-15114.

[17]Ospina-Tascon G,Neves AP,Occhipinti G,et al.Effects of fluids on microvascular perfusion in patients with severe sepsis[J].Intensive Care Med,2010,36(6):949-955.

[18]Pottecher J,Deruddre S,Teboul JL,et al.Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients[J].Intensive Care Med,2010,36(11):1867-1874.

[19]Secchi A,Wellmann R,Martin E,et al.Dobutamine maintains intestinal villus blood flow during normotensive endotoxemia:an intravital microscopic study in the rat[J].J Crit Care,1997,12(3):137-141.

[20] Hoffmann JN,Vollmar B,Laschke MW,et al.Hydroxyethyl starch(130 kD),but not crystalloid volume support,improves microcirculation during normotensive endotoxemia[J].Anesthesiology,2002,97(2):460-470.

[21]De Backer D,Creteur J,Dubois MJ,et al.The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects[J].Crit Care Med,2006,34(2):403-408.

[22]Nakajima Y,Baudry N,Duranteau J,et al.Effects of vasopressin,norepinephrine and L-arginine on intestinal microcirculation inendotoxemia[J].Crit Care Med,2006,34(6):1752-1757.

[23]Georger JF,Hamzaoui O,Chaari A,et al.Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients[J].Intensive Care Med,2010,36(11):1882-1889.

[24]Deruddre S,Cheisson G,Mazoit JX,et al.Renal arterial resistance in septic shock:effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography[J].Intensive Care Med,2007,33(9):1557-1562.

[25]Dubin A,Pozo MO,Casabella CA,et al.Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow:a prospective study[J].Crit Care,2009,13(3):R92.

[26] De Backer D,Creteur J,Preiser JC,et al.Microvascular blood flow is altered in patients with sepsis[J].Am J Respir Crit Care Med,2002,166(1):98-104.

[27] Spronk PE,Ince C,Gardien MJ,et al.Oudemans-van Straaten HM,Zandstra DF:Nitroglycerin in septic shock after intravascular volume resuscitation[J].Lancet,2002,360(9343):1395-1396.

[28]Boerma EC,Koopmans M,Konijn A,et al.Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol:A doubleblind randomized placebo controlled trial[J].Crit Care Med,2010,38(1):93-100.

[29] Salgado DR,He X,Su F,et al.Sublingual microcirculatory effects of enalaprilat in an ovine model of septic shock[J].Shock,2011,35(6):542-549.

[30]Gierer P,Hoffmann JN,Mahr F,et al.Activated protein C reduces tissue hypoxia,inflammation,and apoptosis in traumatized skeletal muscle during endotoxemia[J].Crit Care Med,2007,35(8):1966-1971.

[31]Gupta A,Berg DT,Gerlitz B,et al.Role of protein C in renal dysfunction after polymicrobial sepsis[J].J Am Soc Nephrol,2007,18(3):860-867.

[32]De Backer D,Verdant C,Chierego M,et al.Effects of drotecogin alfa activated on microcirculatory alterations in patients with severe sepsis[J].Crit Care Med,2006,34(7):1918-1924.

[33]Hoffmann JN,Vollmar B,Romisch J,et al.Antithrombin effects on endotoxin-induced microcirculatory disorders are mediated mainly by its interaction with microvascular endothelium[J].Crit Care Med,2002,30(1):218-225.

[34]Hoffmann JN,Vollmar B,Inthorn D,et al.The thrombin antagonist hirudin fails to inhibit endotoxin-induced leukocyte/endothelial cell interaction and microvascular perfusion failure[J].Shock,2000,14(5):528-534.

[35]Donati A,Romanelli M,Botticelli L,et al.Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by near-infrared spectroscopy[J].Crit Care,2009,13(5):12.

[36]Chappell D,Hofmann-Kiefer K,Jacob M,et al.TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin[J].Basic Res Cardiol,2009,104(1):78-89.

[37]Cronstein BN,Kimmel SC,Levin RI,et al.A mechanism for the antiinflammatory effects of corticosteroids:the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1[J].Proc Natl Acad Sci,1992,89(21):9991-9995.

[38]Bhagat K,Vallance P.Inflammatory cytokines impair endotheliumdependent dilatation in human veins in vivo[J].Circulation,1997,96(9):3042-3047.

[39]Buchele GL,Silva E,Ospina-Tascon G,et al.Effects of hydrocortisone on microcirculatory alterations in patients with septic shock[J].Crit Care Med,2009,37(4):1341-1347.

[40]Tyml K,Li F,Wilson JX.Septic impairment of capillary blood flow requires NADPH oxidase but not NOSand is rapidly reversed by ascorbate through an eNOS-dependent mechanism[J].Crit Care Med,2008,36(8):2355-2362.

[41]He X,Su F,Velissaris D,et al.Administration of tetrahydrobiopterin improves the microcirculation and outcome in an ovine model of septic shock[J].Crit Care Med,2012,40(10):2833-2840.

猜你喜歡
膿毒性休克毛細(xì)血管
嚴(yán)重創(chuàng)傷性休克患者的急診護(hù)理措施探討
集束化容量反應(yīng)監(jiān)測治療高齡重癥肺炎致膿毒性休克的臨床研究
90鍶-90釔敷貼器治療單純性毛細(xì)血管瘤的護(hù)理體會(huì)
血清NGAL聯(lián)合乳酸及APACHE Ⅱ評分對膿毒性休克合并急性腎損傷患者病死的預(yù)測價(jià)值
探討嚴(yán)重創(chuàng)傷性休克患者的急診護(hù)理措施
β受體阻滯劑在膿毒性休克中的應(yīng)用研究進(jìn)展
持久性發(fā)疹性斑狀毛細(xì)血管擴(kuò)張一例
疏通“毛細(xì)血管”激活“神經(jīng)末梢”
創(chuàng)傷性休克的安全輸血與中醫(yī)護(hù)理探討
IPL—Queen皇后光子嫩膚儀對面部毛細(xì)血管擴(kuò)張治療作用的探討