李明振 封平華
鑒于數(shù)學(xué)建模具有重要的教育功能,美、英等國已于上世紀(jì)七十年代將數(shù)學(xué)建模引入中學(xué)課堂[1],我國于2003年頒布的高中數(shù)學(xué)課程標(biāo)準(zhǔn)也已將數(shù)學(xué)建模納入數(shù)學(xué)課程[2],然而,十年來的實(shí)踐表明,高中數(shù)學(xué)建模教學(xué)效果并不令人滿意[3]。究其重要原因之一在于,缺乏基于學(xué)生認(rèn)知規(guī)律的高中數(shù)學(xué)建模教學(xué)理論指導(dǎo)。近年來,我們對(duì)高中學(xué)生數(shù)學(xué)建模認(rèn)知規(guī)律進(jìn)行了較為系統(tǒng)的研究[4]-[8]。本文在已有研究基礎(chǔ)上,提出若干高中數(shù)學(xué)建模教學(xué)策略,以為有效實(shí)施我國高中數(shù)學(xué)建模課程提供可能的借鑒。
一、精擬建模問題
問題是數(shù)學(xué)建模教與學(xué)的基本載體,所選擬問題的優(yōu)劣在很大程度上影響數(shù)學(xué)建模教學(xué)目標(biāo)能否實(shí)現(xiàn),并影響學(xué)生對(duì)數(shù)學(xué)建模學(xué)習(xí)的態(tài)度、興趣和信念。因此,精心選擬數(shù)學(xué)建模問題是數(shù)學(xué)建模教學(xué)的基本策略。鑒于高中學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,結(jié)合建模課程的目標(biāo)和要求,選擬的建模問題應(yīng)貼近學(xué)生經(jīng)驗(yàn)、源自有趣題材、力求難易適度。
1.貼近學(xué)生經(jīng)驗(yàn)
所選擬的問題應(yīng)當(dāng)是源于學(xué)生周圍環(huán)境、貼近學(xué)生生活經(jīng)驗(yàn)的現(xiàn)實(shí)問題。此類問題的現(xiàn)實(shí)情境為學(xué)生所熟悉,易于為學(xué)生所理解,并易于激發(fā)學(xué)生興奮點(diǎn)。因而,有助于消除學(xué)生對(duì)數(shù)學(xué)建模的神秘感與疏離感,增進(jìn)對(duì)數(shù)學(xué)建模的親近感;有助于激發(fā)學(xué)生的探索熱情,感悟數(shù)學(xué)建模的價(jià)值與魅力。
2.源自有趣題材
所選擬的問題應(yīng)當(dāng)源自富有趣味的題材。此類問題易于激起學(xué)生的好奇心,有助于維護(hù)和增強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模課程的學(xué)習(xí)興趣與探索動(dòng)機(jī)。為此,教師應(yīng)關(guān)注學(xué)生感興趣的熱點(diǎn)話題,并從獨(dú)到的視角挖掘和提煉其中所蘊(yùn)含的數(shù)學(xué)建模問題,選取學(xué)生習(xí)以為常而又未曾深思但結(jié)論卻又出乎意料的問題。
3.力求難易適度
所選擬的問題應(yīng)力求難易適度,應(yīng)能使學(xué)生運(yùn)用其已具備的知識(shí)與方法即可解決。如此,有助于消除學(xué)生對(duì)數(shù)學(xué)建模的畏懼心理,平抑學(xué)生源于數(shù)學(xué)建模的學(xué)習(xí)壓力,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模的學(xué)習(xí)信心,優(yōu)化學(xué)生對(duì)數(shù)學(xué)建模的學(xué)習(xí)態(tài)度,維護(hù)學(xué)生對(duì)數(shù)學(xué)建模的學(xué)習(xí)興趣。為此,教師在選擬問題時(shí),應(yīng)考慮多數(shù)學(xué)生的知識(shí)基礎(chǔ)、生活背景及理解水平。所選擬的問題要盡量避免出現(xiàn)不為學(xué)生所熟悉的專業(yè)術(shù)語,避免問題過度專業(yè)化,要為學(xué)生理解問題提供必要的背景材料、信息與知識(shí)。
二、聚焦建模方法
數(shù)學(xué)建模方法是指運(yùn)用數(shù)學(xué)工具建立數(shù)學(xué)模型進(jìn)而解決現(xiàn)實(shí)問題的方法,它是數(shù)學(xué)建模教與學(xué)的核心,具有重要的教學(xué)功能。掌握一定的數(shù)學(xué)建模方法是實(shí)現(xiàn)數(shù)學(xué)建模課程目標(biāo)的有效途徑。為此,數(shù)學(xué)建模教學(xué)應(yīng)聚焦于數(shù)學(xué)建模方法。
1.注重建模步驟
數(shù)學(xué)建模方法包含諸如問題表征、簡化假設(shè)、模型構(gòu)建、模型求解、模型檢驗(yàn)、模型修正、模型解釋、模型應(yīng)用等多個(gè)步驟。數(shù)學(xué)建模教學(xué)中,教師應(yīng)通過數(shù)學(xué)建模案例,注重對(duì)各步驟的基本內(nèi)涵、實(shí)施技巧及各步驟之間的內(nèi)在聯(lián)系和協(xié)同方式進(jìn)行闡釋和分析,這是使學(xué)生從整體上把握建模方法的必要手段。有助于學(xué)生掌握數(shù)學(xué)建模的基本過程,有助于為學(xué)生模仿建模提供操作性依據(jù),進(jìn)而為學(xué)生獨(dú)立建模提供原則性指導(dǎo)。
2.突出普適方法
不同的數(shù)學(xué)建模方法,其作用大小和應(yīng)用范圍也不同,譬如,關(guān)系分析方法、平衡原理方法、數(shù)據(jù)分析方法、圖形(表)分析方法以及類比分析方法等均為具有統(tǒng)攝性和普適性的建模方法。教師應(yīng)側(cè)重對(duì)這些普適性的建模方法進(jìn)行教學(xué),使學(xué)生重點(diǎn)理解、掌握和應(yīng)用。此外,分屬于幾何、代數(shù)、三角、微積分、概率與統(tǒng)計(jì)、線性規(guī)劃等數(shù)學(xué)分支領(lǐng)域的建模方法等,盡管其普適性程度稍遜,但其對(duì)解決具有領(lǐng)域特征的現(xiàn)實(shí)問題卻具重要應(yīng)用價(jià)值,因而,教師也應(yīng)結(jié)合相應(yīng)數(shù)學(xué)領(lǐng)域內(nèi)容的教學(xué),使學(xué)生通過把握其領(lǐng)域特性及其所運(yùn)用的問題情境特征而熟練掌握并靈活應(yīng)用。
3.加強(qiáng)方法關(guān)聯(lián)
許多現(xiàn)實(shí)問題的解決往往需要綜合運(yùn)用多種數(shù)學(xué)建模方法,因此,在數(shù)學(xué)建模教學(xué)中,應(yīng)加強(qiáng)數(shù)學(xué)建模方法之間的關(guān)聯(lián),注重多種建模方法的綜合運(yùn)用。為此,應(yīng)在加強(qiáng)各建模步驟之間聯(lián)系與協(xié)調(diào)運(yùn)用基礎(chǔ)上,綜合貫通處于不同層次、分屬不同領(lǐng)域的數(shù)學(xué)建模方法,在建模各步驟之間、具體的建模方法之間、不同領(lǐng)域的數(shù)學(xué)建模方法之間進(jìn)行多維聯(lián)結(jié),建立數(shù)學(xué)建模方法網(wǎng)絡(luò)圖,以使學(xué)生掌握數(shù)學(xué)建模方法體系,形成綜合運(yùn)用數(shù)學(xué)建模方法解決現(xiàn)實(shí)問題的能力。
三、強(qiáng)化建模策略
數(shù)學(xué)建模策略是指在數(shù)學(xué)建模過程中理解問題、選擇方法、采取步驟的指導(dǎo)方針,是選擇、組合、改變或操作與當(dāng)前數(shù)學(xué)建模問題解決有關(guān)的事實(shí)、概念和原理的規(guī)則。數(shù)學(xué)建模策略對(duì)數(shù)學(xué)建模的過程、結(jié)果與效率均具有重要作用。學(xué)生掌握有效的數(shù)學(xué)建模策略,既是數(shù)學(xué)建模課程的重要教學(xué)目標(biāo),也是學(xué)生形成數(shù)學(xué)建模能力的重要步驟。因此,應(yīng)強(qiáng)化數(shù)學(xué)建模策略的教與學(xué)。
1.基于建模案例
策略通常具有抽象性、概括性等特點(diǎn),往往需要借助實(shí)例運(yùn)用獲得具體經(jīng)驗(yàn),才能被真正領(lǐng)悟與有效掌握。因此,數(shù)學(xué)建模策略的教學(xué)應(yīng)基于對(duì)建模案例的示范與解析,使學(xué)生在現(xiàn)實(shí)問題情境中感受所要習(xí)得的建模策略的具體運(yùn)用。為此,一方面,針對(duì)某特定建模策略的案例應(yīng)盡可能涵蓋豐富的現(xiàn)實(shí)問題,并在相應(yīng)的案例中揭示該建模策略的不同方面,以為該建模策略提供多樣化的情境與經(jīng)驗(yàn)支持;另一方面,應(yīng)對(duì)某特定建模案例中所涉及的多種建模策略的運(yùn)用進(jìn)行多角度的審視與解析,以厘清各種建模策略之間的內(nèi)在聯(lián)系?;诎咐盐战2呗?,將抽象的建模策略與鮮活的現(xiàn)實(shí)問題密切聯(lián)系,有助于積累建模策略的背景性經(jīng)驗(yàn),有助于豐富建模策略的應(yīng)用模式,有助于促進(jìn)建模策略的條件化與經(jīng)驗(yàn)化,進(jìn)而實(shí)現(xiàn)建模策略的靈活應(yīng)用與廣泛遷移。
2.寓于建模方法
建模策略從層次上高于建模方法,是建模方法應(yīng)用的指導(dǎo)性方針,它通過建模方法影響建模的過程、結(jié)果與效率。離開建模方法而獲得的建模策略勢必停留于表面與形式,難以對(duì)數(shù)學(xué)建模發(fā)揮作用。因此,應(yīng)寓于建模方法獲得建模策略。為此,應(yīng)通過數(shù)學(xué)建模案例,解析與闡釋所用策略與方法之間的內(nèi)在聯(lián)系與協(xié)同規(guī)律,使學(xué)生掌握如何運(yùn)用建模方法,知曉何以運(yùn)用建模方法,從而獲得具有“實(shí)用”價(jià)值的數(shù)學(xué)建模策略。
3.聯(lián)結(jié)思維策略
思維策略是指問題解決思維活動(dòng)過程中具有普適性作用的策略。譬如,解題時(shí),先準(zhǔn)確理解題意,而非匆忙解答;從整體上把握題意,理清復(fù)雜關(guān)系,挖掘蘊(yùn)涵的深層關(guān)系,把握問題的深層結(jié)構(gòu);在理解問題整體意義基礎(chǔ)上判斷解題的思路方向;充分利用已知條件信息;注意運(yùn)用雙向推理;克服思維定勢,進(jìn)行擴(kuò)散性思維;解題后總結(jié)解題思路,舉一反三等,均為問題解決中的思維策略。思維策略是數(shù)學(xué)建模不可或缺的認(rèn)知工具,對(duì)數(shù)學(xué)建模具有重要指導(dǎo)作用。思維策略從層次上高于建模策略,它通過建模策略對(duì)建?;顒?dòng)產(chǎn)生影響。離開思維策略的指導(dǎo),建模策略的作用將受到很大制約。因此,在建模策略教學(xué)中,應(yīng)結(jié)合建模案例,將所用建模策略與所用思維策略相聯(lián)結(jié),以使學(xué)生充分感悟思維策略對(duì)建模策略運(yùn)用的指引作用,增強(qiáng)建模策略運(yùn)用的彈性。
四、注重圖式教學(xué)
數(shù)學(xué)建模圖式是指由與數(shù)學(xué)建模有關(guān)的原理、概念、關(guān)系、規(guī)則和操作程序構(gòu)成的知識(shí)綜合體。具有如下基本內(nèi)涵:是與數(shù)學(xué)建模有關(guān)的知識(shí)組塊;是已有數(shù)學(xué)建模成功案例的概括和抽象;可被當(dāng)前數(shù)學(xué)建模問題情境的某些線索激活。數(shù)學(xué)建模圖式在建模中具有重要作用,影響數(shù)學(xué)建模的模式識(shí)別與表征、策略搜索與選擇、遷移評(píng)估與預(yù)測。因此,應(yīng)注重?cái)?shù)學(xué)建模圖式的教與學(xué),為此,數(shù)學(xué)建模教學(xué)應(yīng)實(shí)施樣例學(xué)習(xí)、開展變式練習(xí)、強(qiáng)化開放訓(xùn)練。
1.實(shí)施樣例學(xué)習(xí)
樣例學(xué)習(xí)是向?qū)W生書面呈現(xiàn)一批解答完好的例題(樣例),學(xué)生解決問題遇到障礙或出現(xiàn)錯(cuò)誤時(shí),可以自學(xué)這些樣例,再嘗試去解決問題。樣例學(xué)習(xí)要求從具有詳細(xì)解答步驟的樣例中歸納出隱含其中的抽象知識(shí)與方法來解決當(dāng)前問題。在數(shù)學(xué)建模教學(xué)中實(shí)施樣例學(xué)習(xí),學(xué)習(xí)和研究別人的已建模型及建模過程中的思維模式,有助于使學(xué)生更多地關(guān)注數(shù)學(xué)建模問題的深層結(jié)構(gòu)特征,更好地關(guān)注在何種情況下使用和如何使用原理、規(guī)則與算法等,從而有助于其建模圖式的形成。在實(shí)施樣例學(xué)習(xí)時(shí),應(yīng)注重透過建模問題的表面特征提煉和歸納其所蘊(yùn)含的關(guān)系、原理、規(guī)則和類別等深層結(jié)構(gòu)。
2.開展變式練習(xí)
通過樣例學(xué)習(xí)而形成的建模圖式往往并不穩(wěn)固,且難以靈活遷移至新的情境。為此,應(yīng)在樣例學(xué)習(xí)基礎(chǔ)上開展變式練習(xí),通過多種變式情境的分析和比較,排除具體問題情境中非本質(zhì)性的細(xì)節(jié),逐步從表層向深層概括規(guī)則和建構(gòu)模式,不斷地將初步形成的建模圖式和提煉過的規(guī)則和模式內(nèi)化,以形成清晰而穩(wěn)固的建模圖式。開展變式練習(xí)時(shí),應(yīng)注重洞察構(gòu)成現(xiàn)實(shí)情境問題的“數(shù)學(xué)結(jié)構(gòu)框架”,從“變化”的外在特征中鑒別和抽象出“不變”的內(nèi)在結(jié)構(gòu)。
3.強(qiáng)化開放訓(xùn)練
數(shù)學(xué)建模具有結(jié)構(gòu)不良問題解決的特性。譬如,條件和目標(biāo)不明確;“簡化”假設(shè)時(shí)需要高度靈活的技巧;模型構(gòu)建需要基于對(duì)問題的深邃洞察與合理判斷并靈活運(yùn)用建模方法;所建模型及其形式表達(dá)缺乏統(tǒng)一標(biāo)準(zhǔn),需要檢驗(yàn)、修正并不斷推廣以適應(yīng)更復(fù)雜的情境;有并非唯一正確的多種結(jié)果和答案等等。鑒于此,數(shù)學(xué)建模教學(xué)中應(yīng)強(qiáng)化開放訓(xùn)練,以促進(jìn)學(xué)生形成概括性強(qiáng)、遷移范圍廣、豐富多樣的建模圖式。為此,應(yīng)通過改變問題的情境、條件、要求及方法來拓展問題。即對(duì)簡化假設(shè)、建模思路、建模結(jié)果、模型應(yīng)用等建模環(huán)節(jié)進(jìn)行多種可能性分析;將問題原型恰當(dāng)?shù)剞D(zhuǎn)變到某一特定模型;將一個(gè)領(lǐng)域內(nèi)的模型靈活地轉(zhuǎn)移到另一領(lǐng)域;將一個(gè)具體、形象的模型創(chuàng)造性地轉(zhuǎn)換成綜合、抽象的模型。在上述操作基礎(chǔ)上,對(duì)建模問題進(jìn)行抽象、概括和歸類,從一種問題情境進(jìn)行輻射,并以此網(wǎng)羅建模的不同操作模式,從而使學(xué)生形成關(guān)于建模圖式的體系化認(rèn)知,進(jìn)而提升建模圖式的靈活性和可遷移性。
五、活化教學(xué)方式
鑒于數(shù)學(xué)建模具有綜合性、實(shí)踐性和活動(dòng)性特征,因而其教學(xué)應(yīng)體現(xiàn)以學(xué)生為認(rèn)知主體,以運(yùn)用數(shù)學(xué)知識(shí)與方法解決現(xiàn)實(shí)問題為運(yùn)行主線,以培養(yǎng)學(xué)生數(shù)學(xué)建模能力為核心目標(biāo)。為此,應(yīng)靈活采取激勵(lì)獨(dú)立探究、引導(dǎo)對(duì)比反思、尋求優(yōu)化選擇等密切協(xié)同的教學(xué)方式。
1.激勵(lì)獨(dú)立探究
數(shù)學(xué)建模教學(xué)中,教師應(yīng)首先激發(fā)學(xué)生獨(dú)立思考、自主探索,力求學(xué)生找到各自富有個(gè)性的建模思路與方案。誠然,教師和教材的思路與方案可能更為簡約而成熟,然而,學(xué)生是學(xué)習(xí)的主體,其獲得的思路與方案更貼近學(xué)生自身的認(rèn)知水平。因此,教師應(yīng)給予學(xué)生獨(dú)立思考的機(jī)會(huì),激勵(lì)學(xué)生個(gè)體自主探索,尊重學(xué)生的個(gè)性化思考,允許不同的學(xué)生從不同的角度認(rèn)識(shí)問題,以不同的方式表征問題,用不同的方法探索問題,并盡力找到自己的建模思路與方案,以培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣和探究能力。
2.引導(dǎo)對(duì)比分析
在激勵(lì)學(xué)生探尋個(gè)性化的建模思路與方案基礎(chǔ)上,教師應(yīng)及時(shí)引導(dǎo)學(xué)生對(duì)比分析,歸納出多樣化的建模思路與方案。為此,應(yīng)將提出不同建模方案的學(xué)生組成“異質(zhì)”的討論小組,聆聽其他同學(xué)的分析與解釋,對(duì)比分析探索過程、評(píng)價(jià)探索結(jié)果、分享探索成果,以使學(xué)生認(rèn)識(shí)從不同角度與層次獲得的多樣化方案。引導(dǎo)學(xué)生對(duì)比分析,既展現(xiàn)了學(xué)生自主探索的成果,又發(fā)揮了教師組織引導(dǎo)的職能,還使學(xué)生獲得了多元化的數(shù)學(xué)建模思維方式。
3.尋求優(yōu)化選擇
在獲得多樣化的建模方案基礎(chǔ)上,教師應(yīng)繼續(xù)引導(dǎo)全班學(xué)生對(duì)多樣化的建模方案進(jìn)行觀察與辨析,使學(xué)生在思維的交流與碰撞中,感受與認(rèn)知其它方案的優(yōu)點(diǎn)和局限,反思與改進(jìn)自己的方案,相互糾正、補(bǔ)充與完善,尋求方案的優(yōu)化選擇。引導(dǎo)學(xué)生尋求優(yōu)化選擇,不僅僅是求得最優(yōu)化的結(jié)果,還是發(fā)展學(xué)生數(shù)學(xué)思維、培養(yǎng)學(xué)生創(chuàng)新意識(shí)的有效方式。在此過程中,教師應(yīng)與學(xué)生有效互動(dòng),深度交流,汲取不同方案的可取之點(diǎn)與合理之處,以做出優(yōu)化選擇。
上述數(shù)學(xué)建模教學(xué)策略之間存在密切聯(lián)系。精擬建模問題是有效實(shí)施數(shù)學(xué)建模教學(xué)的載體;聚焦建模方法是有效實(shí)施數(shù)學(xué)建模教學(xué)的核心;強(qiáng)化建模策略是有效實(shí)施數(shù)學(xué)建模教學(xué)的靈魂;注重圖式教學(xué)是有效實(shí)施數(shù)學(xué)建模教學(xué)的依據(jù);活化教學(xué)方式是有效實(shí)施數(shù)學(xué)建模教學(xué)的保障。在數(shù)學(xué)建模教學(xué)中,諸策略應(yīng)有機(jī)結(jié)合,協(xié)同運(yùn)用,以求取得最佳效果。
參考文獻(xiàn)
[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.
[2] 中華人民共和國教育部.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn).北京師范大學(xué)出版社,2003.
[3] 李明振,喻平.高中數(shù)學(xué)建模課程實(shí)施的背景、問題與策略.數(shù)學(xué)通報(bào),2008,47(11).
[4] 李明振.數(shù)學(xué)建模認(rèn)知研究.南京:江蘇教育出版社,2013.
[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.
[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.
[7] 李明振,喻平,張慶林.數(shù)學(xué)建模的認(rèn)知差異研究.心理科學(xué),2009,32(4).
[8] 李明振,喻平,蔡仲.高中學(xué)生數(shù)學(xué)建模認(rèn)知特點(diǎn)比較研究.數(shù)學(xué)教育學(xué)報(bào),2011,20(5).
(責(zé)任編輯 任洪鉞)