国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

少突膠質(zhì)細(xì)胞分化抑制因子及其在多發(fā)性硬化癥中的作用

2014-01-23 04:05年新文
轉(zhuǎn)化醫(yī)學(xué)雜志 2014年6期
關(guān)鍵詞:脫髓鞘髓鞘透明質(zhì)

年新文,何 成,曹 莉

·綜 述·

少突膠質(zhì)細(xì)胞分化抑制因子及其在多發(fā)性硬化癥中的作用

年新文,何 成,曹 莉

多發(fā)性硬化癥(multiple sclerosis,MS)是一種慢性炎癥性脫髓鞘疾病,中樞神經(jīng)系統(tǒng)的主要表現(xiàn)為脫髓鞘及疾病晚期修復(fù)失代償。少突膠質(zhì)細(xì)胞(oligodendrocytes,OLs)的成熟障礙是MS慢性脫髓鞘病灶髓鞘再生失敗的主要原因。OLs成熟的整個(gè)過程受到細(xì)胞內(nèi)在和外在因素復(fù)雜而精確的調(diào)控,Notch1、Wnt/β-連環(huán)蛋白、LINGO1、骨成形蛋白4和透明質(zhì)酸/Toll樣受體2等信號(hào)通路及Hes5、ID2、ID4、Y染色體性別決定區(qū)相關(guān)高遷移率族蛋白盒5和Y染色體性別決定區(qū)相關(guān)高遷移率族蛋白盒6等轉(zhuǎn)錄因子家族均參與抑制OLs的分化和髓鞘形成。受損神經(jīng)纖維周圍的炎癥環(huán)境在MS病灶髓鞘再生中也起重要調(diào)節(jié)作用。近年來,大量OLs分化抑制因子的發(fā)現(xiàn),為髓鞘再生治療提供了新的分子靶點(diǎn)。作者就OLs分化抑制因子及其在MS中作用的研究進(jìn)展作一綜述。

多發(fā)性硬化癥;再髓鞘化;少突膠質(zhì)細(xì)胞;信號(hào)通路;分化抑制因子

髓鞘對(duì)軸突具有支持、保護(hù)和電絕緣等作用,是維持正常神經(jīng)活動(dòng)的重要結(jié)構(gòu)基礎(chǔ)。脫髓鞘損傷如果得不到有效的再髓鞘化,不僅影響正常的神經(jīng)傳導(dǎo),還將導(dǎo)致神經(jīng)軸突的變性和神經(jīng)元死亡,造成神經(jīng)系統(tǒng)更嚴(yán)重的損傷。少突膠質(zhì)細(xì)胞(oligodendrocytes,OLs)是中樞神經(jīng)系統(tǒng)的髓鞘形成細(xì)胞,大約70%的多發(fā)性硬化癥(multiple sclerosis,MS)病灶中含有喪失分化能力的未成熟OLs,OLs分化成熟障礙是MS患者慢性脫髓鞘病灶處再髓鞘化失敗的重要原因。因此,了解OLs分化成熟的調(diào)控機(jī)制及其在MS脫髓鞘病灶中的作用,針對(duì)MS再髓鞘化障礙機(jī)制,設(shè)計(jì)促進(jìn)中樞髓鞘再生的新藥物,對(duì)更有效地治療MS具有重要意義。

成熟的OLs由少突膠質(zhì)前體細(xì)胞(oligodendrocyte progenitor cells,OPCs)分化形成。OPCs廣泛存在于中樞神經(jīng)系統(tǒng)中,脫髓鞘損傷后,它在局部信號(hào)的作用下動(dòng)員激活,向損傷處募集,分化為成熟的OLs,并包繞脫髓鞘軸突,最終實(shí)現(xiàn)再髓鞘化。在此過程中,隨著內(nèi)外環(huán)境改變,多條信號(hào)途徑相應(yīng)激活或抑制,通過下游一系列特異性轉(zhuǎn)錄因子調(diào)節(jié)OLs分化成熟過程。MS慢性脫髓鞘病灶中,由于抑制OLs成熟的分子通路激活,限制了有效的髓鞘再生[1-2]。作者將從信號(hào)通路、轉(zhuǎn)錄因子和炎癥微環(huán)境等角度對(duì)OLs分化抑制因子及其在MS中作用的最新研究進(jìn)展作一綜述。

1 抑制OPCs成熟的信號(hào)通路

1.1 Notch1途徑 Notch1受體主要表達(dá)于OLs,是OPCs成熟過程的重要調(diào)控因子[3]。在小鼠Oligo1陽性細(xì)胞中選擇性敲除Notch1,可以導(dǎo)致OLs提早成熟;進(jìn)一步對(duì)選擇敲除Notch1小鼠的胼胝體內(nèi)注射溶血卵磷脂破壞髓鞘,發(fā)現(xiàn)再髓鞘化作用明顯增強(qiáng)。OPCs和背根神經(jīng)節(jié)神經(jīng)元共培養(yǎng)實(shí)驗(yàn)也表明,Notch1的小干擾RNA可以促進(jìn)髓鞘形成[4]。Notch1的胞外配體是Jagged1,Jagged1通過Notch1可以激活抑制性轉(zhuǎn)錄因子,抑制OPCs成熟[5-6]。Jagged1主要表達(dá)于胚胎發(fā)育期。MS病灶中發(fā)現(xiàn)Jagged1在激活的星形膠質(zhì)細(xì)胞中重新表達(dá)。轉(zhuǎn)化生長(zhǎng)因子-β (transforming growth factor-β,TGF-β)可以促進(jìn)人類激活星形膠質(zhì)細(xì)胞中Jagged1表達(dá),其在MS病灶中也上調(diào)[5]。此外,Notch1的非經(jīng)典配體接觸蛋白大量表達(dá)于慢性MS病灶的脫髓鞘軸突,其作用是使Notch1胞內(nèi)結(jié)構(gòu)域(notch1 intracellular domain,NICD)核轉(zhuǎn)位,促進(jìn)OLs成熟。但是,在MS病灶OPCs中TIP30異常表達(dá),可以抑制NICD的核轉(zhuǎn)位,導(dǎo)致Notch1不完全激活,阻斷接觸蛋白依賴的髓鞘相關(guān)糖蛋白(myelin associated glucoprotein,MAG)表達(dá)和OPCs分化[7]。

1.2 Wnt/β-連環(huán)蛋白途徑 Wnt/β-連環(huán)蛋白(catenin)通路是背角OLs發(fā)育過程中的一種重要的負(fù)性調(diào)節(jié)途徑[8]。Wnt3a促進(jìn)β-catenin核轉(zhuǎn)位可以抑制發(fā)育中OLs發(fā)生。在小鼠Oligo2+OLs中選擇性敲入β-catenin,并在p9和p15誘導(dǎo)其表達(dá),發(fā)現(xiàn)p15小鼠表現(xiàn)出嚴(yán)重的共濟(jì)失調(diào)、靜止性震顫和髓鞘發(fā)育水平低下,但小鼠成年后表現(xiàn)正常,表明這些小鼠的髓鞘發(fā)育僅僅是被延遲了。在Oligo1陽性小鼠細(xì)胞中選擇性敲除β-catenin,發(fā)現(xiàn)胚胎脊髓中OLs提前發(fā)育[9]。

Wnt信號(hào)通路的主要轉(zhuǎn)錄因子T細(xì)胞因子4(T cell factor 4,TCF4)陰性的轉(zhuǎn)基因小鼠OLs發(fā)育嚴(yán)重受限[9]。成年小鼠的MS模型顯示,病灶中OPCs高表達(dá)TCF4,Wnt通路被激活[10-11]。Axin2是Wnt轉(zhuǎn)錄通路激活的重要分子,能夠反饋降解β-catenin。用低相對(duì)分子質(zhì)量端錨聚合酶抑制劑XAV-939穩(wěn)定中樞神經(jīng)系統(tǒng)(central nervous system,CNS)中OPCs的Axin2水平,結(jié)果顯示OPCs分化水平提高,再髓鞘化作用增強(qiáng)[12]。因此,端錨聚合酶在MS治療中可能成為重要的治療靶點(diǎn)。此外,近年來發(fā)現(xiàn),組蛋白去乙酰化酶(histone deacetylases,HDACs)對(duì)Wnt信號(hào)的負(fù)性調(diào)節(jié)在再髓鞘化過程中OLs成熟發(fā)揮重要作用[13]。HDAC1和HDAC2缺失,可以促進(jìn)核轉(zhuǎn)位β-catenin的穩(wěn)定性,抑制Oligo2的表達(dá)和OLs的成熟。

1.3 骨成型蛋白4 骨成型蛋白4(bone morphogenetic protein 4,BMP4)屬于TGF-β超家族,對(duì)神經(jīng)細(xì)胞分化有重要調(diào)節(jié)作用。BMP4促進(jìn)星形膠質(zhì)細(xì)胞系分化,同時(shí)抑制OLs發(fā)生和OPCs分化[14]。近來有研究表明,脫髓鞘發(fā)生時(shí)BMP4表達(dá)上調(diào),同時(shí)少量給予拮抗劑促進(jìn)室膜區(qū)OLs發(fā)生,增加胼胝體的成熟OLs和再生髓鞘密度[15]。因此,抑制脫髓鞘作用時(shí)的內(nèi)源BMP信號(hào)有利于成熟OLs形成和再髓鞘化。研究者也發(fā)現(xiàn)了BMP4與其他一些信號(hào)途徑的相互作用,BMP4不僅增加Wnt通路的Tbx3的表達(dá),也上調(diào)Notch的基因靶點(diǎn)包括Jag1、Hes1、Hes5、Hey1、Hey2等的表達(dá)[16]。此外,BMP4和Wnt/β-catenin作用增加DNA結(jié)合抑制因子(inhibitor of DNA binding,ID)2的表達(dá),后者具有抑制OPCs分化的作用。

1.4 LINGO1信號(hào) LINGO1是髓鞘相關(guān)抑制分子Nogo受體的結(jié)合蛋白,富含亮氨酸重復(fù)片段和免疫球蛋白樣結(jié)構(gòu)域,特異性表達(dá)于正常腦組織的神經(jīng)元、OLs以及MS病變的活化膠質(zhì)細(xì)胞中[17-18]。LINGO1能夠直接與Nogo的受體NgR1和共受體p75相互作用,引起細(xì)胞內(nèi)骨架調(diào)節(jié)蛋白R(shí)hoA激活,并通過RhoA激活發(fā)揮作用。關(guān)于LINGO1最初的功能研究主要集中在其對(duì)中樞軸突再生的影響,發(fā)現(xiàn)LINGO1能夠阻斷髓鞘碎片對(duì)軸突生長(zhǎng)的抑制作用[17]。此后,發(fā)現(xiàn)LINGO還可以抑制OLs分化、MAG和髓鞘堿性蛋白(myelin basic protein,MBP)表達(dá)以及髓鞘形成,且均表現(xiàn)為劑量依賴性[18]。LINGO1特異性敲除的轉(zhuǎn)基因小鼠、LINGO1失活的實(shí)驗(yàn)性自身免疫性腦脊髓炎模型及LINGO1抗體阻斷的雙環(huán)己酮草酰二腙脫髓鞘模型都顯示出再髓鞘化作用的增強(qiáng)。由于髓鞘形成過程依賴于神經(jīng)元和OLs的協(xié)作,軸突和OLs上表達(dá)的LINGO1可能均參與了髓鞘的形成。研究表明,神經(jīng)生長(zhǎng)因子可以通過TrkA受體上調(diào)LINGO1表達(dá)并抑制髓鞘形成,干擾軸突和OPCs上表達(dá)的LINGO1均可以逆轉(zhuǎn)此作用,促進(jìn)髓鞘形成[19]。LINGO1的單克隆抗體已被批準(zhǔn)用于MS的Ⅱ期臨床試驗(yàn)(美國(guó)臨床試驗(yàn)編號(hào):NCT01864148)。

1.5 透明質(zhì)酸/Toll樣受體2通路 透明質(zhì)酸(hyaluronan,HA)聚集于MS病灶中心,而其他黏多糖主要分布在損傷邊緣[20]。HA主要以高相對(duì)分子質(zhì)量和低相對(duì)分子質(zhì)量2種形式存在,高相對(duì)分子質(zhì)量的HA能夠阻斷OLs的發(fā)育,抑制再髓鞘化作用,而低相對(duì)分子質(zhì)量的HA對(duì)OLs的發(fā)育成熟無明顯影響。HA對(duì)OLs發(fā)育的抑制作用呈現(xiàn)一定的劑量依賴模式。

Toll樣受體(Toll-like receptors,TLRs)是透明質(zhì)酸通路作用的重要受體,透明質(zhì)酸能夠激動(dòng)TLRs如TLR2、TLR4[21-22]。研究表明,OLs能夠大量表達(dá)TLR2,利用TLR2的激動(dòng)劑能夠阻斷OLs發(fā)育。但是,目前研究發(fā)現(xiàn)僅低相對(duì)分子質(zhì)量的HA能夠激動(dòng)TLR2和TLR4。由于高相對(duì)分子質(zhì)量的HA對(duì)OLs發(fā)育的阻斷需要透明質(zhì)酸酶活性,研究中也發(fā)現(xiàn)OLs表達(dá)透明質(zhì)酸酶,因此可能高相對(duì)分子質(zhì)量的HA在透明質(zhì)酸酶的作用下裂解為小分子透明質(zhì)酸片段,繼而激動(dòng) TLR2[23-24]。因此,MS再髓鞘化受限可能需要透明質(zhì)酸的合成、不完全降解以及OLs中TLR2的募集。

1.6 細(xì)胞黏附分子 髓鞘形成過程依賴于細(xì)胞黏附分子對(duì)細(xì)胞間相互作用的精確控制。其中神經(jīng)細(xì)胞黏附分子(neural cell adhesion molecule,NCAM)屬于免疫蛋白超家族,在軸突生長(zhǎng)、神經(jīng)纖維束形成、神經(jīng)元遷移以及突觸形成過程中均發(fā)揮作用[25]。海馬區(qū)多聚唾液酸神經(jīng)細(xì)胞黏附分子(polysialic acid NCAM,PSA-NCAM)是OLs和軸突表達(dá)的NCAM經(jīng)修飾后的產(chǎn)物[26]。在正常發(fā)育過程中,髓鞘化的啟動(dòng)依賴于軸突和OLs的PSA移除[27-28]。在MS損傷中,病灶的裸露軸突重新表達(dá)PSA-NCAM,抑制再髓鞘化,導(dǎo)致疾病惡化。

2 抑制OPCs成熟的轉(zhuǎn)錄因子

OLs分化的調(diào)控主要依賴于內(nèi)在的固有調(diào)控,多種轉(zhuǎn)錄因子(transcriptional factors,TFs)參與到了OPCs的分化,形成復(fù)雜的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)。其中,使OPCs保持在未分化狀態(tài)和抑制其髓鞘基因表達(dá)的TFs包括ID2、ID4、Hes5、Y染色體性別決定區(qū)(sex determination region of Y chromosome,SRY)相關(guān)高遷移率族蛋白盒(SRY-related high mobility group box,Sox)5和Sox6。盡管目前已發(fā)現(xiàn)諸多調(diào)控的OPCs分化的轉(zhuǎn)錄因子,但對(duì)于這些因子如何控制OLs從髓鞘前狀態(tài)向髓鞘化狀態(tài)轉(zhuǎn)化的具體分子機(jī)制知之甚少。

2.1 螺旋-環(huán)-螺旋蛋白家族

2.1.1 堿性螺旋-環(huán)-螺旋類轉(zhuǎn)錄因子 堿性螺旋-環(huán)-螺旋(basic helix-loop-helix,bHLH)蛋白含有近60個(gè)氨基酸,攜有一個(gè)螺旋-環(huán)-螺旋模體及其上游的富含堿性氨基酸特征序列[29-30]。Notch通路配體Delta、Jagged可以激活抑制性 bHLH轉(zhuǎn)錄因子 Hes1和Hes5的表達(dá),并抑制OPCs的成熟。當(dāng)胞內(nèi)Notch通路未激活時(shí),核內(nèi)重組信號(hào)結(jié)合蛋白(recombination signal binding protein-J,RBP-J)與Hes1、Hes5基因啟動(dòng)子結(jié)合,通過共抑制因子抑制Hes1、Hes5表達(dá)。Delta、Jagged激活Notch膜蛋白后,NICD從膜上解離轉(zhuǎn)入核內(nèi)與RBP-J結(jié)合,形成轉(zhuǎn)錄促進(jìn)復(fù)合體,促進(jìn) Hes1、Hes5表達(dá)[31]。Hes1、Hes5缺失時(shí),NICD對(duì)OPCs成熟的抑制作用消失,表明Hes1和Hes5是Notch通路的重要效應(yīng)分子[32]。研究發(fā)現(xiàn),Hes5與Notch通路分子表達(dá)發(fā)生于相同時(shí)間,表明Hes5表達(dá)的啟動(dòng)依賴于Notch通路[32]。

Hes5在MS病灶未成熟OLs中高表達(dá),脫髓鞘大鼠室膜下區(qū)Jagged1介導(dǎo)Hes5表達(dá)增加,表明MS再髓鞘化障礙與Hes5的表達(dá)調(diào)控有關(guān)。Hes5基因敲除小鼠CNS中髓磷脂基因表達(dá)增加,說明Hes5作為Notch信號(hào)的下游效應(yīng)分子能夠阻止OPCs早熟[33]。而這些作用可能由Hes5與MBP啟動(dòng)子的結(jié)合以及HDACs的募集介導(dǎo)[34]。此外,Hes5還與Sox10轉(zhuǎn)錄因子作用,抑制Sox10基因的表達(dá),進(jìn)一步降低Sox10的生物利用度,導(dǎo)致髓磷脂基因表達(dá)減少[33]。

2.1.2 ID ID含有高度保守的HLH結(jié)構(gòu)域,但是缺乏堿性的DNA結(jié)合序列。ID通過與bHLH的易源二聚化作用形成非活化聚合物,因此ID是bHLH轉(zhuǎn)錄因子的顯性負(fù)調(diào)節(jié)子。ID分子在OPCs中可以抑制OLs發(fā)生和OPCs分化。

OPCs分化以及OLs發(fā)生時(shí),細(xì)胞核內(nèi)的ID2發(fā)生去磷酸化并向胞漿轉(zhuǎn)移[35]。體外細(xì)胞培養(yǎng)證明,ID2能夠增強(qiáng)BMP4對(duì)神經(jīng)前體細(xì)胞向OPCs分化的抑制作用[35]。G-蛋白偶聯(lián)受體17(G-protein-coupled receptor 17,GPR17)通過ID2負(fù)性調(diào)控少突膠質(zhì)細(xì)胞系的分化,進(jìn)一步研究發(fā)現(xiàn)ID2和OLs轉(zhuǎn)錄因子的相互作用介導(dǎo)BMP4和GPR17對(duì)OLs形成的抑制作用[35-26]。此外,還發(fā)現(xiàn)OPCs分化過程中,Wnt/β-catenin-T細(xì)胞因子4和HDACs抑制ID2表達(dá)[37]。這些研究表明,ID2可能與脫髓鞘作用及再髓鞘化有關(guān),目前還需要更多的研究證明該因子在上述過程中的調(diào)節(jié)作用。

ID4是ID家族中另一個(gè)對(duì)OLs發(fā)生和OPCs分化具有重要作用的分子。ID4對(duì)OPCs分化的調(diào)節(jié)作用類似于ID2,一些可以調(diào)控OPCs分化的分子如血小板衍生生長(zhǎng)因子(platelet-derived growth factor,PDGF)、BMP4、GPR17和HDACs/轉(zhuǎn)錄因子YY1均能調(diào)節(jié)ID4表達(dá)以及該分子在核內(nèi)和胞漿的轉(zhuǎn)移[38]。與ID2不同的是,來源于ID4陰性小鼠胚胎的神經(jīng)干細(xì)胞不能分化為OPCs,同時(shí)BMP4完全失去對(duì)OLs發(fā)生的抑制效應(yīng)[39],可見ID4在OLs發(fā)生過程中發(fā)揮關(guān)鍵作用。此外,ID4可能與成熟OLs的凋亡有關(guān)。

2.2 Sox5和Sox6 Sox5是一類具有高度保守的高遷移率族蛋白盒DNA結(jié)合域的超基因家族,與SRY具有同源性。Sox5、Sox6構(gòu)成了D亞族Sox轉(zhuǎn)錄因子[40]。

Sox5、Sox6表達(dá)于OLs分化末期的起始階段,并結(jié)合于髓磷脂基因的特定位點(diǎn)如MBP啟動(dòng)子,這些位點(diǎn)也是Sox10調(diào)節(jié)髓磷脂基因表達(dá)的作用位點(diǎn),從而競(jìng)爭(zhēng)啟動(dòng)子位點(diǎn)。與Sox10相比,Sox5、Sox6不僅不能激活髓磷脂基因表達(dá),甚至通過募集與Hes5類似的輔阻遏物有效抑制Sox10對(duì)OPCs髓磷脂基因表達(dá)的激活[41]。選擇性敲除Sox5和Sox6的小鼠,OLs過早發(fā)生,OPCs提前進(jìn)入分化末期,說明Sox5和Sox6對(duì)OLs發(fā)生時(shí)間具有重要調(diào)節(jié)作用。

3 固有免疫對(duì)再髓鞘化的調(diào)節(jié)作用

固有免疫機(jī)制對(duì)再髓鞘化具有重要調(diào)節(jié)作用。TLRs信號(hào)上調(diào)Wnt途徑蛋白表達(dá),可以增強(qiáng)Wnt通路的功能[42]。此外,TGF-β1和TLR4的激動(dòng)劑脂多糖可以促進(jìn)星形膠質(zhì)細(xì)胞和巨噬細(xì)胞Jagged1的上調(diào),從而激活Notch1信號(hào)并引起進(jìn)一步的Notch信號(hào)的放大[43]。但是,炎癥因子的作用是動(dòng)態(tài)的、可變的。慢性的脂多糖處理(如免疫耐受),可以使巨噬細(xì)胞轉(zhuǎn)變起到神經(jīng)保護(hù)和促進(jìn)髓鞘再生作用。再髓鞘化調(diào)節(jié)因子對(duì)固有免疫也存在反饋?zhàn)饔?。例如,維甲類X受體可以促進(jìn)OPCs成熟,并上調(diào)TLR4表達(dá),抑制小膠質(zhì)細(xì)胞激活[42]。果蠅 WntD是人Wnt的同源分子,對(duì)Toll樣受體和核轉(zhuǎn)錄因子-κB途徑具有反饋抑制作用,Wnt信號(hào)也降低腫瘤壞死因子-α表達(dá),表明Wnt信號(hào)通路具有抗炎癥作用。透明質(zhì)酸也可能通過激動(dòng)TLRs增強(qiáng)局部的炎癥反應(yīng)。因此,MS病變的再髓鞘化和炎癥反應(yīng)可能存在重要的相互作用,明確小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和其他免疫監(jiān)控細(xì)胞在再髓鞘化過程中的動(dòng)態(tài)反應(yīng),對(duì)全面理解MS的再髓鞘化有關(guān)鍵作用。

OLs成熟障礙是MS非活動(dòng)性病灶髓鞘再生失敗的重要原因。作者討論了幾種阻斷少突膠質(zhì)細(xì)胞成熟的機(jī)制,包括Notch1、Wnt/β-catenin和透明質(zhì)酸/TLR2信號(hào)等,其中部分機(jī)制參與了MS的病理發(fā)生過程。局部炎癥環(huán)境對(duì)OLs的成熟和再髓鞘化也有顯著的影響。但是,目前部分分子在再髓鞘化中的功能研究結(jié)果仍有爭(zhēng)議,MS患者再髓鞘化后的髓鞘結(jié)構(gòu)仍呈現(xiàn)明顯的超微結(jié)構(gòu)異常,這些都會(huì)影響髓鞘再生治療的臨床效果。因此,深入闡明MS患者再髓鞘化障礙復(fù)雜的分子機(jī)制,設(shè)計(jì)基于增強(qiáng)OLs成熟、髓鞘化的細(xì)胞和分子策略,將成為臨床治療MS的新的、富有前景的研究領(lǐng)域。

[1]Lassmann H,Brück W,Lucchinetti C,et al.Remyelination in multiple sclerosis[J].Mult Scler,1997,3(2):133-136.

[2]de la Pena I,Pabon M,Acosta S,et al.Oligodendrocytes engineered withmigratory proteins as effective graft source for cell transplantation in multiple sclerosi[J].Cell Med,2014,6(3):123-127.

[3]Wang S,Sdrulla AD,diSibio G,et al.Notch receptor activation inhibits oligodendrocyte differentiation[J].Neuron,1998,21(1):63-75.

[4]Zhang Y,Argaw AT,Gurfein BT,et al.Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination[J].Proc Natl Acad Sci USA,2009,106(45):19162-19167.

[5]John GR,Shankar SL,Shafit-Zagardo B,et al.Multiple sclerosis:re-expression of a developmental pathway that restricts oligodendrocytematuration[J].Nat Med,2002,8 (10):1115-1121.

[6]Aparicio E,Mathieu P,Pereira Luppi M,et al.The Notch signaling pathway:its role in focal CNS demyelination and apotransferrin-induced remyelination[J].J Neurochem,2013,127(6):819-836.

[7]Nakahara J,Kanekura K,Nawa M,et al.Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells inmultiple sclerosis [J].JClin Invest,2009,119(1):169-181.

[8]Shimizu T,Kagawa T,Wada T,et al.Wnt signaling controls the timing of oligodendrocyte development in the spinal cord[J].Dev Biol,2005,282(2):397-410.

[9]He Y,Wu J,Mei H,et al.Histone deacetylase activity is required for embryonic posterior lateral line development [J].Cell Prolif,2014,47(1):91-104.

[10]Fancy SP,Baranzini SE,Zhao C,et al.Dysregulation of the Wnt pathway inhibits timelymyelination and remyelination in the mammalian CNS[J].Genes Dev,2009,23(13): 1571-1585.

[11]Sirakov M,Skah S,Lone IN,et al.Multi-level interactions between the nuclear receptor TRα1 and theWNT effectors β-catenin/Tcf4 in the intestinal epithelium[J].PLoS One,2012,7(4):e34162.

[12]Zhang Y,Guo TB,Lu H.Promoting remyelination for the treatment ofmultiple sclerosis:opportunities and challenges[J].Neurosci Bull,2013,29(2):144-154.

[13]Shen S,Sandoval J,Swiss VA,et al.Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency[J].Nat Neurosci,2008,11(9): 1024-1034.

[14]Shin M,Ohte S,F(xiàn)ukuda T,et al.Identification of a novel bonemorphogenetic protein(BMP)-inducible transcript,BMP-inducible transcript-1,by utilizing the conserved BMP-responsive elements in the Id genes[J].JBone Miner Metab,2013,31(1):34-43.

[15]Sabo JK,Aumann TD,Merlo D,et al.Remyelination is altered by bonemorphogenic protein signaling in demyelinated lesions[J].JNeurosci,2011,31(12):4504-4510.

[16]Wu M,Hernandez M,Shen S,et al.Differentialmodulation of the oligodendrocyte transcriptome by sonic hedgehog and bonemorphogenetic protein 4 via opposing effects on histone acetylation[J].JNeurosci,2012,32(19):6651-6664.

[17]Mi S,Lee X,Shao Z,etal.LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex[J].Nat Neurosci,2004,7(3):221-228.

[18]Wu HF,Cen JS,Zhong Q,et al.The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127[J].Biomaterials,2013,34(6):1686-1700.

[19]Yin W,Hu B.Knockdown of Lingo1b protein promotesmyelination and oligodendrocyte differentiation in zebrafish [J].Exp Neurol,2014,251:72-83.

[20]Back SA,Tuohy TM,Chen H,et al.Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation[J].Nat Med,2005,11(9):966-972.

[21]Winkler CW,F(xiàn)oster SC,Itakura A,etal.Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells:implications for inflammatory demyelinating disease[J].Matrix Biol,2013,32(3/4):160-168. [22]Scheibner KA,Lutz MA,Boodoo S,et al.Hyaluronan fragments act as an endogenous danger signal by engaging TLR2[J].J Immunol,2006,177(2):1272-1281.

[23]Sloane JA,Batt C,Ma Y,et al.Hyaluronan blocks oligodendrocyte progenitormaturation and remyelination through TLR2[J].Proc Natl Acad Sci USA,2010,107(25):11555-11560.

[24]Dusio GF,Cardani D,Zanobbio L,et al.Stimulation of TLRs by LMW-HA induces self-defense mechanisms in vaginal epithelium[J].Immunol Cell Biol,2011,89(5): 630-639.

[25]Maness PF,Schachner M.Neural recognition molecules of the immunoglobulin superfamily:signaling transducers of axon guidance and neuronal migration[J].Nat Neurosci,2007,10(1):19-26.

[26]Nait Oumesmar B,Vignais L,Duhamel-Clérin E,et al.Expression of the highly polysialylated neural cell adhesion molecule during postnatal myelination and following chemically induced demyelination of the adult mouse spinal cord[J].Eur JNeurosci,1995,7(3):480-491.

[27]Wang X,Guan F.The impactof polysialic acid(PSA)and polysialylated neural cell adhesionmolecule(PSA-NCAM) on tumor and cell signaling pathways[J].YiChuan,2014,36(8):739-746.

[28]Fewou SN,Ramakrishnan H,Büssow H,et al.Down-regulation of polysialic acid is required for efficientmyelin formation[J].JBiol Chem,2007,282(22):16700-16711.

[29]Sasai Y,Kageyama R,Tagawa Y,et al.Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split[J].Genes Dev,1992,6(12B): 2620-2634.

[30]Allen T,Lobe CG.A comparison of Notch,Hes and Grg expression during murine embryonic and post-natal development[J].Cell Mol Biol(Noisy-le-grand),1999,45 (5):687-708.

[31]Groot AJ,Habets R,Yahyanejad S,et al.Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins[J].Mol Cell Biol,2014,34(15):2822-2832.

[32]KotasováH,ProcházkováJ,Pacherník J.Interaction of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells[J].CellMol Neurobiol,2014,34 (1):1-15.

[33]Liu A,Li J,Marin-Husstege M,et al.A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players[J].EMBO J,2006,25(20): 4833-4842.

[34]Sim FJ,McClain CR,Schanz SJ,et al.CD140a identifies a population of highlymyelinogenic,migration-competent and efficiently engrafting human oligodendrocyte progenitor cells [J].Nat Biotechnol,2011,29(10):934-941.

[35]Plemel JR,Manesh SB,Sparling JS,et al.Myelin inhibits oligodendroglialmaturation and regulates oligodendrocytic transcription factor expression[J].Glia,2013,61(9): 1471-1487.

[36]Hennen S,Wang H,Peters L,etal.Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist[J].Sci Signal,2013,6 (298):ra93.

[37]Memezawa A,Takada I,Takeyama K,etal.Id2 gene-targeted crosstalk between Wnt and retinoid signaling regulates proliferation in human keratinocytes[J].Oncogene,2007,26(35):5038-5045.

[38]Li H,He Y,Richardson WD,et al.Two-tier transcriptional control of oligodendrocyte differentiation[J].Curr Opin Neurobiol,2009,19(5):479-485.

[39]Fang F,Zhang H,Zhang Y,et al.Antipsychotics promote the differentiation of oligodendrocyte progenitor cells by regulating oligodendrocyte lineage transcription factors 1 and 2[J].Life Sci,2013,93(12/14):429-434.

[40]Phochanukul N,Russell S.No backbone but lots of Sox: invertebrate Sox genes[J].Int JBiochem Cell Biol,2010,42(3):453-464.

[41]Stolt CC,Schlierf A,Lommes P,et al.SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function[J].Dev Cell,2006,11 (5):697-709.

[42]Tsukamoto H,Hishinuma T,Tayama R,et al.The induction of prostaglandin E synthase and upregulation of cyclooxygenase-2 by 9-cis retinoic acid[J].Prostaglandins Other Lipid Mediat,2004,74(1/4):61-74.

[43]Foldi J,Chung AY,Xu H,et al.Autoamplification of Notch signaling inmacrophages by TLR-induced and RBP-J-dependent induction of Jagged1[J].J Immunol,2010,185 (9):5023-5031.

Oligodendrocyte differentiation inhibiting factors and their regulation in multiple sclerosis

NIAN Xinwen,HE Cheng,CAO Li
(Department of Neurobiology,Second Military Medical University,Shanghai 200433,China)

Multiple sclerosis(MS)is a chronic inflammatory demyelinating disease characterized by demyelination and poor repair of lesions at the advanced stage in central nervous system (CNS).Till now,oligodendrocytematuration defects are seen asmajor causes of poor remyelination in MS.Themechanisms involved in the accurate regulation of oligodendrocytes(OLs)maturation include the intrinsic and extrinsic cues,aswell as intricate interactions between them.Both signaling including Notch1,Wnt/β-catenin,LINGO1,BMP4,HA/TLR2 and transcriptional factors including Hes5,ID2,ID4,sex determination region of Y chromosome-related high mobility group box(Sox)5 and Sox6 have been identified as an important repressive regulator of the differentiation of OLs and myelination.The local inflammatorymilieu also appears to play critical and conflicting roles in promotion and inhibition of remyelination in MS.Many new inhibiting factors towards OLs differentiation represent an exciting and important initial step towards developing new molecular therapeutics targeting disability in MS.Here,we provide an overview of these inhibiting factorsand their regulation in MS.

Multiple sclerosis(MS);Remyelination;Oligodendrocytes(OLs);Signaling;Repressive transcriptional factors

R744.5;R392

A

2095-3097(2014)06-0372-06

10.3969/j.issn.2095-3097.2014.06.014

2014-08-26 本文編輯:徐海琴)

國(guó)家自然科學(xué)基金(31130024)

200433上海,第二軍醫(yī)大學(xué)神經(jīng)生物學(xué)教研室(年新文,何 成,曹 莉)

曹 莉,E-mail:caoli.smmu@gmail.com

猜你喜歡
脫髓鞘髓鞘透明質(zhì)
聽覺神經(jīng)系統(tǒng)中的髓鞘相關(guān)病理和可塑性機(jī)制研究進(jìn)展
髓鞘探針在脫髓鞘疾病的應(yīng)用進(jìn)展
透明質(zhì)酸基納米纖維促進(jìn)創(chuàng)面愈合
MRI定量評(píng)估胎兒髓鞘研究進(jìn)展
缺血性腦白質(zhì)脫髓鞘病變的影響因素
激素治療中樞神經(jīng)系統(tǒng)炎性脫髓鞘疾病的療效觀察
人從39歲開始衰老
實(shí)驗(yàn)性自身免疫性神經(jīng)炎大鼠模型的制備與評(píng)價(jià)
有些疾病會(huì)“化妝”成脫髓鞘
透明質(zhì)酸酶在透明質(zhì)酸軟組織填充并發(fā)癥治療中的應(yīng)用
临沧市| 阳江市| 婺源县| 佛学| 天水市| 青海省| 白银市| 栖霞市| 策勒县| 库伦旗| 绥阳县| 广德县| 名山县| 闻喜县| 安仁县| 两当县| 安达市| 盐亭县| 嘉峪关市| 阜新市| 章丘市| 绥中县| 东城区| 泽库县| 衡阳市| 澄迈县| 阜阳市| 右玉县| 盐津县| 湖北省| 大安市| 犍为县| 阳曲县| 施甸县| 滦平县| 镇坪县| 舒城县| 横峰县| 郧西县| 贵港市| 彝良县|