国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

腦血管磁共振管壁成像:從不同的視角探索新的臨床路徑

2014-03-08 09:51:37趙錫海
中國卒中雜志 2014年5期
關(guān)鍵詞:易損管壁管腔

趙錫海

腦血管易損斑塊破裂隨即引發(fā)的血栓栓塞,是缺血性卒中的主要病理學(xué)基礎(chǔ)。因此,早期識別腦血管易損斑塊是缺血性卒中防控的關(guān)鍵。引起腦血管事件的責(zé)任病灶既可以發(fā)生于顱內(nèi)動脈,也可位于顱外頸動脈。有證據(jù)表明,不同種族之間易損斑塊在不同血管床的發(fā)生率存在一定的差異,亞洲人群顱內(nèi)動脈易損斑塊可能是缺血性卒中的主要病因,而美國白種人的缺血性卒中更多是由于顱外動脈易損斑塊所致(表1)[1-14]。由此可見,顱內(nèi)動脈可能是國人篩查易損斑塊的主要血管床。

現(xiàn)階段,通過各種血管成像手段[如超聲、計算機斷層掃描血管成像(computed tomography angiography,CTA)和磁共振血管成像(magnetic resonance angiography,MRA)]等測量管腔狹窄程度,仍然是評價腦動脈粥樣硬化病變嚴(yán)重性的主要指標(biāo)。然而,僅通過管腔信息判斷斑塊的易損性存在明顯的低估現(xiàn)象。研究顯示,超過20%的癥狀性輕度狹窄的頸動脈(狹窄<50%)存在易損斑塊[15-16],甚至某些易損斑塊并不引起管腔變化(狹窄=0%)[17]。這是因為粥樣硬化病變在發(fā)生、發(fā)展過程中存在“正性重構(gòu)效應(yīng)”,即病變向血管壁外膨脹性生長,而不引起管腔嚴(yán)重狹窄(圖1)[18]。這種正性重構(gòu)效應(yīng)廣泛存在于全身各個血管床,包括顱內(nèi)動脈和顱外頸動脈。因此,單純測量管腔狹窄并不能客觀反映粥樣硬化病變的嚴(yán)重性。

表1 腦血管病患者顱內(nèi)外動脈易損斑塊發(fā)生率的人群差異

注:粥樣硬化斑塊向血管外膨脹性生長,僅造成管腔輕度狹窄,狹窄程度:(D2-D1)/D2×100%=35%

病理學(xué)上,粥樣硬化易損斑塊主要表現(xiàn)為動脈管壁形態(tài)與成分的變化。易損斑塊通常表現(xiàn)為較大的斑塊負(fù)荷(厚度、面積或體積)、大脂質(zhì)核薄纖維帽、斑塊內(nèi)出血、纖維帽破裂或炎癥反應(yīng)及新生血管[19]。管腔狹窄只是粥樣硬化病變進(jìn)展產(chǎn)生的間接征象?;谝陨鲜聦崳u價易損斑塊的技術(shù)關(guān)鍵是如何敏感識別動脈管壁的成分特征,而不是單純測量管腔狹窄程度。

磁共振高分辨率管壁成像技術(shù),是目前評價頸動脈易損斑塊最為可靠的無創(chuàng)性影像學(xué)手段。這一技術(shù)的核心是應(yīng)用特殊的磁共振血流抑制技術(shù)(即黑血技術(shù))抑制管腔流動的血液信號,同時結(jié)合脂肪抑制技術(shù),獲得動脈管壁與管腔血流和管壁周圍脂肪間隙之間鮮明的信號對比,從而實現(xiàn)對動脈管壁的直接成像。此外,該技術(shù)還采用多對比度成像方法來識別斑塊成分[20-22],即時間飛躍法血管成像(timeof-flight,TOF)、T1加權(quán)像(T1weighted imaging,T1WI)、T2加權(quán)像(T2weighted imaging,T2WI)和磁化準(zhǔn)備快速回波序列(magnetization prepared rapid acquisition gradient echo sequences,MP-RAGE),利用不同物質(zhì)在不同對比度圖像上表現(xiàn)特征的差異性,來準(zhǔn)確識別斑塊內(nèi)各種成分,從而評價斑塊的易損性(圖2)。與病理學(xué)對照研究證實,磁共振高分辨率管壁成像技術(shù)幾乎能準(zhǔn)確識別所有易損斑塊的特征[21-22]。

圖2 頸動脈磁共振多對比度管壁成像

近年來,隨著磁共振成像技術(shù)的快速發(fā)展,管壁成像亦由原來的二維成像發(fā)展為三維成像。如表2所示,傳統(tǒng)的二維多對比度管壁成像存在耗時長、覆蓋范圍小、層面間分辨率低、迂曲血管存在部分容積效應(yīng)等缺點。近來,有學(xué)者研究開發(fā)出三維管壁成像序列用于評價腦血管易損斑塊,如運動敏感驅(qū)動快速梯度回波(motion-sensitizing driven equilibrium rapid gradient echo sequence,MERGE)[23]、非增強血管成像與斑塊內(nèi)出血同時成像序列(simultaneous noncontrast angiography and intraplaque hemorrhage,SNAP)[24]和等體素快速自旋回波采集序列(volume isotropic TSE acquisition,VISTA)/快速自旋回波(sampling perfection with application-optimized contrasts by using different flip angle evolutions,SPACE)[25]。三維成像序列具有掃描速度快、覆蓋范圍大等優(yōu)點,大大提高了成像效率,并且使顱內(nèi)外腦血管壁一站式成像成為可能。應(yīng)用三維管壁成像技術(shù),能夠直觀顯示腦動脈粥樣硬化病變的大小、形態(tài)以及位置分布,尤其對多發(fā)病變的顯示更具優(yōu)勢(圖3)。

通過磁共振管壁成像,可以獲得豐富的腦動脈粥樣硬化病變的量化信息,為臨床診斷、治療方案的選擇、療效評價及預(yù)防提供重要依據(jù)。管壁厚度、管壁面積、管壁體積及標(biāo)準(zhǔn)化管壁指數(shù)[管壁面積/(管壁面積+管腔面積)×100%]等是斑塊負(fù)荷的常用測量指標(biāo),這些反映粥樣硬化病變大小的參數(shù)與斑塊的易損性具有一定的相關(guān)性。通過管壁成像定性和定量評價斑塊成分特征(如鈣化、脂質(zhì)核、斑塊內(nèi)出血、纖維帽破裂等),對于斑塊易損性的判斷、腦血管事件風(fēng)險的預(yù)測、決策臨床治療方案以及他汀類藥物治療效果的評價具有重要意義。纖維帽破裂、斑塊內(nèi)出血和較大的

表2 二維和三維管壁成像的對比

圖3 三維管壁成像技術(shù)(MERGE)對腦血管粥樣硬化病變的顯示

脂質(zhì)核(脂質(zhì)核占據(jù)>40%的管壁面積)并伴有薄纖維帽是典型的易損斑塊特征。此外,通過磁共振動態(tài)增強技術(shù)測得的管壁高傳輸常數(shù)(transfer constant,Ktrans)或血漿容積分?jǐn)?shù)(fractional plasma volume,Vp)反映的是局部炎癥反應(yīng)和新生血管化的程度,存在這一特征的斑塊同樣具有一定的破裂風(fēng)險[26]。一系列前瞻性研究證實,纖維帽破裂、斑塊內(nèi)出血和

脂質(zhì)核大小是腦血管事件的有效預(yù)測指標(biāo)(表3)[27-32]。管壁成像獲得的斑塊特征信息還可以用于決策臨床治療方案。Yamada等[33]研究發(fā)現(xiàn),頸動脈出血性斑塊進(jìn)行支架植入術(shù)圍術(shù)期發(fā)生靜默腦梗死的概率是61%,這一比例明顯高于內(nèi)膜剝脫術(shù)(13%)。由于磁共振管壁成像是一項具有高度可重復(fù)性的技術(shù),現(xiàn)已被廣泛應(yīng)用于監(jiān)測他汀類藥物治療粥樣硬化病變療效的方面[34-35]。

磁共振管壁成像能夠精準(zhǔn)識別腦動脈粥樣硬化易損斑塊,并可對其進(jìn)行全面的定性和定量分析,充分利用管壁成像獲得的斑塊信息可能會改變腦血管病的臨床路徑。首先,對于腦動脈粥樣硬化病變嚴(yán)重性的評價,不應(yīng)僅局限于測量管腔狹窄程度,需要重點關(guān)注病變局部管壁的成分特征;其次,在臨床決策再血管化治療方案環(huán)節(jié),充分考慮斑塊的成分特征(如有無斑塊內(nèi)出血)有可能會降低圍術(shù)期并發(fā)癥,從而增加患者獲益;再次,對他汀類藥物治療效果評價傳統(tǒng)的做法局限于監(jiān)測血脂水平的變化,而不是直接觀察靶血管粥樣硬化病變有無進(jìn)展或退縮。由于磁共振管壁成像能夠直接顯示和準(zhǔn)確定量斑塊內(nèi)脂質(zhì)核成分,為臨床觀察藥物療效提供了有效的監(jiān)測手段;最后,磁共振管壁成像能夠?qū)δX動脈粥樣硬化病變的破裂風(fēng)險進(jìn)行分層分析,這將為制訂腦血管病的預(yù)防策略提供重要依據(jù)。當(dāng)然,磁共振管壁成像獲得的信息能否改變臨床路徑,還需要開展大規(guī)模前瞻性研究以提供更多的循證醫(yī)學(xué)證據(jù)。

表3 磁共振斑塊特征預(yù)測腦血管事件

1 Huang YN, Gao S, Li SW, et al. Vascular lesions in Chinese patients with transient ischemic attacks[J].Neurology, 1997, 48:524-525.

2 Leung SY, Ng TH, Yuen ST, et al. Pattern of cerebral atherosclerosis in Hong Kong Chinese. Severity in intracranial and extracranial vessels[J]. Stroke, 1993,24:779-786.

3 Wong KS, Li H, Chan YL, et al. Use of transcranial Doppler ultrasound to predict outcome in patients with intracranial large-artery occlusive disease[J]. Stroke,2000, 31:2641-2647.

4 Zhao H, Zhao X, Liu X, et al. Association of carotid atherosclerotic plaque features with acute ischemic stroke:a magnetic resonance imaging study[J]. Eur J Radiol, 2013, 82:e465-e470.

5 Guo Y, Jiang X, Chen S, et al. Aortic arch and intra-/extracranial cerebral arterial atherosclerosis in patients suffering acute ischemic strokes[J]. Chin Med J (Engl),2003, 116:1840-1844.

6 Gorelick PB, Wong KS, Bae HJ, et al. Large artery intracranial occlusive disease:a large worldwide burden but a relatively neglected frontier[J]. Stroke, 2008,39:2396-2399.

7 Kim YD, Choi HY, Cho HJ, et al. Increasing frequency and burden of cerebral artery atherosclerosis in Korean stroke patients[J]. Yonsei Med J, 2010, 51:318-325.

8 Ko Y, Park JH, Yang MH, et al. Signif i cance of aortic atherosclerotic disease in possibly embolic stroke:64-multidetector row computed tomography study[J]. J Neurol, 2010, 257:699-705.

9 Suwanwela NC, Chutinetr A. Risk factors for atherosclerosis of cervicocerebral arteries:intracranial versus extracranial[J]. Neuroepidemiology, 2003, 22:37-40.

10 Sacco RL, Kargman DE, Gu Q, et al. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study[J]. Stroke, 1999, 26:14-20.

11 Wityk RJ, Lehman D, Klag M, et al. Race and sex differences in the distribution of cerebral atherosclerosis[J]. Stroke, 1996, 27:1974-1980.

12 Russo C, Jin Z, Rundek T, et al. Atherosclerotic disease of the proximal aorta and the risk of vascular events in a population-based cohort:the Aortic Plaques and Risk of Ischemic Stroke (APRIS) study[J]. Stroke, 2009,40:2313-2318.

13 Di Tullio MR, Russo C, Jin Z, et al. Aortic arch plaques and risk of recurrent stroke and death[J]. Circulation,2009, 119:2376-2382.

14 Sacco RL, Khatri M, Rundek T, et al. Improving global vascular risk prediction with behavioral and anthropometric factors. The multiethnic NOMAS(Northern Manhattan Cohort Study)[J]. J Am Coll Cardiol, 2009, 54:2303-2311.

15 Saam T, Underhill HR, Chu B, et al. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identif i ed by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound[J]. J Am Coll Cardiol, 2008, 51:1014-1021.

16 Zhao X, Underhill HR, Zhao Q, et al. Discriminating carotid atherosclerotic lesion severity by luminal stenosis and plaque burden:a comparison utilizing high-resolution magnetic resonance imaging at 3.0 Tesla[J]. Stroke, 2011, 42:347-353.

17 Dong L, Underhill HR, Yu W, et al. Geometric and compositional appearance of atheroma in an angiographically normal carotid artery in patients with atherosclerosis[J]. AJNR Am J Neuroradiol, 2010,31:311-316.

18 Glagov S, Weisenberg E, Zarins CK, et al.Compensatory enlargement of human atherosclerotic coronary arteries[J]. N Engl J Med, 1987, 316:1371-1375.

19 Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient:a call for new def i nitions and risk assessment strategies:Part I[J]. Circulation,2003, 108:1664-1672.

20 Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques[J].Circulation, 2001, 104:2051-2056.

21 Cai JM, Hatsukami TS, Ferguson MS, et al.Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging[J]. Circulation, 2002, 106:1368-1373.

22 Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI[J]. Arterioscler Thromb Vasc Biol, 2005, 25:234-239.

23 Balu N, Yarnykh VL, Chu B, et al. Carotid plaque assessment using fast 3D isotropic resolution blackblood MRI[J]. Magn Reson Med, 2011, 65:627-637.

24 Wang J, B?rnert P, Zhao H, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage(SNAP) imaging for carotid atherosclerotic disease evaluation[J]. Magn Reson Med, 2013, 69:337-345.

25 Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-f l ip-angle turbo spin-echo(TSE) with fl ow-sensitive dephasing (FSD)[J]. J Magn Reson Imaging, 2010, 31:645-654.

26 Kerwin WS, O'Brien KD, Ferguson MS, et al.Inflammation in carotid atherosclerotic plaque:a dynamic contrast-enhanced MR imaging study[J].Radiology, 2006, 241:459-468.

27 Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events:a prospective assessment with MRI--initial results[J]. Stroke, 2006, 37:818-823.

28 Sadat U, Teng Z, Young VE, et al. Association between biomechanical structural stresses of atherosclerotic carotid plaques and subsequent ischaemic cerebrovascular events--a longitudinal in vivo magnetic resonance imaging-based fi nite element study[J]. Eur J Vasc Endovasc Surg, 2010, 40:485-491.

29 Kwee RM, van Oostenbrugge RJ, Mess WH, et al. MRI of carotid atherosclerosis to identify TIA and stroke patients who are at risk of a recurrence[J]. J Magn Reson Imaging, 2013, 37:1189-1194.

30 Singh N, Moody AR, Gladstone DJ, et al. Moderate carotid artery stenosis:MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men[J]. Radiology,2009, 252:502-508.

31 Hosseini AA, Kandiyil N, Macsweeney ST, et al.Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke[J]. Ann Neurol, 2013, 73:774-784.

32 Mono ML, Karameshev A, Slotboom J, et al. Plaque characteristics of asymptomatic carotid stenosis and risk of stroke[J]. Cerebrovasc Dis, 2012, 34:343-350.

33 Yamada K, Yoshimura S, Kawasaki M, et al. Embolic complications after carotid artery stenting or carotid endarterectomy are associated with tissue characteristics of carotid plaques evaluated by magnetic resonance imaging[J]. Atherosclerosis, 2011, 215:399-404.

34 Underhill HR, Yuan C, Zhao XQ, et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients:a high-resolution magnetic resonance imaging trial[J]. Am Heart J, 2008, 155:584.e1-8.

35 Zhao XQ, Dong L, Hatsukami T, et al. MR imaging of carotid plaque composition during lipid-lowering therapy:a prospective assessment of effect and time course[J]. JACC Cardiovasc Imaging, 2011, 4:977-986.

猜你喜歡
易損管壁管腔
3~4級支氣管管腔分嵴HRCT定位的臨床意義
吸引頭類管腔器械清洗中管腔器械清洗架的應(yīng)用分析
姜黃素誘協(xié)同阿托伐他汀穩(wěn)定易損斑塊的作用與機制
非絕緣管壁電磁流量計的權(quán)重函數(shù)仿真分析
更正聲明
消毒供應(yīng)中心管腔類手術(shù)器械清洗方法探討
水輔助共注塑彎管壁厚的實驗分析
中國塑料(2016年12期)2016-06-15 20:30:07
超聲造影聯(lián)合常規(guī)超聲觀察阿托伐他汀治療頸動脈易損斑塊的療效
更正聲明
管壁厚度對微擠出成型的影響分析
中國塑料(2015年12期)2015-10-16 00:57:22
酉阳| 江津市| 凤城市| 东阳市| 虎林市| 澎湖县| 英山县| 南投市| 苏州市| 盐边县| 同心县| 瑞安市| 芦溪县| 云龙县| 张家口市| 江油市| 平塘县| 南木林县| 中卫市| 凤庆县| 化州市| 淳安县| 准格尔旗| 福州市| 淄博市| 会昌县| 衡水市| 大理市| 新泰市| 澄城县| 平和县| 石泉县| 亳州市| 哈巴河县| 青田县| 金昌市| 呼伦贝尔市| 日土县| 古蔺县| 萍乡市| 灯塔市|