李振輪李鑫強(qiáng)楊水英
(1. 西南大學(xué)資源環(huán)境學(xué)院 土壤多尺度界面過程與調(diào)控重慶市重點(diǎn)實(shí)驗(yàn)室,重慶 400715;2. 西南大學(xué)植物保護(hù)學(xué)院,重慶 400715)
土壤因子對(duì)綠僵菌生命活動(dòng)的影響研究進(jìn)展
李振輪1李鑫強(qiáng)1楊水英2
(1. 西南大學(xué)資源環(huán)境學(xué)院 土壤多尺度界面過程與調(diào)控重慶市重點(diǎn)實(shí)驗(yàn)室,重慶 400715;2. 西南大學(xué)植物保護(hù)學(xué)院,重慶 400715)
綠僵菌是一種重要的昆蟲病原真菌,它廣泛分布于世界各地的土壤之中,在調(diào)節(jié)和控制土壤中有害昆蟲方面發(fā)揮著重要作用。但在農(nóng)業(yè)實(shí)際應(yīng)用過程中,綠僵菌殺蟲劑的施用效果很不穩(wěn)定,原因之一是受到了土壤因子對(duì)其生命活動(dòng)的影響。從土壤溫度和水分、土壤pH、土壤微生物和土壤質(zhì)地4個(gè)方面歸納總結(jié)了土壤因子對(duì)綠僵菌生命活動(dòng)影響的研究進(jìn)展,并對(duì)土壤因子影響綠僵菌生命活動(dòng)的新研究方向進(jìn)行了初步討論,以期為進(jìn)一步研究土壤因子影響綠僵菌生命活動(dòng)的作用機(jī)理及綠僵菌在實(shí)際生物防控地下害蟲領(lǐng)域的廣泛和高效應(yīng)用研究提供理論參考。
土壤因子 昆蟲病原真菌 綠僵菌 土壤溫度和水分 土壤pH 土壤質(zhì)地
綠僵菌(Metarhiziumspp.)屬半知菌亞門(Deutero-mycotina)、絲孢綱、絲孢目、綠僵菌屬(Metarhiziumsorokin),是一種昆蟲病原真菌。它能寄生8個(gè)目200余種昆蟲及一些螨類和線蟲。因其易于培養(yǎng)和寄主范圍廣的優(yōu)點(diǎn),使綠僵菌成為了當(dāng)今世界應(yīng)用最廣泛的生物殺蟲劑之一[1,2]。
綠僵菌廣泛分布于世界各地土壤之中,尤其集中分布在根際土壤之中[3,4],是一種常見的土著昆蟲病原真菌[5,6]。適宜的土壤環(huán)境能增加綠僵菌分生孢子的含量和菌的活力,有助于綠僵菌的生物防控功能[7]。 研究顯示,綠僵菌對(duì)持續(xù)控制地下害蟲的數(shù)量等方面,發(fā)揮著舉足輕重的作用[4,6,8]。目前,人們對(duì)綠僵菌的研究主要集中在綠僵菌與寄主相互作用的分子機(jī)制方面,綠僵菌分生孢子對(duì)寄主的識(shí)別、萌發(fā)和侵入寄主的機(jī)理,逃避寄主免疫、分泌胞外水解酶降解消耗寄主血腔營(yíng)養(yǎng)以及分泌毒素等分子機(jī)理已經(jīng)有了深入的認(rèn)識(shí)。
盡管利用綠僵菌制成的微生物殺蟲劑在防治地下害蟲方面具有重要的意義[9,10],但在實(shí)際應(yīng)用過程中,其施用效果常常不穩(wěn)定[11],原因之一是忽視了土壤因子對(duì)于綠僵菌生命活動(dòng)的影響。土壤是一個(gè)復(fù)雜的生態(tài)系統(tǒng),綠僵菌一旦進(jìn)入土壤這個(gè)帶電多孔介質(zhì)后,其生命活動(dòng)必然會(huì)受到土壤中有生命和無生命因子的影響[12]。目前研究結(jié)果表明土壤類型、質(zhì)地、溫度、水分和pH值等土壤宏觀性質(zhì)會(huì)直接或者間接影響綠僵菌在土壤中的移動(dòng)、數(shù)量、侵染率等[6],但是這些研究都集中在現(xiàn)象的描述,其作用機(jī)理并不清楚?;谀壳皣?guó)內(nèi)外這方面的研究成果,本文從土壤溫度和水分、土壤pH、土壤微生物、土壤質(zhì)地等4個(gè)方面歸納總結(jié)了土壤因子對(duì)綠僵菌生命活動(dòng)的影響,以期為進(jìn)一步研究土壤因子影響綠僵菌生命活動(dòng)的作用機(jī)理及綠僵菌在實(shí)際生物防控地下害蟲領(lǐng)域的廣泛和高效應(yīng)用研究提供理論參考。
1.1 土壤溫度、水分
溫度和水分是土壤因子的重要組成部分,同時(shí)也是影響綠僵菌數(shù)量和分布的最主要的因子。它們通過共同作用來影響綠僵菌的生存和侵染率。目前,土壤溫度和水分對(duì)于土壤中昆蟲病原真菌及其分生孢子影響的研究比較全面。綠僵菌集中分布在20-30℃的土壤中[13],且它的最適生長(zhǎng)溫度為30℃[14];在水分適量的情況下,綠僵菌分生孢子的最適萌發(fā)溫度為33-34℃[15];15℃以下時(shí),綠僵菌在土壤中的數(shù)量較少[16]。綠僵菌最適生長(zhǎng)的水分活度值在0.97-0.99之間[14]。在水分活度值小于0.333時(shí),綠僵菌分生孢子特別容易受到吸脹損傷的影響[17]。Ekesi[13]等用土水勢(shì)研究的結(jié)果顯示,在適宜溫度下,土水勢(shì)在-0.1和-0.01 Mpa時(shí)綠僵菌分生孢子對(duì)地中海果蠅蛹的侵染率最高,而-0.0055 MPa和-0.0035 Mpa時(shí)侵染率最低。這與其他人的研究結(jié)果一致,當(dāng)土壤中水分含量長(zhǎng)時(shí)間處于高水平時(shí),如遭遇雨季等,綠僵菌的數(shù)量會(huì)大幅度的減少甚至消失[18];短時(shí)間內(nèi)大規(guī)模的降雨和洪水會(huì)突然增加土壤中水分的含量,同樣會(huì)加速減少綠僵菌孢子的數(shù)量和分布[6]。
但是,土壤溫度對(duì)于綠僵菌生命活動(dòng)的影響往往受限于其他環(huán)境因子,如光、水分、化學(xué)藥品等[18]。其中,水分的影響比較顯著。如Ekesi等[13]研究發(fā)現(xiàn),在干土中,低溫(15℃)條件下對(duì)綠僵菌孢子的生存沒有影響;在濕土中,最適溫度(30℃)下,綠僵菌菌落數(shù)量也會(huì)急劇降低。即使是在適宜的溫度范圍,干燥綠僵菌分生孢子的萌發(fā)率也會(huì)降低44%[19]。
1.2 土壤pH
土壤pH對(duì)綠僵菌的分布和生理活動(dòng)具有重要影響。Hallsworth和Magan[20]的研究表明,包括綠僵菌在內(nèi)的3種土著昆蟲病原真菌的最適生長(zhǎng)pH范圍為5-8,并且指出pH顯著影響分生孢子的基因表達(dá),這可能是參與誘導(dǎo)了水的應(yīng)激反應(yīng)有關(guān)。綠僵菌在pH<7和pH 8-8.5的土壤中分布數(shù)量相似,并且都顯著高于其它pH值土壤中綠僵菌的數(shù)量[12]。St Leger等[21]研究發(fā)現(xiàn),周圍環(huán)境pH對(duì)于土壤中綠僵菌分泌昆蟲體壁分解酶和疏水蛋白起到了決定性作用,如合成并且分泌天冬氨酰磷酸酶的最適pH為3,分泌幾丁質(zhì)酶的最適pH為5;pH 5-8時(shí),疏水蛋白的分泌量沒有顯著差異,但是pH降為 3時(shí),疏水蛋白的分泌量為零。盡管土壤pH對(duì)綠僵菌毒力基因表達(dá)能產(chǎn)生強(qiáng)烈的影響,但是綠僵菌的變異菌株也會(huì)通過調(diào)節(jié)草酸的分泌量來改變周圍土壤環(huán)境的pH,以此保證分泌的胞外蛋白酶的產(chǎn)量和活性[19]。所以,土壤pH既可以影響土壤中綠僵菌的生命活動(dòng),也可以被綠僵菌的代謝產(chǎn)物調(diào)節(jié)和影響。
1.3 土壤微生物
土壤是由不同種類的無生命的、有生命的物質(zhì)所組成的復(fù)雜生態(tài)系統(tǒng)。土著昆蟲病原真菌與廣泛存在于土壤中的真菌、細(xì)菌、原生動(dòng)物、線蟲、節(jié)肢動(dòng)物等存在著寄生、捕食和拮抗等相互作用[17,22-24]。其中,土壤微生物通過在營(yíng)養(yǎng)物質(zhì)和生存空間方面的競(jìng)爭(zhēng),以及寄生和拮抗作用等對(duì)土著昆蟲病原真菌產(chǎn)生直接或間接的顯著影響[25,26]。Zou[27]和Popowska-Nowak等[28]報(bào)道了多種細(xì)菌和放線菌等可以合成抗真菌的物質(zhì)(乙酰胺、苯甲醛等),這些物質(zhì)能夠顯著的抑制多種昆蟲病原真菌孢子的萌發(fā)和菌絲的生長(zhǎng)。而且,越來越多的證據(jù)證明了土壤中微生物能夠合成分泌一類很廣范圍的抗真菌有機(jī)物質(zhì)[25,26],這些有機(jī)物可能對(duì)綠僵菌的生命活動(dòng)產(chǎn)生顯著影響。
土壤中最重要的、廣泛分布的3種昆蟲病原真菌:蟲生真菌粉質(zhì)擬青霉(Paecilomyces farinosus)、白僵菌(Beauveria bassiana)及綠僵菌(M. anisopliae)[29],它們之間也存在著全面且長(zhǎng)遠(yuǎn)的競(jìng)爭(zhēng)關(guān)系,尤其是白僵菌和綠僵菌之間。研究表明,在土壤生態(tài)環(huán)境中,特別是在種植小麥和棉花的土壤中[30],白僵菌數(shù)量顯著高于其他兩種昆蟲病原真菌[29,31]。白僵菌在高黏粒含量、高土壤pH和低有機(jī)質(zhì)含量土壤中的數(shù)量遠(yuǎn)大于綠僵菌[12]。Sun等[32]研究發(fā)現(xiàn),白僵菌對(duì)一種雌性璃眼蜱的致死率顯著高于綠僵菌,表現(xiàn)出更強(qiáng)的毒性[33]。得出一致結(jié)果的還有Hussein等[30],他們的研究結(jié)果顯示,在昆蟲病原真菌致死的大蠟螟幼蟲中,白僵菌占了85.71%,而綠僵菌只占14.29%。這些研究結(jié)果表明,綠僵菌在土壤中的分布和生命活動(dòng)會(huì)受到白僵菌顯著的影響。
土壤中也存在著許多微生物和綠僵菌友好的共生在土壤生態(tài)系統(tǒng)中。Krauss等[34]和Lopez 等[35]報(bào)道了一種寄生真菌(Trichoderma),不僅對(duì)綠僵菌的生命活動(dòng)沒有影響,而且它們能夠長(zhǎng)期共存,共同有效地致力于對(duì)害蟲的生物防控。Pava-Ripoll等[36]研究發(fā)現(xiàn)在含有豆科植物根分泌物的根際土壤中,綠僵菌分生孢子的萌發(fā)率與一種土壤腐生微生物(Trichoderma harzianum)孢子的發(fā)芽率相同,暗示綠僵菌和這種腐生微生物可以共生。與此同時(shí),不同種類的綠僵菌之間也會(huì)分泌不同的蛋白質(zhì),與土壤中的不同因子發(fā)生復(fù)雜的相互作用來維持生存[37]。
1.4 土壤質(zhì)地
土壤質(zhì)地對(duì)綠僵菌及其分生孢子在土壤中的數(shù)量、分布以及生命活動(dòng)的影響受到越來越多的關(guān)注。Roberts[38]研究表明,綠僵菌分泌的能夠引起大蠟螟幼蟲強(qiáng)制性麻痹的外毒素,大量集中的分布在土壤表層的中下部,而在表層向下10 cm范圍分布較少。這表明土壤的不同分層會(huì)影響綠僵菌的分布,綠僵菌的生命活動(dòng)也會(huì)受到顯著的影響。Salazar等[39]試驗(yàn)證明了綠僵菌分生孢子在不同土壤中垂直移動(dòng)與分布不同。在某些土壤中,分生孢子能快速的移動(dòng)到整個(gè)土壤剖面均勻分布,而在有的土壤中移動(dòng)緩慢,且分布不均。這表明土壤的質(zhì)地和組成也會(huì)影響綠僵菌及其分生孢子的生命活動(dòng)。
為了更加深入的解釋土壤對(duì)綠僵菌生命活動(dòng)影響的原因,人們進(jìn)行了多方面的研究。Klingen等[40]研究表明,綠僵菌在黏粒含量低的土壤上分布數(shù)量較多,在相同土壤基質(zhì)勢(shì)時(shí),綠僵菌在黏土中30 d后數(shù)量下降顯著,而在沙壤土上要60 d時(shí)數(shù)量才開始減少。這一結(jié)果與Quesada-Moraga等[12]研究結(jié)果一致,試驗(yàn)表明,在低含量或者中等含量黏粒(<10%)的土壤中,綠僵菌的菌落數(shù)量達(dá)到最大。并且,土壤孔隙的大小和分布會(huì)顯著影響綠僵菌的致病性[41]。
同時(shí),土壤中的有機(jī)質(zhì)的含量也會(huì)影響綠僵菌的分布。有機(jī)質(zhì)含量越高,綠僵菌數(shù)量越多;綠僵菌幾乎不存在于有機(jī)質(zhì)含量低(<2%)的堿性沙土中。然而Scheepmaker等[6]的研究發(fā)現(xiàn)泥炭含量越高的土壤,越不利于綠僵菌的生存,但是越有利于綠僵菌分生孢子在土壤中的移動(dòng)。泥炭也是有機(jī)質(zhì),這種結(jié)論出現(xiàn)矛盾的原因還有待進(jìn)一步研究。綠僵菌在含有離子(KCl)的培養(yǎng)基中的生長(zhǎng)速率顯著高于在非離子(甘油)和惰性溶液(PEG600)培養(yǎng)基中的生長(zhǎng)速率[14];但Garrido-Jurado 等[42]研究顯示,土壤中添加不同離子強(qiáng)度的CaCl2溶液,卻不影響綠僵菌分生孢子對(duì)一種地中海果蠅圍蛹的的侵染率。盡管作用的機(jī)制尚不清楚,但由此可以推測(cè)土壤中的某些電解質(zhì)溶液會(huì)顯著影響綠僵菌的生長(zhǎng),但是可能對(duì)侵染力影響不顯著。
土壤為包括綠僵菌在內(nèi)的許多昆蟲病原真菌提供了適宜的棲息場(chǎng)所[43],同時(shí),昆蟲病原真菌也在為控制土著害蟲的數(shù)量上發(fā)揮著非常重要的作用。
土壤溫度、水分對(duì)昆蟲病原真菌的影響,往往受到地理位置、氣候、季節(jié)交替等多方面綜合因素的影響,從而在宏觀上影響著綠僵菌的整體分布,也使得土壤溫度和水分成為土壤影響綠僵菌生命活動(dòng)的主導(dǎo)因素。土壤pH值、微生物種群結(jié)構(gòu)和土壤質(zhì)地,從微觀角度調(diào)節(jié)綠僵菌的數(shù)量以及各項(xiàng)生理功能,它們3個(gè)因子也構(gòu)成了相互影響、共同作用的綜合性影響因子。土壤pH和土壤質(zhì)地,會(huì)顯著影響微生物的群落結(jié)構(gòu);而各種微生物的不同新陳代謝產(chǎn)物,也會(huì)反作用于土壤pH和土壤質(zhì)地,從而產(chǎn)生顯著的影響。同時(shí),人類的農(nóng)業(yè)生產(chǎn)活動(dòng),如耕作、種植不同作物[44]、施加化學(xué)農(nóng)藥、添加硅藻土[45]等,會(huì)局部地、間接地改變土壤水分狀況、土壤pH值、微生物種群結(jié)構(gòu)和土壤質(zhì)地組成,從而影響了昆蟲病原真菌在土壤中的分布和其生命活動(dòng)。所以,在綠僵菌實(shí)際生防應(yīng)用過程當(dāng)中,不能單一考慮某種土壤因子的影響,而是要綜合性分析各個(gè)土壤因子之間的關(guān)系,從中找出影響因子的主次關(guān)系,這可以為綠僵菌在實(shí)際農(nóng)業(yè)生產(chǎn)中生物防控領(lǐng)域的廣泛和高效地應(yīng)用提供理論基礎(chǔ)。
雖然一些化學(xué)農(nóng)藥、殺蟲劑、除草劑和殺菌劑在純培養(yǎng)基上的試驗(yàn)結(jié)果表明這些化學(xué)藥劑對(duì)綠僵菌等昆蟲病原真菌有抑制甚至致死的作用,但這些化學(xué)藥劑進(jìn)入土壤這個(gè)多空介質(zhì)后對(duì)綠僵菌等昆蟲病原真菌的作用會(huì)反生很大變化,有的甚至變成促進(jìn)病原真菌對(duì)寄主的侵染[46,47]。然而目前這方面的研究結(jié)果很有限,因此值得更多的去研究和積累。研究成果將為我們?cè)趯?shí)際的生產(chǎn)過程中合理利用化學(xué)農(nóng)藥和生物農(nóng)藥提供理論依據(jù),可以極大地提高土著害蟲的綜合防治效率。
盡管目前研究結(jié)果已經(jīng)證明,土壤pH等宏觀性質(zhì)會(huì)顯著影響綠僵菌及其分生孢子的生 命活動(dòng),但鮮有深入研究這些土壤宏觀性質(zhì)對(duì)綠僵菌等昆蟲病原真菌影響的作用機(jī)制,更沒有從土壤宏觀性質(zhì)形成基礎(chǔ)——土壤膠體方面來研究其作用機(jī)理。因此土壤膠體的類型、表面電場(chǎng)強(qiáng)度、電荷密度等方面是否對(duì)綠僵菌生命活動(dòng)產(chǎn)生影響值得關(guān)注。我們相信,隨著研究的深入,土壤因子影響昆蟲病原真菌的作用機(jī)制將越來越明朗化,這將為提高昆蟲病原真菌防控地下害蟲的應(yīng)用效果奠定理論基礎(chǔ)。
[1] Meyling NV, Eilenberg J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems:potential for conservation biological control[J]. Biological Control, 2007, 43(2):145-155.
[2] Zimmermann G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae[J]. Biocontrol Science and Technology, 2007, 17(9):875-920.
[3] Patricia VT, Mariele PCL, Elaine M, et al. Persistence and effect of Metarhizium anisopliae in the fungal community of sugarcane soil[J]. Bio Control, 2012, 57:653-661.
[4] Bruck DJ. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere:implications for pest management[J]. Biological Control, 2005, 32(1):155-163.
[5] Nishi O, Hasegawa K, Liyama K, et al. Phylogenetic analysis of Metarhizium spp. isolated from soil in Japan[J]. The Japanese Society of Applied Entomology and Zoology, 2011, 46(3):301-309.
[6] Scheepmaker JWA, Butt TM. Natural and released inoculum levels of entomopathogenic fugal biocontrol agents in soil in relation to risk assenssmennt and in accordance with EU regulations[J]. Biocontrol Science and Technology, 2010, 20(5):503-552.
[7] Garrido-Jurado I, Valverde-Garcia P, Quesada-Moraga E. Use of a multiple logistic regression model to determine the effects of soil moisture and temperature on the virulence of entomopathogenic fungi against pre-imaginal mediterranean fruit fly Ceratitis capitata[J]. Biological Control, 2011, 59(3):366-372.
[8] Guzmán-Franco AW, Hernández-López J, Enríquez-Vara JN, et al. Susceptibility of Phyllophaga polyphylla and Anomala cincta larvae to Beauveria bassiana and Metarhizium anisopliae isolates, and the interaction with soil properties[J]. Bio Control, 2012, 57:553-563.
[9] Ekesi S, Maniania NK, Mohamed SA, et al. Effect of soil application of different formulations of Metarhizium anisopliae on African tephritid fruit flies and their associated endoparasitoids[J]. Biological Control, 2005, 35(1):83-91.
[10] Ansari MA, Brownbridge M, Shah FA, et al. Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis, in plant-growing media[J]. Entomologia Experimentalis et Applicata, 2008, 127(2):80-87.
[11] Samsona PR, Staiera TN, Bullb JI. Evaluation of an application procedure for Metarhizium anisopliae in sugarcane ratoons for control of the white grub Dermolepida albohirtum[J]. Crop Protection, 2006, 25(8):741-747.
[12] Quesada-Moraga E, Navas-Cortés JA, Maranhao EAA, et al. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils[J]. Mycological Research, 2007, 111(8):947-966.
[13] Ekesi S, Maniania NK, Lux SA. Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia[J]. Journal of Invertebrate Pathology, 2003, 83(2):157-167.
[14] Hallsworth JE, Magan N. Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus[J]. Journal of Invertebrate Pathology, 1999, 74(3):261-266.
[15] Faria M, Hajek AE, Wraight SP. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium acridum, and Metarhizium anisopliae[J]. Biological Control. 2009, 51(3):364-354.
[16] Sookar P, Bhagwant S, Ouna EA. Isolation of entomopathogenic fungi from the soil and their pathogenicity to two fruit fly species(Diptera:Tephritidae)[J]. Journal of Applied Entomology, 2008, 132(9-10):778-788.
[17] Koukol O, Mourek J, Janovsky Z, et al. Do oribatid mites(Acari Oribatida)show a higher preference for ubiquitous vs. specialized saprotrophic fungi from pine litter?[J]. Soil Biology and Biochemistry, 2009, 41(6):1124-1131.
[18] Garcia MV, Monteiro AC, Szabó MPJ, et al. Effect of Metarhizium anisopliae fungus on off-host Rhipicephalus(Boophilus)microplus from tick-infested pasture under cattle grazing in Brazil[J]. Veterinary Parasitology, 2011, 181(2-4):267-273.
[19] St Leger RJ, Nelson JO, Screen SE. The entomopathogenic gungus Metarhizium anisopiae alters ambient pH, allowing extracellular protease production and activity[J]. Microbiology, 1999, 145(10):2691-2699.
[20] Hallsworth JE, Magan N. Culture age, temperature and pH affect polyol and trehalose accumulation in fungal propagules[J]. Applied and Environmental Microbiology. 1996, 62(7):2435-2442.
[21] St Leger RJ, Joshi L, Roberts D. Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopiae[J]. Applied and Environmental Microbiology, 1998, 64(2):709-713.
[22] Maraum M, Martens H, Migge S, et al. Adding to “the enigma of soil animal diversity”:fungal feeders and saprophagous soil invertebrates prefer similar food substrates[J]. European Journal of Soil Biology, 2003, 39(2):85-95.
[23] Hasna MK, Insunza V, Lagerlof J, et al. Food attraction and population growth of fungivorous nematodes with different fungi[J]. Annals of Applied Biology, 2007, 151(2):175-182.
[24] Adl MS, Gupta VVSR. Protists in soil ecology and forest nutrient cycling[J]. Canadian Journal Forest Research, 2006, 36:1805-1817.
[25] Kai M, Effmert U, Berg G, et al. Volatiles of bacterial antagonists inhibit mycelia growth of plant pathogen Rhizoctonia solani[J]. Archives of Microbiology, 2007, 187:351-360.
[26] Vespermann A, Kai M, Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Aribidopsis thaliana[J]. Applied and Environment Microbiology, 2007, 73(17):5639-5641.
[27] Zou CS, Mo MH, Gu YQ, et al. Possible contributions of volatileproducing bacteria to soil fungistasis[J]. Soil Biology and Biochemistry, 2007, 39(9):2371-2379.
[28] Popowska-Nowak E, Bajan C, Augustyniuk-Kram A, et al. Interactions between soil microorganisms:bacteria, actinomycetes and entomopathogenic fungi of the genera Beauveria and Paecilomyces[J]. Polish Journal of Ecology, 2003, 51(1):85-90.
[29] Sun B, Liu X. Occurrence and diversity of insect-associated fungi in nature soils in China[J]. Applied Soil Ecology, 2008, 39(1):100-108.
[30] Hussein KA, Abdel-Rahman MAA, Abdel-Mallek AY, et al. Climatic factors interference with the occurrence of Beauveria bassiana and Metarhizium anisopliae in cultivated soil[J]. African Journal of Biotechnology, 2010, 9(45):7674-7682.
[31] Imoulan A, Alaoui A, Meziane AE. Natural occurrence of soil-borne entomopathogenic fungi in the Moroccan Endemic forest of Argania spinosa and their pathogenicity to Ceratitis capitata[J]. World Journal of Microbiology and Biotechnology, 2011, 27(11):2619-2628.
[32] Sun M, Ren Q, Guan G, et al. Virulence of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus to the engorged female Hyalomma anatolicum anatolicum tick(Acari:Ixodidae)[J]. Veterinary Parasitology, 2011, 180(3-4):389-393.
[33] Cherry AJ, Abalo P, Hell K. A laboratory assessment of the potential of different strains of the eotomopathogenic fungi Beauveria bassiana(Balsamo)Vuillenmin and Metarhizium anisopliae(Metschnikoff)to control Callosobruchus maculates(F.)(Coleoptera:Bruchidae)in stored cowpea[J]. Journal of Stored Products Research, 2005, 41:295-309.
[34] Krauss U, Hidalgo E, Arroyo C, et al. Interaction between the entomopathogens Beauveria bassiana, Metarhizium anisopliae and Paecilomyces funosoroseus and the Mycoparasites Clonostachys spp., Trichoderma harzianum and Lecanicillium[J]. Biocontrol Science and Technology, 2004, 14(4):331-346.
[35] Lopez E, Orduz S. Metarhizium anisopliae and Trichoderma viride for control of nests of fungus-growing ant, Atta cephalites[J]. Biological Control, 2003, 27(2):194-200.
[36] Pava-Pipoll M, Angelini C, Fang W, et al. The rhizospherecompetent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudates[J]. Microbiology, 157(1):47-55.
[37] St Leger R, Wang C, Fang W. New perspectives on insect pathogens[J]. British Mycological Society, 2011, 25(2):84-88.
[38] Roberts DW. Toxins from the entomogenous fungus Metarhizium anisopiae:Production in submerged and surface cultures, and in inorganic and organic nitrogen media[J]. Journal of Invertebrate Pathology, 1966, 8(2):212-221.
[39] Salazar A MP, Gerding MG, France AL, et al. Displacement of conidia of Metarhizium anisopliae var. anisopliae in columns of three soil series[J]. Agricultura Técnica, 2007, 67(3):236-243.
[40] Klingen I, Eilenberg J, Meadow R. Effects of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils[J]. Agrculture Ecosystems and Environment, 2002, 91(1-3):191-198.
[41] Jaronski ST. Ecological factors in the inundative use of fungal entomopathogens[J]. Biocontrol, 2010, 55(1):159-185.
[42] Garrido-Jurado I, Torrent J, Barron V, et al. Soil properties affect the availability, movement, and virulence of entomopathogenic fungi conidia against puparia of Ceratitis capitata(Diptera:Tephritidae)[J]. Biological Control, 2011, 58(3):277-285.
[43] Schneider S, Widmer F, Jacot K., et al. Spatial distribution of Metarhizium clade 1 in agricultural landscapes with arable land and different semi-natural habitats[J]. Applied Soil Ecology, 2012, 52:20-28.
[44] Lopes RB, Mesquita ALM, Tigano MS, et al. Diversity of indigenous Beauveria and Metarhizium spp. in a commercial banana field and their virulence toward Cosmopolites sordidus(Coleoptera:Curculionidae)[J]. Fungal Ecology, 2013, 6(5):356-364.
[45] Christian L, Juscelino R, Luiz FN. Diatomaceous earth and oil enhance effectiveness of Metarhizium anisopliae against Triatoma infestans[J]. Acta Tropica, 2012, 122:29-35.
[46] ED Quintela, GM Mascarin, RA da Silva, et al. Enhanced susceptibility of Tibraca limbativentris(Heteroptera:Pentatomidae)to Metarhizium anisopliae with sublethal doses of chemical insecticides[J]. Biologic Control, 2013, 66:56-64.
[47] Verona S, Hans-Michael P. In vitro effect of pesticides on the germination, vegetative growth, and conidial production of two strains of Metarhizium anisopliae[J]. Fungal Biology, 2012, 116:121-132.
(責(zé)任編輯 狄艷紅)
Edaphic Factor that Affect the Activity of Entomopathogenic Fungus Metarhizium anisopliae
Li Zhenlun1Li Xinqiang1Yang Shuiying2
(1. Chongqing Key Laboratory of Soil Multi-scale Interfacial Processes,College of Resources and Environment,Southwest University,Chongqing 400715;2. College of Plant Pretection,Southwest University,Chongqing 400715)
Metarhizium anisopliae is an important entomopathogenic fungus which is common and widely distributed in soil throughout the world. M. anisopliae plays an essential role in the regulation and control of soil pests and it is one of the most widely used biological insecticides. However, the efficiency of controlling soil pests is not steady, and one of the reasons is the activity of M. anisopliae affected by the complexity edaphic factors. The present article reviewed 5 edaphic factors that influence the activity of M. anisopliae, such as soil temperature and moisture, soil pH, edaphon and soil texture. New research direction about edaphic factor influencing on the activity of M. anisopliae was also discussed. The review would provide reference for further study of mechanism about the edaphic factors influencing life activities of M. anisopliae, which would be benefic to regulate and control soil pests using the M. anisopliae.
Edaphic factor Entomopathogenic fungus Metarhizium anisopliae Edaphic temperature and moisture Soil pH Soil texture
2013-08-14
國(guó)家自然科學(xué)基金項(xiàng)目(30871630)
李振輪,男,博士,副教授,研究方向:土壤生物學(xué);E-mail:lizhlun4740@sina.com