国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一種通用型piggyBac轉(zhuǎn)座子誘導(dǎo)細(xì)胞永生化載體的構(gòu)建及其基本功能驗(yàn)證

2014-06-24 14:14黃惠胡廣東康健卿素珠張涌
生物工程學(xué)報(bào) 2014年8期
關(guān)鍵詞:轉(zhuǎn)座子克隆剪切

黃惠,胡廣東,康健,卿素珠,張涌

1 西北農(nóng)林科技大學(xué)動(dòng)物醫(yī)學(xué)院, 陜西 楊凌 712100

2 西北農(nóng)林科技大學(xué) 農(nóng)業(yè)部動(dòng)物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室, 陜西 楊凌 712100

動(dòng)物及獸醫(yī)生物技術(shù)

一種通用型piggyBac轉(zhuǎn)座子誘導(dǎo)細(xì)胞永生化載體的構(gòu)建及其基本功能驗(yàn)證

黃惠1,2,胡廣東1,2,康健1,2,卿素珠1,張涌1,2

1 西北農(nóng)林科技大學(xué)動(dòng)物醫(yī)學(xué)院, 陜西 楊凌 712100

2 西北農(nóng)林科技大學(xué) 農(nóng)業(yè)部動(dòng)物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室, 陜西 楊凌 712100

為了構(gòu)建一種高效、通用的細(xì)胞永生化載體pTP-hTERT,通過(guò)人工合成、PCR、酶切連接等方法,對(duì)傳統(tǒng)piggyBac (PB) 轉(zhuǎn)座子系統(tǒng)進(jìn)行改造。改造后的載體含有轉(zhuǎn)座必需元件、PB轉(zhuǎn)座酶 (PBase) 表達(dá)框、共表達(dá)篩選元件和人端粒逆轉(zhuǎn)錄酶 (hTERT) 基因表達(dá)框。其中篩選元件中綠色熒光蛋白 (EGFP)基因和嘌呤霉素抗性 (Puror) 基因以豬捷申病毒2A自我剪切肽相連,以實(shí)現(xiàn)共表達(dá)。為驗(yàn)證載體元件功能,使用該載體轉(zhuǎn)染HEK 293細(xì)胞,并對(duì)篩選出的陽(yáng)性細(xì)胞進(jìn)行RT-PCR、Western blotting (WB)、熱不對(duì)稱PCR (Tail-PCR) 和細(xì)胞克隆亞甲藍(lán)染色與統(tǒng)計(jì)分析。載體測(cè)序鑒定與細(xì)胞培養(yǎng)結(jié)果表明,通用型永生化載體 pTP-hTERT構(gòu)建成功,轉(zhuǎn)染HEK293細(xì)胞后能篩選出抗嘌呤霉素細(xì)胞單克隆;WB結(jié)果顯示P2A可高效切割EGFP和Puror融合蛋白,證明篩選標(biāo)記基因功能正常;Tail-PCR結(jié)果表明該載體以轉(zhuǎn)座整合插入宿主基因組;亞甲藍(lán)染色統(tǒng)計(jì)結(jié)果顯示由pTP-hTERT引發(fā)的細(xì)胞陽(yáng)性克隆數(shù)與對(duì)照組相比顯著提高 (P<0.01)。PB轉(zhuǎn)座子永生化載體pTP-hTERT的構(gòu)建為永生化細(xì)胞系的建立提供了工具,同時(shí)也為其他真核載體的構(gòu)建和改造提供了參考。

piggyBac (PB) 轉(zhuǎn)座子,P2A,融合蛋白,hTERT

轉(zhuǎn)座子 (Transposon) 是一類能在宿主基因組中變更插入位置的可移動(dòng)遺傳因子,其變更插入位置的過(guò)程被稱為轉(zhuǎn)座 (Transposition)。piggyBac (PB) 轉(zhuǎn)座子是病毒遺傳學(xué)家Fraser等最初發(fā)現(xiàn)并構(gòu)建二元轉(zhuǎn)座系統(tǒng)證明其不僅僅在一個(gè)動(dòng)物宿主中具有轉(zhuǎn)座活性[1]。自中國(guó)學(xué)者證明該轉(zhuǎn)座子可在哺乳動(dòng)物細(xì)胞中高效轉(zhuǎn)座以來(lái)[2],PB轉(zhuǎn)座系統(tǒng)逐漸作為一種高效基因傳遞工具被應(yīng)用于各種哺乳動(dòng)物基因工程試驗(yàn)中,如反向遺傳篩選[3]、轉(zhuǎn)基因動(dòng)物生產(chǎn)[4-5]、iPS誘導(dǎo)[6-7]、RNA干擾[8]、基因治療[9]以及誘導(dǎo)突變[10-11]等。

PB轉(zhuǎn)座的發(fā)生是由PB轉(zhuǎn)座酶 (PB transposase,PBase) 介導(dǎo)的,實(shí)際應(yīng)用過(guò)程中,PB轉(zhuǎn)座系統(tǒng)是由一個(gè)供體質(zhì)粒和一個(gè)輔助質(zhì)粒組成的二元系統(tǒng)[12]。供體質(zhì)粒包含轉(zhuǎn)座發(fā)生所必需的5′TR和3′TR核苷酸序列[13],并承擔(dān)攜帶篩選報(bào)告基因表達(dá)框和外源基因的功能,輔助質(zhì)粒主要包含一個(gè)PBase表達(dá)框,供體質(zhì)粒和輔助質(zhì)粒按比例共轉(zhuǎn)染細(xì)胞后,在PBase的作用下,供體質(zhì)粒中的轉(zhuǎn)座元件特異性插入宿主基因組TTAA位點(diǎn)[14-15]。有報(bào)道表明PB轉(zhuǎn)座系統(tǒng)攜帶100 kb大小的外源基因依然具有較高活性[16],因而該系統(tǒng)在實(shí)現(xiàn)大片段基因或多基因在哺乳動(dòng)物細(xì)胞中的表達(dá)具有較廣闊的應(yīng)用前景。

本研究對(duì)傳統(tǒng)PB轉(zhuǎn)座子二元質(zhì)粒系統(tǒng)進(jìn)行改造,將供體質(zhì)粒和輔助質(zhì)粒整合組成單質(zhì)粒PB轉(zhuǎn)座系統(tǒng),利用豬捷申病毒2A自剪肽(Porcine teschovirus-1 2A peptide, P2A)連接綠色熒光蛋白 (Enhanced green fluorescent protein,EGFP) 和嘌呤霉素抗性 (Puromycinresistance,Puror) 基因組成篩選標(biāo)記基因表達(dá)框,并在該表達(dá)框的兩端引入Loxp序列。同時(shí),插入由CMV啟動(dòng)子介導(dǎo)的人端粒酶逆轉(zhuǎn)錄酶表達(dá)框,最終構(gòu)建成功由PB轉(zhuǎn)座子介導(dǎo)hTERT表達(dá)的永生化載體,將該載體轉(zhuǎn)染HEK293細(xì)胞后,對(duì)載體的基本特性進(jìn)行鑒定。

1 材料與方法

本試驗(yàn)于2012年6月至2013年8月在西北農(nóng)林科技大學(xué)農(nóng)業(yè)部直屬動(dòng)物生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。

1.1 材料

1.1.1 質(zhì)粒、菌株和細(xì)胞

質(zhì)粒pMD18-T Simple、pMD18-T購(gòu)自寶生物工程 (大連) 有限公司;pEGFP-C1、pEF1α-Tet3G購(gòu)自美國(guó)Clontech Laboratories;pCDH-MCS-T2A-Puror-MSCV購(gòu)自于美國(guó)System Biosciences SBI公司;質(zhì)粒pCI-neohTERT由西北農(nóng)林科技大學(xué)動(dòng)物醫(yī)學(xué)院張彥明教授惠贈(zèng);大腸桿菌DH5α感受態(tài)購(gòu)自于全式金 (北京) 生物技術(shù)有限公司;pBNW-TP2質(zhì)粒由本實(shí)驗(yàn)室構(gòu)建并保存;HEK293細(xì)胞系購(gòu)自中國(guó)科學(xué)院細(xì)胞庫(kù)。

1.1.2 工具酶和試劑

內(nèi)切酶均購(gòu)自NEB公司。T4 DNA連接酶、PrimeSTAR DNA聚合酶、rTaq DNA聚合酶、染色體步移試劑盒購(gòu)自寶生物工程 (大連) 有限公司。Blue PlusProteinⅡmarker、GFP單克隆抗體、羊抗兔二抗、Pfu DNA聚合酶購(gòu)自全式金 (北京) 生物技術(shù)有限公司;質(zhì)粒提取試劑盒購(gòu)于生工生物工程 (上海) 股份有限公司;凝膠回收試劑盒均購(gòu)自愛(ài)思進(jìn)生物技術(shù) (杭州)有限公司;PureYield? PlasmidMaxiprep System購(gòu)自普洛麥格 (北京) 生物技術(shù)有限公司;嘌呤霉素購(gòu)自Sigma公司;胎牛血清FBS購(gòu)自Hyclone公司;DMEM培養(yǎng)基、Lipofectamine 2000購(gòu)自Invitrogen公司。

1.2 永生化載體pTP-hTERT構(gòu)建

1.2.1 單質(zhì)粒轉(zhuǎn)座子載體pTP的構(gòu)建

PB轉(zhuǎn)座子基本骨架載體pBNW-TP2由生物公司合成,包含PB轉(zhuǎn)座子5′TR (313 bp) 和3′TR (235 bp) 必需核苷酸序列,一個(gè)由TK啟動(dòng)子調(diào)節(jié)的PBase表達(dá)框,一個(gè)由12個(gè)稀有酶切位點(diǎn)組成的MCS及2個(gè)拷貝的cHS4絕緣子序列。

篩選標(biāo)記基因表達(dá)框的構(gòu)建,參考冷泉港實(shí)驗(yàn)室重疊延伸PCR實(shí)驗(yàn)策略[17],分別以pEGFP-C1、pCDH-MCS-T2A-Puror-MSCV為模板,用PrimeSTAR DNA聚合酶擴(kuò)增EGFP-P2A和P2A-Puror序列 (引物序列見(jiàn)表1),凝膠回收PCR產(chǎn)物。按以下比例制備重疊延伸PCR反應(yīng)體系:5 μL 10×Pfu緩沖液、0.7 μL Pfu DNA聚合酶、4 μL dNTPs、1 μL EGFP片段、1 μL Puror片段、33 μL ddH2O。反應(yīng)條件:94 ℃預(yù)變性5 min;先94 ℃變性30 s、69 ℃退火30 s、72 ℃延伸1 min,3個(gè)循環(huán),每個(gè)循環(huán)退火溫度降低2 ℃,再94 ℃變性30 s、60 ℃退火30 s、72 ℃延伸2 min,33個(gè)循環(huán)。反應(yīng)過(guò)程中3個(gè)循環(huán)后暫停反應(yīng),向體系中加入EGFP上游引物和Puror下游引物 (引物序列見(jiàn)表1) 各1 μL、0.3 μL Pfu DNA聚合酶,繼續(xù)反應(yīng)直至結(jié)束。將得到的EGFP-P2A-Puror片段,NheⅠ、KpnⅠ酶切連入pEGFP-C1載體。用PrimeSTAR DNA聚合酶擴(kuò)增pEF1α-Tet3G中EF1α啟動(dòng)子序列 (引物序列見(jiàn)表1),經(jīng)AseⅠ、NheⅠ酶切連接EGFP-P2A-Puror,完成篩選表達(dá)框EF1α-EGFP-P2A-Puror-polyA的構(gòu)建,所有擴(kuò)增片段必須經(jīng)過(guò)測(cè)序。

設(shè)計(jì)含有LoxP的引物 (引物序列見(jiàn)表1),以高保真PrimeSTAR DNA聚合酶擴(kuò)篩選表達(dá)框,得到兩端帶有LoxP序列的篩選元件。再經(jīng)SpeⅠ、SalⅠ酶切連至pBNW-TP2載體中,構(gòu)成了帶有篩選標(biāo)記的單質(zhì)粒PB轉(zhuǎn)座子載體pTP。

1.2.2 hTERT表達(dá)框的的引入

構(gòu)建含有SpeⅠ、AscⅠ酶切位點(diǎn)、多克隆位點(diǎn) (MCS)和polyA的質(zhì)粒pMD18-T simple-MCS-polyA (引物序列見(jiàn)表1)。將pCl-neo-hTERT中CMV-hTERT,酶切連入MCS,得到完整的hTERT表達(dá)框CMV-hTERT-polyA。通過(guò)引入的SpeⅠ和AscⅠ酶切位點(diǎn)表達(dá)框連入一元轉(zhuǎn)座子載體pTP,構(gòu)成永生化載體pTP-hTERT。

表1 實(shí)驗(yàn)所用引物序列Table 1 Primers used in experiments

1.3 載體功能驗(yàn)證

1.3.1 HEK293細(xì)胞轉(zhuǎn)染及篩選

用10% FBS的DMEM培養(yǎng)HEK293細(xì)胞。轉(zhuǎn)染試驗(yàn)嚴(yán)格按照Lipofectamine 2000操作說(shuō)明書(shū)要求進(jìn)行。轉(zhuǎn)染前24 h,以無(wú)雙抗培養(yǎng)基接種HEK293細(xì)胞于6孔板,使轉(zhuǎn)染時(shí)細(xì)胞融合度為60%?80%,每孔加入Lipofectamine 2000 10 μL、質(zhì)粒pTP-hTERT 4 μg,5 h后換液,24 h后觀察。

篩選陽(yáng)性單克隆前,應(yīng)先確定最佳篩選濃度。具體操作如下:培養(yǎng)帶轉(zhuǎn)染細(xì)胞,當(dāng)細(xì)胞融合度達(dá)到70%?80%,更換為嘌呤霉素濃度分別為0、0.3、0.6、0.8、1、1.5、2、3、5 μg/mL的新鮮無(wú)雙抗培養(yǎng)基。7 d內(nèi)致所有細(xì)胞死亡的最小濃度即為最佳篩選濃度。

以Lipofectamine 2000介導(dǎo)pTP-hTERT轉(zhuǎn)染HEK293細(xì)胞,24 h后接種于90 mm皿,以含有最佳篩選濃度嘌呤霉素的培養(yǎng)基篩選陽(yáng)性克隆,陰性對(duì)照完全死亡后,嘌呤霉素濃度減半,擴(kuò)大培養(yǎng)。

1.3.2 RT-PCR檢測(cè)hTERT轉(zhuǎn)錄

按照標(biāo)準(zhǔn)操作對(duì)擴(kuò)大培養(yǎng)的單克隆細(xì)胞RNA提取及反轉(zhuǎn)錄PCR (引物序列見(jiàn)表1)。

1.3.3 Western blotting檢測(cè)P2A剪切效率

以pEGFP-C1為陽(yáng)性對(duì)照,正常細(xì)胞為陰性對(duì)照。裂解 (未) 轉(zhuǎn)染pTP-hTERT (pEGFP-C1)后48 h的HEK293細(xì)胞,提取蛋白,使用12% SDS-PAGE蛋白膠、Blue PlusProteinⅡmarker、兔源GFP單克隆抗體,以GAPDH內(nèi)參進(jìn)行Western blotting。

1.3.4 基因組轉(zhuǎn)座位點(diǎn)檢測(cè)

用pTP-hTERT轉(zhuǎn)染HEK293細(xì)胞,經(jīng)嘌呤霉素篩選出9株細(xì)胞克隆,同時(shí)設(shè)立轉(zhuǎn)pEGFP-C1質(zhì)粒的細(xì)胞為陽(yáng)性對(duì)照組,并篩選出9株對(duì)照組細(xì)胞克隆。以載體上轉(zhuǎn)座元件TR序列為模板設(shè)計(jì)引物,以細(xì)胞克隆基因組為模板進(jìn)行Tail-PCR,擴(kuò)增結(jié)束后利用瓊脂糖凝膠電泳鑒定,特異性DNA片段膠回收后克隆至pMD18-T載體,篩選陽(yáng)性重組子送至南京金斯瑞生物公司測(cè)序,測(cè)序結(jié)果登陸美國(guó)加州大學(xué)基因組生物信息學(xué)網(wǎng)站 (http://genome.ucsc.edu/)進(jìn)行分析,確定整合入基因組的轉(zhuǎn)座子的側(cè)翼序列[18],及染色體整合位點(diǎn)具體信息。Tail-PCR試驗(yàn)步驟參照染色體步移試劑盒 (TAKARA)操作說(shuō)明書(shū) (引物序列見(jiàn)表1)。

1.3.5 轉(zhuǎn)座效率檢測(cè)

將pPB-hTERT和本實(shí)驗(yàn)構(gòu)建的pBNW-TP1 (即隨機(jī)整合質(zhì)粒) 均以0.25 pmol的量分別轉(zhuǎn)染約1×106個(gè)HEK 293細(xì)胞,細(xì)胞鋪板至90 mm平皿,嘌呤霉素篩選出單克隆后,用含4%的多聚甲醛固定,0.2%亞甲藍(lán)溶液染色30 min,去離子水清洗后,統(tǒng)計(jì)細(xì)胞克隆數(shù),本操作同等條件下重復(fù)3次,統(tǒng)計(jì)結(jié)果以平均數(shù)±標(biāo)準(zhǔn)誤表示,利用非配對(duì)t檢驗(yàn) (Student’s t-test) 對(duì)細(xì)胞克隆數(shù)進(jìn)行統(tǒng)計(jì)學(xué)分析。

2 結(jié)果與分析

2.1 永生化載體pTP-hTERT構(gòu)建

2.1.1 單質(zhì)粒轉(zhuǎn)座子載體pTP的鑒定結(jié)果

全載體圖譜如圖1所示。

PB轉(zhuǎn)座子骨架載體pBNW-TP2的鑒定,用SpeⅠ單酶切待改造pBNW-TP2質(zhì)粒,經(jīng)凝膠電泳鑒定為6.3 kb (圖2),大小與預(yù)期相符,可用于進(jìn)一步的載體改造。

圖1 質(zhì)粒pTP-hTERT圖譜Fig. 1 Map of pTP-hTERT.

圖2 質(zhì)粒pBNW-TP2的酶切鑒定Fig. 2 Identification of primary vector pBNW-TP2. M: Trans 15K DNA marker; 1: pBNW-TP2 digested with Spe.Ⅰ

pTP載體初步鑒定,PCR擴(kuò)增EGFP-P2A和 P2A-Puror序列,凝膠電泳鑒定大小為838 bp和687 bp,重疊延伸PCR反應(yīng)產(chǎn)物EGFPP2A-Puror凝膠電泳鑒定大小為1 489 bp (圖3),EF1α序列PCR產(chǎn)物凝膠電泳鑒定為1 317 bp (圖4),皆與預(yù)期相符。以PCR引物形式引入酶切位點(diǎn)及LoxP序列后得到的篩選元件LoxP-EF1α-EGFP-P2A-Puror-polyA-LoxP經(jīng)凝膠電泳鑒定大小為3 150 bp (圖5),符合預(yù)期大小。一元轉(zhuǎn)座子載體pTP經(jīng)過(guò)SpeⅠ和SalⅠ酶切得到3 142 bp的篩選元件和6.3 kb的轉(zhuǎn)座子骨架 (圖6),與預(yù)期結(jié)果一致。另外,所有PCR片段測(cè)序結(jié)果與原序列比對(duì)的結(jié)果顯示100%同源無(wú)突變,說(shuō)明克隆得到改造后轉(zhuǎn)座子載體pTP正確。

2.1.2 pTP-hTERT載體酶切鑒定

hTERT表達(dá)框中只有引入的插入位點(diǎn)MCS-polyA為PCR擴(kuò)增所得,產(chǎn)物凝膠電泳鑒定為326 bp (圖7),測(cè)序結(jié)果顯示無(wú)突變。最終載體pTP-hTERT經(jīng)過(guò)SpeⅠ和AscⅠ酶切得到4 811 bp和9.6 kb的片段 (圖8),即hTERT表達(dá)框和線性一元轉(zhuǎn)座子載體pTP,與預(yù)期結(jié)果一致,證明PB轉(zhuǎn)座子介導(dǎo)的人端粒逆轉(zhuǎn)錄酶催化亞基表達(dá)載體pTP-hTERT構(gòu)建成功。

圖3 重疊延伸PCR產(chǎn)物Fig. 3 The products of overlap PCR. M: Trans 100 bp DNA marker; 1: P2A-Puror; 2: EGFP-P2A; 3: EGFP-P2A-Puror.

圖4 EF1α啟動(dòng)子序列的PCR檢測(cè)結(jié)果Fig. 4 PCR result of EF1α promoter. M: Trans 2K Plus DNA marker; 1: EF1α amplified by PCR.

圖5 篩選元件PCR擴(kuò)增結(jié)果Fig. 5 PCR result of selectable-reporter. M: Trans2K Plus DNA marker; 1, 2: selectable element LoxP-EF1α-EGFP-P2A-Puror-polyA-LoxP amplified by PCR.

2.2 pTP-hTERT載體在HEK293細(xì)胞中的功能驗(yàn)證結(jié)果

2.2.1 HEK293細(xì)胞瞬時(shí)轉(zhuǎn)染及篩選結(jié)果

待轉(zhuǎn)染的HEK293細(xì)胞,轉(zhuǎn)染pTP-hTERT 48 h后的鏡下觀察結(jié)果 (圖9A,B)。HEK293細(xì)胞嘌呤霉素最佳篩選濃度測(cè)定結(jié)果為1 μg/mL。轉(zhuǎn)染后的HEK293細(xì)胞,經(jīng)過(guò)6 d篩選后,得到細(xì)胞形態(tài)正常的陽(yáng)性克隆,陽(yáng)性細(xì)胞挑取并擴(kuò)大培養(yǎng) (圖9C,D),已進(jìn)行后續(xù)檢測(cè)。

圖6 質(zhì)粒pTP的酶切鑒定Fig. 6 Identification of modified vector pTP by double digestion. M: GenStar 1 kb DNA marker; 1: pTP digested with SpeⅠand SalⅠ.

圖7 MCS PCR擴(kuò)增結(jié)果Fig. 7 PCR result of MCS. M: Trans 2K Plus DNA marker; 1, 2: MCS-polyA amplified by PCR.

圖8 質(zhì)粒pTP-hTERT的酶切鑒定Fig. 8 Identification of pTP-hTERT by double digestion. M: GenStar1kb DNA marker; 1: pTP-hTERT digested with SpeⅠand AscⅠ.

圖9 瞬時(shí)轉(zhuǎn)染HEK293細(xì)胞及單克隆細(xì)胞擴(kuò)大培養(yǎng) (100倍)Fig. 9 HEK293 cells transfected with pTP-hTERT and selected monoclonal cells. (A and B) HEK293 cells 48 hours after transfection (magnification×100). (C and D) Puromycin-resisted monoclonal cells (magnification×100).

2.2.2 RT-PCR檢測(cè)hTERT轉(zhuǎn)錄

對(duì)所提取的總RNA反轉(zhuǎn)錄后,用hTERT檢測(cè)引物進(jìn)行PCR,經(jīng)凝膠電泳檢測(cè)得到553 bp片段,與預(yù)期大小一致 (圖10)。

2.2.3 Western blotting檢測(cè)P2A剪切效率

pEGFP-C1轉(zhuǎn)染細(xì)胞為對(duì)照,正常細(xì)胞為陰性對(duì)照,GAPDH為內(nèi)參。EGFP蛋白條帶約位于30 kDa,EGFP-Puror融合蛋白位于55 kDa左右,樣品中融合蛋白條帶細(xì)而EGFP條帶清晰(圖11),表明樣品P2A連接的融合蛋白大多被正確剪切,即載體中的P2A自我剪切肽整合入細(xì)胞后能正常發(fā)揮其剪切功能。2.2.4 基因組轉(zhuǎn)座位點(diǎn)檢測(cè)

圖10 單克隆細(xì)胞hTERT基因RT-PCR鑒定Fig. 10 RT-PCR analysis of hTERT gene in cell clones. M: Trans 5K DNA marker; 1?4: cDNA of hTERT fragment in four independent cell clones.

圖11 Western blotting檢測(cè)P2A剪切功能Fig. 11 Validation of P2A by Western blotting analysis.

對(duì)試驗(yàn)所獲得的基因組轉(zhuǎn)座子側(cè)翼序列進(jìn)行比對(duì)分析后,發(fā)現(xiàn)9個(gè)實(shí)驗(yàn)組樣品整合位點(diǎn)側(cè)翼序列可定位于人2號(hào)、4號(hào)、6號(hào)、12號(hào)、13號(hào)、 21號(hào)染色體 (具體整合位點(diǎn)信息見(jiàn)表2)。該結(jié)果表明,構(gòu)建的pTP-hTERT轉(zhuǎn)座子可轉(zhuǎn)座整合入宿主細(xì)胞基因組。

2.2.5 細(xì)胞克隆計(jì)數(shù)統(tǒng)計(jì)結(jié)果

三次細(xì)胞克隆計(jì)數(shù)結(jié)果經(jīng)非配對(duì)t檢驗(yàn)(Student’s t-test) 分析后,結(jié)果如圖12所示。結(jié)果顯示不含PB轉(zhuǎn)座酶的質(zhì)粒pBNW-TP1轉(zhuǎn)染細(xì)胞后得到的細(xì)胞克隆數(shù)遠(yuǎn)低于轉(zhuǎn)染pTB-hTERT得到的的細(xì)胞克隆數(shù),兩者之間差異極顯著 (P<0.01)。

圖12 HEK293 細(xì)胞中PB轉(zhuǎn)座效率統(tǒng)計(jì)結(jié)果Fig. 12 The statistical result of PB transposon integration efficiency in HEK293 cell.

表2 HEK293 細(xì)胞中PB轉(zhuǎn)座子整合位點(diǎn)側(cè)翼序列及具體信息Table 2 Flanking sequences of piggyBac integration sites in HEK 293 cells

3 討論

有研究顯示,PB轉(zhuǎn)座子在真核細(xì)胞中的整合效率是傳統(tǒng)隨機(jī)整合載體的8倍以上[2],并且單質(zhì)粒PB轉(zhuǎn)座子載體相較于傳統(tǒng)雙質(zhì)粒轉(zhuǎn)座子系統(tǒng)轉(zhuǎn)座效率更高[19]。本研究將二元PB轉(zhuǎn)座子改造為單質(zhì)粒載體介導(dǎo)外源基因整合,并對(duì)其篩選報(bào)告元件進(jìn)行了優(yōu)化。對(duì)改造后的單質(zhì)粒轉(zhuǎn)座載體pTP-hTERT和傳統(tǒng)二元轉(zhuǎn)座供體質(zhì)粒載體進(jìn)行轉(zhuǎn)座效率檢測(cè),統(tǒng)計(jì)分析結(jié)果顯示單質(zhì)粒轉(zhuǎn)座載體轉(zhuǎn)染細(xì)胞后產(chǎn)生的陽(yáng)性克隆數(shù)遠(yuǎn)高于不加轉(zhuǎn)座酶的供體質(zhì)粒 (P<0.01),表明構(gòu)建的載體能夠高效整合入基因組。另外,對(duì)轉(zhuǎn)染pTP-hTERT篩選得到的多株陽(yáng)性細(xì)胞基因組進(jìn)行轉(zhuǎn)座子整合位點(diǎn)側(cè)翼DNA序列檢測(cè),結(jié)果顯示基因組整合位點(diǎn)TTAA兩側(cè)并無(wú)轉(zhuǎn)座元件外側(cè)的載體序列,證實(shí)該質(zhì)粒的整合方式為轉(zhuǎn)座整合而非隨機(jī)整合。實(shí)驗(yàn)證明載體pTP-hTERT能夠攜帶外源基因進(jìn)行高效轉(zhuǎn)座。

為了實(shí)現(xiàn)多個(gè)基因同時(shí)在動(dòng)物細(xì)胞中進(jìn)行表達(dá),通常需要不同啟動(dòng)子分別介導(dǎo)目的基因的轉(zhuǎn)錄。然而多個(gè)表達(dá)框的引入不僅存在啟動(dòng)子之間的相互干擾,并且容易使隨機(jī)整合載體容量超載。內(nèi)部核糖體進(jìn)入序列 (IRES) 可實(shí)現(xiàn)多順?lè)醋又卸鄠€(gè)編碼基因的單獨(dú)表達(dá),但在實(shí)際操作過(guò)程中,其上下游基因表達(dá)不平衡以及自身結(jié)構(gòu)較大等問(wèn)題使其應(yīng)用嚴(yán)重受限[20]。2A自剪肽是存在于多種病毒中的短肽鏈,能夠介導(dǎo)融合蛋白自我剪切[21]。由于其結(jié)構(gòu)短小,介導(dǎo)的蛋白剪切效率較高,因而被越來(lái)越多應(yīng)用于多順?lè)醋虞d體構(gòu)建中。有研究表明,豬捷申病毒2A (Porcine teschovirus-1 2A peptide,P2A)相對(duì)于其他病毒2A剪切效率更高[22]。因此,pTP-hTERT中使用P2A介導(dǎo)EGFP和Puror融合蛋白剪切,經(jīng)Western blotting驗(yàn)證,P2A可有效剪切EGFP-Puror融合蛋白,保證了篩選基因的正常功能,這為多順?lè)醋诱婧吮磉_(dá)載體的構(gòu)建提供了參考價(jià)值。

抗性篩選基因的長(zhǎng)期存在可破壞整合位點(diǎn)附近正常功能基因的表達(dá)[23],為了解決該問(wèn)題,設(shè)計(jì)引入Cre/LoxP系統(tǒng)來(lái)最終達(dá)到切除篩選標(biāo)記基因的目的。通過(guò)細(xì)胞轉(zhuǎn)染和篩選獲取陽(yáng)性克隆細(xì)胞后,利用原核表達(dá)Cre重組酶來(lái)實(shí)現(xiàn)篩選標(biāo)記基因的切除[24],從而消除其對(duì)宿主細(xì)胞功能基因表達(dá)的負(fù)面影響。

本實(shí)驗(yàn)選用hTERT誘導(dǎo)細(xì)胞永生化能最大限度保留正常細(xì)胞特性,是大多數(shù)細(xì)胞逃避衰老的最安全有效的手段[25-26]。由于hTERT編碼區(qū)序列較長(zhǎng),本實(shí)驗(yàn)利用PB轉(zhuǎn)座系統(tǒng)來(lái)攜帶該基因,既發(fā)揮了PB轉(zhuǎn)座子高效整合的特點(diǎn),又利用了其負(fù)載容量大的優(yōu)勢(shì)。

綜上所述,本實(shí)驗(yàn)設(shè)計(jì)構(gòu)建了一種通用的PB轉(zhuǎn)座子介導(dǎo)的單質(zhì)粒hTERT表達(dá)載體,并在HEK 293細(xì)胞中對(duì)該載體基本功能進(jìn)行驗(yàn)證。結(jié)果表明載體篩選基因能正確表達(dá)及剪切,PB轉(zhuǎn)座子元件攜帶目的基因可在宿主細(xì)胞基因組上定點(diǎn)插入TTAA位點(diǎn),發(fā)生PB轉(zhuǎn)座,即證明具有PB轉(zhuǎn)座活性的載體構(gòu)建成功。

REFERENCES

[1] Fraser MJ, Cary L, Boonvisudhi K, et al. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology, 1995, 211(2): 397–407.

[2] Ding S, Wu X, Li G, et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell, 2005, 122(3): 473–483.

[3] Rad R, Rad L, Wang W, et al. PiggyBac transposonmutagenesis: a tool for cancer gene discovery in mice. Science, 2010, 330(6007): 1104–1107.

[4] Bai DP, Yang MM, Chen YL. PiggyBac transposon-mediated gene transfer in Cashmere goat fetal fibroblast cells. Biosci Biotechnol Biochem, 2012, 76(5): 933–937.

[5] Park TS, Han JY. PiggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA, 2012, 109(24): 9337–9341.

[6] Woltjen K, Michael IP, Mohseni P, et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458(7239): 766–770.

[7] Desponts C, Ding S. Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol Biol, 2010, 636: 207–218.

[8] Zhou F, Liang S, Chen AH, et al. A transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus. Vet Res Commun, 2012, 36(2): 99–105.

[9] Feschotte C. The piggyBac transposon holds promise for human gene therapy. Proc Natl Acad Sci USA, 2006, 103(41): 14981–14982.

[10] Kim A, Pyykko I. Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool. Mol Cell Biochem, 2011, 354(1/2): 301–309. [11] Yusa K, Zhou L, Li MA, et al. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA, 2011, 108(4): 1531–1536.

[12] Wang W, Lin C, Lu D, et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA, 2008, 105(27): 9290–9295.

[13] Li X, Harrell RA, Handler AM, et al. PiggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol, 2005, 14(1): 17–30.

[14] Elick TA, Bauser CA, Fraser MJ. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica, 1996, 98(1): 33–41.

[15] Liang Q, Kong J, Stalker J, et al. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. Genesis, 2009, 47(6): 404–408.

[16] Li MA, Turner DJ, Ning Z, et al. Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res, 2011, 39(22): e148.

[17] Szymczak-Workman AL, Vignali KM, Vignali DA. Vignali. Design and construction of 2A peptide-linked multicistronic vectors. Cold Spring Harb Protoc, 2012(2): 199–204.

[18] Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007, 43(5): 649–656.

[19] Urschitz J, Kawasumi M, Owens J, et al. Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc Natl Acad Sci USA, 2010, 107(18): 8117–8122.

[20] Liu BS, Liu XY, Qian C. An efficient tool for the construction of multiple-cistronic vectors: FMDV 2A. Chin J Biotech, 2007, 23(5): 765–769 (in Chinese).

劉必勝, 劉新垣, 錢(qián)程. 構(gòu)建多順?lè)醋颖磉_(dá)載體的有效工具-FMDV 2A. 生物工程學(xué)報(bào), 2007, 23(5): 765–769.

[21] Palmenberg AC, Parks GD, Hall DJ, et al. Proteolytic processing of the cardioviral P2 region: primary 2A/2B cleavage in clone-derived precursors. Virology, 1992, 190(2): 754–762.

[22] Kim JH, Lee SR, Li LH, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE, 2011, 6(4): e18556.

[23] Pham CT, MacIvor DM, Hug BA, et al. Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci USA, 1996, 93(23): 13090–13095.

[24] Yu Y, Wang Y, Tong Q, et al. A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PLoS ONE, 2013, 8(5): e62457.

[25] Toouli CD, Huschtscha LI, Neumann AA, et al. Comparison of human mammary epithelial cells immortalized by simian virus 40 T-Antigen or by the telomerase catalytic subunit. Oncogene, 2002, 21(1): 128–139.

[26] Gudjonsson T, Villadsen R, R?nnov-Jessen L, et al. Immortalization protocols used in cell culture models of human breast morphogenesis. Cell Mol Life Sci, 2004, 61(19/20): 2523–2534.

(本文責(zé)編 陳宏宇)

Construction of a general piggyBac transposon inducible cell immortalization vector and verification of its basic properties

Hui Huang1,2, Guangdong Hu1,2, Jian Kang1,2, Suzhu Qing1, and Yong Zhang1,2

1 College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China

In order to construct generally efficient cell immortalization vector, pTP-hTERT, we modified the traditional piggyBac (PB) transposon using artificial synthesis, PCR and enzyme digestion. The modified vector contained the necessary transposon elements, a PB transposase expression cassette, a co-expression selectable element and a human telomerase reverse transcriptase (hTERT) expression cassette. The co-expression selectable element had two markers, enhanced green fluorescent protein (EGFP) gene and puromycin-resistance (Puror) gene, linked by porcine teschovirus-1 2A peptide (P2A). To validate the functionality of vector elements, we transfected pTP-hTERT into HEK293 cell, selected the positive cell clones and then conducted RT-PCR, Western blotting (WB) and Tail-PCR, methylene blue staining and statistic analysis on selected cells. The results of sequencing and cell culture show that the pTP-hTERT was constructed successfully and the positive cell could be selected by puromycin. The WB results, P2A cutting EGFP and Purorfusion protein with high efficiency, reflected the selectable element worked. The sequencing result of Tail-PCR confirmed the vector integrated into the genome through transposition. The results of methylene blue staining and statistic analysis indicated the clone of positive cells triggered by pTP-hTERT significantly increased (P<0.01) compared with control group. The construction of pTP-hTERT provides an efficient tool for establishing immortalized cell lines and a demonstration for building other eukaryotic plasmids.

piggyBac (PB) transposon, P2A, fusion protein, hTERT

October 13, 2013; Accepted: January 7, 2014

Suzhu Qing. Tel: +86-29-87092438; E-mail: suzhuqing@163.com

黃惠, 胡廣東, 康健, 等. 一種通用型piggyBac轉(zhuǎn)座子誘導(dǎo)細(xì)胞永生化載體的構(gòu)建及其基本功能驗(yàn)證. 生物工程學(xué)報(bào),2014, 30(8): 1182–1192.

Huang H, Hu GD, Kang J, et al. Construction of a general piggyBac transposon inducible cell immortalization vector andverification of its basic properties. Chin J Biotech, 2014, 30(8): 1182–1192.

Supported by: National Major Project for Production of Transgenic Breeding (No. 2013ZX08007-004), National High Technology Research and Development Program of China (863 Program) (No. 2011AA100303).

Yong Zhang. Tel: +86-29-87080085; E-mail: yongzhang19562012@gmail.com

國(guó)家轉(zhuǎn)基因重大項(xiàng)目專項(xiàng) (No. 2013ZX08007-004),國(guó)家高技術(shù)研究發(fā)展計(jì)劃 (863計(jì)劃) (No. 2011AA100303) 資助。

猜你喜歡
轉(zhuǎn)座子克隆剪切
克隆狼
毛竹Mariner-like element自主轉(zhuǎn)座子的鑒定與生物信息學(xué)分析*
毛竹長(zhǎng)末端重復(fù)序列反轉(zhuǎn)錄轉(zhuǎn)座子的全基因組特征及進(jìn)化分析
東天山中段晚古生代剪切帶疊加特征及構(gòu)造控礦作用
浙江:誕生首批體細(xì)胞克隆豬
TC4鈦合金擴(kuò)散焊接頭剪切疲勞性能研究
淅川烏骨雞全基因組轉(zhuǎn)座子的鑒定與分析
花葉矢竹轉(zhuǎn)錄組中的轉(zhuǎn)座子表達(dá)分析
混凝土短梁斜向開(kāi)裂后的有效剪切剛度與變形
土-混凝土接觸面剪切破壞模式分析