国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

“兩角和與差的余弦”教學設計與反思

2014-09-04 20:51:33陸庭
考試周刊 2014年56期
關鍵詞:余弦數(shù)學教學

陸庭

摘 要: 兩角和與差的余弦是《三角恒等變換》第一節(jié)內(nèi)容,也是最重要的一節(jié)內(nèi)容。它是前面三角函數(shù)知識的延續(xù),又是推導正弦和(差)角公式、正切和(差)角公式及倍角公式的基礎。

關鍵詞: 角 余弦 數(shù)學 教學

一、教學內(nèi)容分析

本節(jié)內(nèi)容是高一數(shù)學必修4(蘇教版)第三章《三角恒等變換》第一節(jié)的內(nèi)容,重點放在兩角差的余弦公式的推導和證明上,其次是利用公式解決一些簡單的三角函數(shù)問題。

在學習本章之前,已經(jīng)學習了三角函數(shù)及向量的有關知識,從而為溝通代數(shù)、幾何與三角函數(shù)的聯(lián)系提供了重要的工具。本章我們將使用這些工具探討三角函數(shù)值的運算。本節(jié)內(nèi)容不僅是推導正弦和(差)角公式、正切和(差)角公式及倍角公式的基礎,對于三角變換,三角恒等式的證明,三角函數(shù)式的化簡、求值等三角問題的解決有重要的支撐作用,而且其推導過程本身就具有重要的教育價值。

二、學生學習情況分析

本節(jié)課的主要內(nèi)容是“兩角差的余弦公式的推導及證明”,用到的工具有“單位圓中三角函數(shù)的定義”和“平面向量數(shù)量積的定義及坐標表示”,都屬于基礎知識,內(nèi)容簡單,容易理解和接受。但是在向量法證明的過程中,向量夾角的范圍是[0,π],與兩角差α-β的范圍不一致,學生對角的范圍說明不清,是本節(jié)課的難點。

三、設計思想

教學理念:以“研究性學習”為載體,培養(yǎng)學生自主學習、小組合作的能力。

教學原則:注重學生自主學習與探究能力的培養(yǎng),體現(xiàn)學生個性的發(fā)展與小組合作共性的融合。

教學方法:先學后教,小組合作,師生互動。

四、教學目標

知識與技能:了解用向量法推導兩角差的余弦公式的過程,掌握兩角和(差)的余弦公式并能運用公式進行簡單的三角函數(shù)式的化簡、求值。

過程與方法:自主探究兩角差的余弦公式的表現(xiàn)形式,經(jīng)歷用向量的數(shù)量積推導兩角差的余弦公式的過程,并能獨立利用余弦的差角公式推出余弦的和角公式,理解化歸思想在三角變換中的作用。

情感態(tài)度與價值觀:體驗和感受數(shù)學發(fā)現(xiàn)和創(chuàng)造的過程,感悟事物之間普遍聯(lián)系和轉化的關系。

五、教學重點與難點

重點:兩角差的余弦公式的推導及證明。

難點:引入向量法證明兩角差的余弦公式及兩角差范圍的說明。

六、教學程序設計1.情境創(chuàng)設,課上展示。

課前探究:

課上展示:請同學們展示一下課前所得到的結果吧。

設計意圖:課前以問題串的形式給學生指明研究方向。問題層層遞進,從特殊到一般,使學生的研究具有一定的坡度性。既讓學生容易上手,又讓學生在研究過程中慢慢深入與提高。

主要目的:讓學生自主發(fā)現(xiàn)兩角差的余弦公式的表達形式。

通過課上展示,學生把課下研究出來的成果與全班同學共享,產(chǎn)生共鳴,為進一步研究兩角差的余弦公式做好準備,同時增強表達能力及自信心。

2.合作探究,小組展示。

探究一:兩角差的余弦公式的推導

問題4:問題2中我們所得到的結論對于任意角還成立嗎?你能證明嗎?

問題5:觀察我們得到結論的形式,你能聯(lián)想到什么呢?

探究二:兩角和的余弦公式的推導

問題6:你能根據(jù)差角的余弦公式推導出和角的余弦公式嗎?

問題7:比較差角的余弦公式與和角的余弦公式,它們在結構上有何異同點?

通過小組展示,各個小組之間產(chǎn)生思維的碰撞,迸出火花,得到新的靈感與智慧。從而培養(yǎng)學生團結協(xié)作與小組合作的能力。

3.鞏固知識,例題講解。

例1:利用兩角和與差的余弦公式證明下列誘導公式:

例3:化簡cos100°cos40°+sin80°sin40°

設計意圖:教師對各小組展示內(nèi)容做適當點評,并且對“向量法證明的優(yōu)點”,“向量法證明過程的完善”,“向量法中向量夾角與兩角差的范圍的統(tǒng)一”做簡要講解。

例1,例2都是公式的直接應用。例1讓學生體會誘導公式將余弦的和差角公式推導出正弦的和差角公式,為下節(jié)課埋下伏筆。例2中根據(jù)cos15°的值求sin15°的值,tan15°的值的過程都是為推導正弦和差公式,正切和差公式做鋪墊。

變式將例2中具體的角變成抽象的角,利用同角三角函數(shù)公式求解。在由sinα的值求cosα的值或由cosβ的值求sinβ的值時,要注意根據(jù)角的范圍確定三角函數(shù)值的符號。

例3:是公式的逆用,培養(yǎng)學生逆向思維的能力,讓學生對公式結構再認識。

4.提升總結,鞏固練習。

提升總結:針對上面的3個例題,談談你學到了什么?

(2)利用兩角和差的余弦公式求值時,應注意觀察、分析題設和公式的結構特點,從整體上把握公式,靈活的運用公式。

(3)在解題過程中,要注意角的范圍,確定三角函數(shù)值的符號,以防增根、漏根。

設計意圖:主要以學生總結為主,老師做適當點評及補充。

七、教學反思

本節(jié)課主要以學生的自主學習、小組合作為主,充分發(fā)揮了學生的自主探究能力和團隊協(xié)作能力,提高了學生發(fā)現(xiàn)問題、探究問題和解決問題的能力。情境創(chuàng)設中利用三個問題讓學生在課前提前熟悉本節(jié)課所學的內(nèi)容“是什么”,“我能得到哪些結論”,調動了學生的思維與學習的積極性,激發(fā)了學生的求知欲。但是

但是如果給出圖像,則又會限制數(shù)學優(yōu)秀的學生的解題思路與方法,這對矛盾是由學生的差異所決定的。教師在課堂上應指導、啟發(fā)學生,注意教學的示范性,明確解題的規(guī)范性,實現(xiàn)學生在學習過程中知識的跨越??傊?,教學有法,教無定法,貴在得法,為了提高課堂教學效率,我們要從學生的實際出發(fā),以學法帶動教法,為高效課堂保駕護航。

猜你喜歡
余弦數(shù)學教學
微課讓高中數(shù)學教學更高效
甘肅教育(2020年14期)2020-09-11 07:57:50
“自我診斷表”在高中數(shù)學教學中的應用
東方教育(2017年19期)2017-12-05 15:14:48
兩個含余弦函數(shù)的三角母不等式及其推論
對外漢語教學中“想”和“要”的比較
唐山文學(2016年2期)2017-01-15 14:03:59
我為什么怕數(shù)學
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
分數(shù)階余弦變換的卷積定理
圖像壓縮感知在分數(shù)階Fourier域、分數(shù)階余弦域的性能比較
離散余弦小波包變換及語音信號壓縮感知
聲學技術(2014年1期)2014-06-21 06:56:26
跨越式跳高的教學絕招
體育師友(2013年6期)2013-03-11 18:52:18
保山市| 平乐县| 阿图什市| 临泉县| 保康县| 江西省| 鄂尔多斯市| 辰溪县| 永善县| 师宗县| 三门县| 左贡县| 怀远县| 昌都县| 准格尔旗| 嵩明县| 嘉荫县| 景宁| 迁西县| 繁昌县| 宜丰县| 德保县| 瓮安县| 中卫市| 韩城市| 阿合奇县| 文化| 金沙县| 茶陵县| 江西省| 武平县| 邹平县| 通河县| 孝义市| 砚山县| 山东省| 察哈| 安吉县| 阳春市| 萨嘎县| 苗栗县|