周苗苗+崔景香
摘要:乳蛋白的氨基酸(AA)含量和比例比較理想,是一種營養(yǎng)價值很高的蛋白質。除小部分來源于血液外,乳中絕大部分的蛋白質由乳腺上皮細胞利用血液中的氨基酸或小肽從頭合成。乳中的蛋白質含量和組成直接影響乳蛋白的營養(yǎng)和生理特性以及乳制品的產量。只有清楚地了解乳蛋白合成的調控機制,才能更好地通過營養(yǎng)策略來提高乳蛋白含量。因此,對奶牛乳腺細胞內乳蛋白的合成調控進行了簡要綜述。
關鍵詞:乳蛋白;合成;調控
中圖分類號:S879.1;S852.2 文獻標識碼:A 文章編號:0439-8114(2015)20-4929-03
DOI:10.14088/j.cnki.issn0439-8114.2015.20.001
Research Progress of Dairy Cow Milk Protein Synthesis Regulation
ZHOU Miao-miao,CUI Jing-xiang
(Institute of Animal Science, Weifang University of Science and Technology, Shouguang 262700, Shandong, China)
Abstract: Because the ideal amino acid content and composition,nutritional value of milk protein is very high.In addition to a small part from the blood,most of the protein in milk are synthesized in the mammary epithelial cells using amino acid or small peptide from the blood.Content and composition of milk protein will affect the milk nutritional and physiological characteristics and dairy production. Better understand the regulation mechanism of milk protein synthesis could help us to raise the protein content in milk by nutrition strategies.Therefore,the regulation of milk protein synthesis in bovine mammary epithelial cells is reviewed.
Key words: milk protein; synthesis; regulation
乳蛋白的氨基酸(Amino acids,AA)含量和比例比較理想,是一種營養(yǎng)價值很高的蛋白質。此外,某些乳蛋白成分還可以分解產生一些有特定生理功能的活性肽類物質。乳蛋白是由乳腺組織的上皮細胞利用來自血液的游離AA或小肽從頭合成的??傮w而言,乳腺合成蛋白質的過程與其他組織相同,但乳腺上皮細胞合成的大部分蛋白質最終要分泌出去。
乳腺組織具有很高的代謝活性,乳腺中的蛋白質合成量占奶牛身體總蛋白質合成量的43%[1]。乳蛋白含量及組成對其營養(yǎng)價值、生理特性及其制品的產量影響很大,因此受到廣大制造商和消費者的重視。乳蛋白含量的變化主要受營養(yǎng)水平(AA和能量)、內分泌系統(tǒng)以及乳腺中眾多參與蛋白質代謝的調控因子的調控[2]。研究表明,蛋白質翻譯調控對奶牛乳蛋白合成影響重大[3,4]。因此,只有更全面地了解乳蛋白合成的調控機制,才能更好地通過營養(yǎng)策略來提高乳蛋白產量。已有研究顯示,乳蛋白的合成調控很可能是通過調節(jié)其基因翻譯起始因子和延長因子實現的[4]。有試驗表明,泌乳奶牛乳腺中核糖體蛋白S6的生理活性高于非泌乳奶牛[3],而翻譯起始因子eIF4E則同乳腺的發(fā)育和泌乳的起始有關[5]。盡管翻譯相關因子調控蛋白質代謝的機理在很多組織中得到廣泛研究,然而這些翻譯因子在乳腺中的作用最近才引起關注。
1 內分泌調控
同機體任何其他生理系統(tǒng)相比,內分泌系統(tǒng)在調控乳腺發(fā)育、泌乳起始和維持泌乳過程中起主導作用[6]。
1.1 泌乳激素
泌乳相關激素(即:催乳素、氫化可的松和胰島素)對乳腺上皮細胞的功能分化及啟動和維持泌乳來說是必不可少的[7,8]。這三種泌乳激素聯合作用誘導乳蛋白的基因表達。催乳素在推動妊娠期乳腺分化和啟動產后乳腺泌乳方面發(fā)揮著主要作用[9],并它能在轉錄水平促進乳蛋白的合成[10]。而氫化可的松和胰島素能增強催乳素對酪蛋白mRNAs累積的促進作用[11,12]。此外,Menzies等[13]證實,胰島素能促進乳腺氨基酸攝取、乳蛋白基因表達以及酪蛋白合成。研究證實,這些泌乳激素可能通過雷帕霉素靶蛋白(The mammalian target of rapamycin,mTOR)信號途徑調控乳蛋白合成。有報道稱,泌乳激素能增強AA對乳蛋白合成的促進作用[2]。泌乳激素對乳蛋白合成的促進作用伴隨著mTOR、核糖體S6激酶1 (Ribosomal S6 kinase 1,S6K1)以及起始因子eIF4E結合蛋白1(4E-BP1)的磷酸化。4E-BP1的磷酸化可以使其與eIF4E分離,進而有助于eIF4E結合eIF4G來形成復合物啟動翻譯起始[2];而S6K1的磷酸化則能活化多種蛋白質翻譯元件[14]。
1.2 生長激素
生長激素(Growth hormone,GH)對奶牛乳腺具有明確的催乳作用[15]。但是,GH調控奶牛乳腺中蛋白質合成的分子機制仍不十分清楚。Hayashi等[4]試驗結果表明,GH能促進mTOR信號途徑中S6K1磷酸化,上調乳蛋白翻譯起始和延長,進而增加乳蛋白的合成[4]。而Sciascia等[16]研究則表明,GH通過胰島素樣生長因子1-胰島素樣生長因子1受體——絲裂原活化蛋白激酶(Insulin-like growth factor 1—insulin-like growth factor 1 receptor-mitogen-activated protein kinase,IGF1-IGF1R-MAPK)信號級聯調節(jié)eIF4E介導的核質輸出和mRNA翻譯來增加乳蛋白含量。
2 營養(yǎng)元素
泌乳期奶牛乳腺營養(yǎng)代謝加劇,需要合成大量乳汁。乳蛋白合成需要消耗大量的AA和ATP,二者供應充足時才能保證奶牛泌乳的需要。
2.1 氨基酸
牛乳中絕大部分的蛋白質都是由乳腺上皮細胞利用血液中的AA或小肽從頭合成的,可利用AA的數量和質量直接影響乳蛋白的品質。一般而言,提高乳腺必需AA的攝取能增加乳蛋白合成量[17]。 Raggio等[18]研究發(fā)現,給奶牛補充酪蛋白能提高奶牛乳蛋白濃度和產量。Burgos等[2]試驗結果也表明,提高培養(yǎng)液中AA濃度增加了乳蛋白的合成量。近年來,研究發(fā)現除作為蛋白質合成的前體物質之外,AA也可作為信號分子調控蛋白質的合成[19]。AA可以通過調控翻譯起始因子和延長因子的功能,進而全面調控蛋白質基因mRNA的翻譯[4]。AA的這一調控作用是通過傳統(tǒng)激素信號通路介導的信號傳導來實現。目前了解比較清楚的一個AA誘導的信號傳導途徑是mTOR信號通路[20]。AA通過活化mTOR來調控4E-BP1和S6K1等蛋白質的磷酸化狀態(tài),進而參與蛋白質的合成調控。
盡管AA通過翻譯相關因子調控蛋白質代謝的機理在很多組織中得到廣泛研究,然而其在乳腺中的這種作用最近才引起關注。Moshel等[21]利用體外培養(yǎng)的泌乳乳腺上皮細胞模型研究了AA對翻譯過程的調控作用,結果發(fā)現,AA經由mTOR信號途徑調控mRNA翻譯,進而影響乳腺上皮細胞中乳蛋白的合成速率。Prizant等[22]研究了體外培養(yǎng)的泌乳鼠乳腺上皮細胞中必需AA通過mTOR通路在蛋白合成中的作用,結果發(fā)現,來自于AA的正負調控信號通過mTOR信號傳導通路結合胰島素調控來調節(jié)總蛋白和乳腺上皮細胞中特殊乳蛋白的合成速率。支鏈AA,尤其是異亮氨酸(Ile)和亮氨酸(Leu)通過該通路調控乳蛋白的合成[23,24]。研究發(fā)現,清除細胞外AA或Leu能抑制從mTOR到p70 S6激酶和4E-BP的信號傳導活性,AA尤其是Leu通過控制Rheb-GTP來調控mTOR[25,26]。Arriola等[24]研究發(fā)現,Ile可作為信號因子正調控mTOR信號通路,進而增加乳蛋白的合成。Appuhamy等[27]在MAC-T細胞培養(yǎng)液中添加必需氨基酸(Essential amino acid,EAA),結果發(fā)現EAA通過增強mTOR和4EBP1磷酸化,降低eEF2磷酸化,提高了乳腺組織中酪蛋白合成率。有報道稱,泌乳相關激素能增強AA對乳蛋白合成的促進作用[2]。mTOR似乎是AA、胰島素等生長因子誘導產生的信號傳導的綜合位點,這兩種信號傳導結合才能最大地刺激蛋白質合成[19]。
2.2 能量
泌乳期乳腺需要大量的能量供應來維持其旺盛的代謝活動。Hanigan等[28]估測,乳腺中所產生的ATP幾乎有一半用于蛋白質的合成。一般來說,增加非結構性碳水化合物的攝取能提高奶產量、乳蛋白產量和氮利用效率[17,29]。體內外試驗結果均顯示,除作為底物參與細胞內乳蛋白的合成外,能量狀態(tài)也可直接通過信號傳導參與蛋白質合成[30]。Appuhamy等[31]利用奶牛乳腺細胞體外培養(yǎng)模型研究發(fā)現,提高能量水平能增加S6K和mTOR的磷酸化。Rius等[32]證實,給奶牛灌注淀粉增加了S6K和mTOR的磷酸化,同時也提高了乳蛋白產量。
3 乳腺
乳腺自身有能力調控其營養(yǎng)攝取來維持乳汁的合成。這一調控作用主要是通過調節(jié)乳腺血流量及乳腺對動脈血中乳汁前體物的攝取量實現的[1,33]。此外,乳腺還具有細胞內調控乳汁合成的能力,例如上皮細胞內產生的泌乳反饋抑制蛋白能影響奶產量[34]。這種反饋抑制蛋白通過降低蛋白質合成,或增加新合成酪蛋白的降解來調控乳蛋白的分泌[35]。
4 小結
綜上所述,奶牛乳腺細胞中乳蛋白的合成受內分泌(催乳素、胰島素、氫化可的松、生長激素等)、營養(yǎng)元素(氨基酸和能量)以及乳腺本身等方面的調控。這些因素對乳蛋白的合成調控很可能是通過調節(jié)基因翻譯起始和延長因子實現的。但是,這些翻譯相關因子在乳腺蛋白質合成過程中的作用機理研究并不透徹。因此,乳蛋白合成調控機理方面的研究將是今后奶牛泌乳生理研究的重點和熱點。
參考文獻:
[1] THIVIERGE M C, PETITCLERC D, BERNIER J F, et al. Variations in mammary protein metabolism during the natural filling of the udder with milk over a 12-h period between two milkings: leucine kinetics[J]. J Dairy Sci, 2002, 85(11): 2974-2985.
[2] BURGOS S A, DAI M, CANT J P. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway[J]. J Dairy Sci, 2010, 93(1): 153-161.
[3] TOERIEN C A, CANT J P. Abundance and phosphorylation state of translation initiation factors in mammary glands of lactating and nonlactating dairy cows[J]. J Dairy Sci, 2007, 90(6): 2726-2734.
[4] HAYASHI A A, NONES K, ROY N C, et al. Initiation and elongation steps of mRNA translation are involved in the increase in milk protein yield caused by growth hormone administration during lactation[J]. J Dairy Sci, 2009, 92(5): 1889-1899.
[5] LONG E, LAZARIS-KARATZAS A, KARATZAS C, et al. Overexpressing eukaryotic translation initiation factor 4E stimulates bovine mammary epithelial cell proliferation[J]. Int J Biochem Cell B, 2001, 33(2): 133-141.
[6] AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows[J]. J Dairy Sci, 2006, 89(4): 1222-1234.
[7] BOLANDER F F, NICHOLAS K R, WYKO J J V, et al. Insulin is essential for accumulation of casein mRNA in mouse mammary epithelial cells[J]. Cell Biol,1981,78(9):5682-5684.
[8] BRENNAN A J, SHARP J A, LEF?魬VRE C M, et al. Uncoupling the mechanisms that facilitate cell survival in hormone-deprived bovine mammary explants[J]. J Mol Endocrinol, 2008, 41: 103-116.
[9] OAKES S R, ROGERS R L, NAYLOR M J, et al. Prolactin regulation of mammary gland development[J].J Mammary Gland Biol,2008,13:13-28.
[10] MATUSIK R J, ROSEN J M. Prolactin induction of casein mRNA in organ culture. A model system for studying peptide hormone regulation of gene expression[J]. J Biol Chem, 1978,253(7): 2343-2347.
[11] KABOTYANSKI E B,RIJNKELS M,FREEMAN-ZADROWSKI C, et al. Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements[J]. J Biol Chem, 2009, 284(34): 22815-22824.
[12] CHOI K M, BARASH I, RHOADS R E. Insulin and prolactin synergistically stimulate beta-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation[J]. Mol Endocrinol, 2004, 18(7): 1670-1686.
[13] MENZIES K K, LEF?魬VRE C, MACMILLAN K L, et al. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland[J]. Funct Integr Genomic, 2009, 9(2): 197-217.
[14] MA X M, BLENIS J. Molecular mechanisms of mTOR mediated translational control[J]. Nat Rev Mol Cell Bio, 2009, 10:307-318.
[15] MOLENTO C F, BLOCK E, CUE R I, et al. Effects of insulin, recombinant bovine somatotropin, and their interaction on insulin-like growth factor-I secretion and milk protein production in dairy cows[J]. J Dairy Sci,2002,85(4):738-747.
[16] SCIASCIA Q, PACHECO D, MCCOARD S A. Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR)C1-dependent and independent cell signaling[J]. J Dairy Sci, 2013, 96(4): 2327-2338.
[17] JOHNSTON S L, KITSON K E, TWEEDIE J W, et al. γ-Glutamyl transpeptidase inhibition suppresses milk protein synthesis in isolated ovine mammary cells[J]. J Dairy Sci, 2004, 87(2): 321-329.
[18] RAGGIO G, LEMOSQUET S, LOBLEY G E, et al. Effect of casein and propionate supply on mammary protein metabolism in lactating dairy cows[J]. J Dairy Sci, 2006, 89(11): 4340-4351.
[19] KIMBALL S R, JEFFERSON L S. Control of protein synthesis by amino acid availability[J]. Curr Opin Clin Nutr Metab Care, 2002, 5(1): 63-67.
[20] JEFFERSON L S, KIMBALL S R. Amino acids as regulators of gene expression at the level of mRNA translation[J]. J Nutr, 2003, 133(6): 2046S-2051S.
[21] MOSHEL Y, RHOADS R E, BARASH I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells[J]. J Cell Biochem, 2006, 98(3): 685-700.
[22] PRIZANT R L, BARASH I. Negative effects of the amino acids Lys, His, and Thr on S6K1 phosphorylation in mammary epithelial cells[J]. J Cell Biochem,2008,105(4):1038-1047.
[23] KIMBALL S R, JEFFERSON L S. New functions for amino acids: effects on gene transcription and translation[J]. Am J Clin Nutr, 2006, 83(2): 500S-507S.
[24] ARRIOLA S I, SINGER L M, LIN X Y, et al. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue[J]. J Dairy Sci, 2014, 97(2): 1047-1056.
[25] LONG X, ORTIZ-VEGA S, LIN Y, et al. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency[J]. J Biol Chem, 2005, 280(25): 23433-23436.
[26] AVRUCH J, LONG X, ORTIZ-VEGA S, et al. Amino acid regulation of TOR complex 1[J]. Am J Physiol Endocrinol Metab, 2009, 296(4): E592-E602.
[27] APPUHAMY J A D R N, NAYANANJALIE W A,ENGLAND E M, et al. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells[J]. J Dairy Sci,2014,97(1):419-429.
[28] HANIGAN M D, FRANCE J, MABJEESH S J, et al. High rates of mammary tissue protein turnover in lactating goats are energetically costly[J]. J Nutr, 2009, 139(6): 1118-1127.
[29] BRODERICK G A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows[J]. J Dairy Sci, 2003, 86(4): 1370-1381.
[30] PROUD C G. Signalling to translation: How signal transduction pathways control the protein synthetic machinery[J]. Biochem J, 2007, 403(2): 217-234.
[31] APPUHAMY J A D R N, BELL A L, ESCOBAR J, et al. Effects of essential amino acid deprivation on protein synthesis signaling in bovine mammary epithelial cells in vitro[A]. XIth International Symposium Ruminant Physiology[C]. Clermont-Ferrand, France: Wageningen Academic Publishers, 2009. 424-425.
[32] RIUS A G, APPUHAMY J A D R N, CYRIAC J, et al. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids[J]. J Dairy Sci, 2010, 93(7): 3114-3127.
[33] BEQUETTE B J, HANIGAN M D, CALDER A G, et al. Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production[J]. J Dairy Sci, 2000, 83(4): 765-775.
[34] WILDE C J, ADDEY C V P, BODDY L M, et al. Autocrine regulation of milk secretion by a protein in milk[J]. Biochem J, 1995, 305: 51-58.
[35] RENNISON M E, KERR M, ADDEY C V P, et al. Inhibition of constitutive protein secretion from lactating mouse mammary epithelial cells by FIL (feedback inhibitor of lactation), a secreted milk protein[J]. J Cell Sci, 1993, 106: 641-648.