鄧鈞安(綜述) 楊建安 劉銀河(審校)
綜 述
MicroRNA調(diào)控主動(dòng)脈夾層發(fā)病的研究進(jìn)展
鄧鈞安(綜述) 楊建安 劉銀河(審校)
主動(dòng)脈夾層; MicroRNA; 發(fā)病機(jī)制
主動(dòng)脈夾層(aortic dissection,AD)是在主動(dòng)脈中層出現(xiàn)變性、壞死等結(jié)構(gòu)異常的基礎(chǔ)上,當(dāng)內(nèi)膜撕裂后,血液流入中層形成假腔的血管疾病。其發(fā)病率為 4~5 人/10 萬(wàn)人年[1,2],一旦發(fā)病,死亡率極高,死亡原因是夾層破裂所致的大出血。雖然目前主動(dòng)脈夾層的具體發(fā)病機(jī)制尚未完全闡明,但越來(lái)越多的研究表明AD患者基因水平表達(dá)異常是發(fā)病的遺傳學(xué)基礎(chǔ)[3,4]。近來(lái)的研究發(fā)現(xiàn),microRNA(miRNA)在許多心血管疾病的發(fā)生及發(fā)展過(guò)程中起著重要作用,如調(diào)節(jié)細(xì)胞的分化、增殖及凋亡等過(guò)程[5]。血管平滑肌細(xì)胞功能紊亂、細(xì)胞外基質(zhì)成分異常、血管炎癥、黏著斑表達(dá)異常及基因遺傳變異等是主動(dòng)脈夾層的發(fā)病基礎(chǔ)[6,7]。通過(guò)應(yīng)用基因芯片技術(shù),相關(guān)研究發(fā)現(xiàn),胸主動(dòng)脈夾層患者夾層組織與健康人主動(dòng)脈組織的一些miRNA有顯著的表達(dá)差異[8]。這表明miRNA在主動(dòng)脈夾層的發(fā)病機(jī)制中有著重要的意義?,F(xiàn)本文就miRNA調(diào)控AD發(fā)病機(jī)制的研究進(jìn)展作一綜述。
血管平滑肌細(xì)胞的穩(wěn)態(tài)對(duì)維持正常主動(dòng)脈功能起重要的作用,當(dāng)血管平滑肌細(xì)胞內(nèi)穩(wěn)態(tài)改變時(shí),例如由收縮型轉(zhuǎn)變?yōu)榉置谛?,可改變?dòng)脈壁的機(jī)械結(jié)構(gòu),將促進(jìn)急性主動(dòng)脈夾層的發(fā)生[9,10]。一些研究表明,miRNA是血管平滑肌細(xì)胞分化,表型轉(zhuǎn)換、增殖,遷移及凋亡等重要的調(diào)節(jié)劑[11-13],包括miRNA-21[14]、miRNA-143/145[15]及 miRNA-26a[16]等被認(rèn)為可通過(guò)調(diào)節(jié)血管平滑肌而參與AD的發(fā)病。
1.1 MiRNA-21 MiRNA-21已被證明在血管平滑肌細(xì)胞表型的調(diào)控中起重要作用[17]。Ji等[18]發(fā)現(xiàn),miRNA-21通過(guò)調(diào)節(jié)磷酸酶、張力蛋白同源物(phosphatase and tensin homolog,PTEN) 和 B 淋巴細(xì)胞瘤-2基因(B-cell lymphoma-2,Bcl2)靶基因促進(jìn)血管平滑肌細(xì)胞的增殖和抑制細(xì)胞凋亡。MiRNA-21可通過(guò)激活轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor-β,TGF-β1)和 BMP-4 受體增加 Smad蛋白的合成,促進(jìn)血管平滑肌細(xì)胞分化和發(fā)育。有研究證實(shí),當(dāng)主動(dòng)脈壁受到過(guò)高的縱向剪切力(例如高血壓)時(shí),miRNA-21的表達(dá)升高[19],通過(guò)調(diào)節(jié)PTEN,減少血管平滑肌細(xì)胞凋亡,延緩病理性血管重塑,從而抑制主動(dòng)脈瘤和夾層的發(fā)生[20]。Maegdefessel等[20]發(fā)現(xiàn),主動(dòng)脈瘤患者的miRNA-21表達(dá)明顯增加,過(guò)表達(dá)的miRNA-21可抑制動(dòng)脈瘤的過(guò)度擴(kuò)張,增加主動(dòng)脈壁的抗張力,這種機(jī)制在主動(dòng)脈夾層的發(fā)病機(jī)制中扮演重要的角色。Song等[21]的研究發(fā)現(xiàn),miRNA-21的反義核苷酸輸注入血管平滑肌細(xì)胞后,將激活靶基因程序性細(xì)胞凋亡因子4(Programmed Cell Death 4,PDCD4)的表達(dá),使血管平滑肌細(xì)胞增殖受到明顯抑制,促進(jìn)凋亡。此外,miRNA-21還可負(fù)性調(diào)節(jié)靶蛋白Smad7,從而增加血管膠原蛋白,調(diào)節(jié)新生血管內(nèi)膜的生成,參與血管重建的調(diào)節(jié)。
1.2 MiRNA-143/145 MiRNA-143/145是許多血管性疾病發(fā)病機(jī)制的重要調(diào)節(jié)劑。由于miRNA-143/145表達(dá)缺失誘導(dǎo)的血管平滑肌細(xì)胞分化不完全所致主動(dòng)脈壁結(jié)構(gòu)的改變,是主動(dòng)脈夾層發(fā)病中重要的環(huán)節(jié)。MiRNA-143/145可靶向調(diào)節(jié)KLF5、myocardin、Elk-1等轉(zhuǎn)錄因子,改變血管平滑肌功能。Cordes等[11]的研究進(jìn)一步驗(yàn)證了miRNA-143/145在血管平滑肌細(xì)胞分化和血管可塑性方面的作用。已有研究證實(shí),敲除小鼠的miRNA-143/145后,電鏡下見(jiàn)染色的α肌動(dòng)蛋白堆積在血管平滑肌細(xì)胞內(nèi),并促使血管平滑肌細(xì)胞由中膜向內(nèi)膜遷移,血管平滑肌細(xì)胞排列紊亂,血管穩(wěn)態(tài)發(fā)生改變,這與主動(dòng)脈瘤患者miRNA-143/145下調(diào)是相符合的[15]。過(guò)表達(dá)的miRNA-143/145增加大鼠血管急性損傷后新生內(nèi)膜的形成,這在動(dòng)脈粥樣硬化血管重構(gòu)的機(jī)制中受到關(guān)注。Quintavalle等[22]研究發(fā)現(xiàn),miRNA-143靶向作用于蛋白激酶C和血小板生長(zhǎng)因子受體,在細(xì)胞遷移及增殖中起重要的作用。MiRNA-145通過(guò)負(fù)性調(diào)控轉(zhuǎn)錄因子KLF4,刺激胚胎干細(xì)胞分化為平滑肌細(xì)胞的功能[23]。同時(shí),miRNA-145還參與細(xì)控制胞骨架動(dòng)力學(xué)和平滑肌細(xì)胞對(duì)損傷的反應(yīng)。
1.3 NiRNA-26a Leeper等[16]通過(guò)基因微陣列研究發(fā)現(xiàn),miRNA-26a通過(guò)調(diào)控 TGF-β和 BMPSmad信號(hào)通路,可負(fù)性調(diào)控血管平滑肌細(xì)胞的分化和凋亡,促進(jìn)增殖和遷移。過(guò)表達(dá)的miRNA-26a阻斷TGF-β通路,減少Smad1蛋白和Smad4蛋白的合成,抑制血管平滑肌細(xì)胞分化及凋亡,在表型轉(zhuǎn)換中起重要的作用。相反,敲除miRNA-26a后加速了血管平滑肌細(xì)胞分化速率[24]。MiRNA-26a可能參與血管平滑肌分化的負(fù)反饋機(jī)制過(guò)程。在小鼠彈性蛋白酶動(dòng)脈瘤模型和載脂蛋白E-/-血管緊張素Ⅱ動(dòng)脈瘤模型中,發(fā)現(xiàn)miRNA-26a顯著下調(diào),考慮與miRNA-26a調(diào)控血管平滑肌細(xì)胞增殖和遷移,向合成型轉(zhuǎn)變有關(guān)[25]。此外,miRNA-26a還可延緩血管損傷后的新生毛細(xì)血管修復(fù)過(guò)程,影響血管重構(gòu),這與AD的發(fā)病相關(guān)。
主動(dòng)脈中膜出現(xiàn)退行性變是AD主要的發(fā)病基礎(chǔ)[26]。正常的主動(dòng)脈中層由平滑肌細(xì)胞和細(xì)胞外基質(zhì)組成,而細(xì)胞外基質(zhì)主要是膠原蛋白、彈性蛋白及纖維蛋白等。當(dāng)基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMP)活性增高使細(xì)胞外基質(zhì)過(guò)度降解時(shí),將促進(jìn)中膜出現(xiàn)退行性改變,破壞血管壁的正常結(jié)構(gòu)。有研究表明,部分miRNA在TGF-β等信號(hào)通路中起關(guān)鍵的調(diào)控作用,進(jìn)而影響MMP的表達(dá),參與細(xì)胞外基質(zhì)的重塑及AD的發(fā)病[27]。
2.1 MiRNA-29 MiRNA-29家族針對(duì)多個(gè)目標(biāo)基因的轉(zhuǎn)錄后調(diào)控,參與編碼纖維化細(xì)胞外基質(zhì)蛋白的合成,例如Ⅰ型膠原(COL1A1和COL1A2)、Ⅲ型膠原(COL3A1)、微纖維蛋白-1(FBN1)及彈性蛋白(ELN)等[28],在維持主動(dòng)脈壁正常結(jié)構(gòu)中均起重要作用。在急性心肌梗死后,miRNA-29家族已被證明直接調(diào)控編碼細(xì)胞外膠原蛋白和彈性蛋白的合成而參與組織纖維化。Ⅳ型膠原(COL4A1)是基底膜中重要的成分,參與細(xì)胞外基質(zhì)結(jié)構(gòu)的維持。Boon等[29]首先發(fā)現(xiàn),年老小鼠(18歲)比年輕小鼠(6周齡)主動(dòng)脈組織中miRNA-29家族的表達(dá)顯著增加,負(fù)性調(diào)控靶基因COL4A1,導(dǎo)致Ⅳ型膠原蛋白水平在老年小鼠的主動(dòng)脈中水平偏低。在小鼠升主動(dòng)脈瘤模型(fbn1c1039g/)中,將miRNA-29的反義核苷酸LNA anti-mir-29轉(zhuǎn)染入小鼠后觀察到主動(dòng)脈瘤的進(jìn)展明顯受到延緩[30]。這可能是由于抑制miRNA-29表達(dá)后,通過(guò)TGF-β信號(hào)通路,增加核磷酸化Smad2(pSmad2)和結(jié)締組織生長(zhǎng)因子(CTGF),促進(jìn)膠原沉積在主動(dòng)脈中層[31],增加主動(dòng)脈壁的機(jī)械順應(yīng)性,抑制主動(dòng)脈擴(kuò)張和夾層發(fā)生。過(guò)表達(dá)的miRNA-29增強(qiáng)MMP轉(zhuǎn)錄因子AP-1活性,上調(diào)MMP9表達(dá),促進(jìn)ECM膠原蛋白降解[32]。
2.2 MiRNA-195 MiRNA-195屬于miRNA-15家族中高度保守的成員,在心血管系統(tǒng)發(fā)病中起重要的調(diào)節(jié)作用。在心力衰竭的小鼠中發(fā)現(xiàn)miRNA-195表達(dá)增加,將加快心肌纖維化及肥厚進(jìn)程[33]。Zampetaki等[34]報(bào)道,除 miRNA-29家族外,miRNA-195也是細(xì)胞外基質(zhì)膠原重塑的有效調(diào)節(jié)劑。通過(guò)對(duì)小鼠主動(dòng)脈分別予以前體miRNA-195和miRNA-195抑制劑后行蛋白組學(xué)分析比較發(fā)現(xiàn),在予以miRNA-195抑制劑后MMP9表達(dá)上調(diào),膠原蛋白、彈性蛋白及彈性纖維相關(guān)蛋白等降解明顯[34],主動(dòng)脈變脆弱,促進(jìn)主動(dòng)脈夾層的發(fā)生。在注射血管緊張素Ⅱ載脂蛋白E-/-小鼠動(dòng)脈瘤模型中,miRNA-195和miRNA-29b抑制劑可同樣有效地降低主動(dòng)脈直徑和預(yù)防動(dòng)脈瘤形成。同時(shí),在人血漿中觀察到,miRNA-195與主動(dòng)脈瘤的直徑呈負(fù)性相關(guān),基于上述證據(jù),miRNA-195未來(lái)可能作為一種非侵入性診斷動(dòng)脈瘤甚至AD的生物標(biāo)志物。
在AD病檢組織中發(fā)現(xiàn)大量中性粒細(xì)胞、巨噬細(xì)胞、T細(xì)胞和樹(shù)突狀細(xì)胞等炎癥細(xì)胞,表明炎癥反應(yīng)與主動(dòng)脈夾層的發(fā)病密切相關(guān)。血管炎癥不僅促進(jìn)血管平滑肌細(xì)胞凋亡和ECM降解,而且還可以通過(guò)產(chǎn)生局部組織炎癥反應(yīng)[35],破壞主動(dòng)脈壁的穩(wěn)態(tài),促進(jìn)AD的發(fā)生。
3.1 MiRNA-181b MiRNA-181b是miRNA-181家族的重要成員之一,越來(lái)越多的研究表明其在血管炎癥反應(yīng)中發(fā)揮重要的作用[36]。Sun等[36]研究發(fā)現(xiàn),在損傷的血管內(nèi)皮細(xì)胞中,miRNA-181b通過(guò)調(diào)控核轉(zhuǎn)運(yùn)蛋白3(Importin-α3)抑制下游NF-kB信號(hào)通路的激活,使結(jié)合的p50/p65進(jìn)入細(xì)胞核,下調(diào)血管細(xì)胞黏附分子-1(vascular cell adhesion molecule,VCAM1)、細(xì)胞間黏附分子-1(intercellular adhesion molecule,ICAM1)、選擇素-E(E-selectin)等細(xì)胞因子的表達(dá),抑制白細(xì)胞黏附,延緩血管炎癥的發(fā)生。MiRNA-181b可活化胞嘧啶核苷脫氨酶(AID),產(chǎn)生獨(dú)特的B細(xì)胞抗體,調(diào)節(jié)B細(xì)胞的表型狀態(tài)[37]和促進(jìn)白細(xì)胞聚集,參與血管炎癥的過(guò)程。
3.2 MiRNA-126 Oettgen[38]研究證明,轉(zhuǎn)錄因子ETS家族在血管生成、炎癥和重塑中發(fā)揮重要的作用。同時(shí)發(fā)現(xiàn),miRNA-126在血管內(nèi)皮細(xì)胞中高度表達(dá),通過(guò)調(diào)控ETS-1和ETS-2,介導(dǎo)靶基因Spred-1和PI3KR的表達(dá),參與血管生成和炎癥的過(guò)程。在敲除miRNA-126的斑馬魚(yú)胚胎發(fā)育過(guò)程中發(fā)現(xiàn)血管畸形所致致命性出血[39],表明miRNA-126是調(diào)節(jié)血管發(fā)育中重要的成員之一。MiRNA-126可調(diào)節(jié)VCAM-1和MCP-1的表達(dá),抑制血管炎癥的發(fā)生[40]。此外,在主動(dòng)脈瘤患者血漿中發(fā)現(xiàn)miRNA-126表達(dá)下調(diào)[41],可能由于miRNA-126的下調(diào)導(dǎo)致血管炎癥和血管重構(gòu)的發(fā)展,降低了主動(dòng)脈順應(yīng)性,促進(jìn)了動(dòng)脈瘤及其他主動(dòng)脈疾病的發(fā)生。
3.3 MiRNA-155 MiRNA-155是一類多功能的miRNA,已發(fā)現(xiàn)在多種病理生理過(guò)程中發(fā)揮著關(guān)鍵作用,包括血管炎癥、血細(xì)胞生成及機(jī)體免疫等。Chen等[42]報(bào)道m(xù)iRNA-155在小鼠原代巨噬細(xì)胞和氧化低密度脂蛋白(ox-LDL)刺激的單核細(xì)胞中上調(diào),表明miRNA-155參與其血管炎癥反應(yīng)。在另一項(xiàng)研究里Zhu等[43]發(fā)現(xiàn),在有動(dòng)脈粥樣硬化癥的小鼠主動(dòng)脈組織及血漿中miR-155表達(dá)升高。進(jìn)一步的實(shí)驗(yàn)表明,miRNA-155通過(guò)抑制絲裂原蛋白 激 酶 10 (mitogen-activated protein kinase,MAPK10),減少 IL-1、IL-6、TNF-α 等炎癥因子的表達(dá),抑制血管炎癥的發(fā)生,并延緩動(dòng)脈粥樣硬化的進(jìn)展[44]。所有這些證據(jù)表明,miRNA-155是炎癥相關(guān)的血管疾病如動(dòng)脈粥樣硬化及主動(dòng)脈疾病等重要的調(diào)節(jié)器之一。
黏著斑是細(xì)胞外基質(zhì)黏附于細(xì)胞骨架之間的蛋白連接,一端位于細(xì)胞內(nèi),在細(xì)胞連接肌動(dòng)蛋白束,另一端位于細(xì)胞外基質(zhì)蛋白。因此,黏著斑不僅能加強(qiáng)細(xì)胞之間的黏附和增殖,而且還是重要的跨膜信號(hào)傳導(dǎo)通路[45]。已有實(shí)驗(yàn)證實(shí)主動(dòng)脈夾層患者黏著斑表達(dá)異常[46]。
MiRNA-1973通過(guò)緊密連接調(diào)控靶基因MAGI2,上調(diào)PTEN的表達(dá),抑制絲氨酸/蘇氨酸蛋白激酶(serine-threonine protein kinase,Akt) 磷酸化,延緩細(xì)胞增殖[47],并破壞細(xì)胞與外基質(zhì)的正常結(jié)構(gòu)及阻斷信號(hào)傳遞,削弱了動(dòng)脈壁的穩(wěn)定性。
綜上所述,隨著基因技術(shù)的飛速發(fā)展,人類對(duì)miRNA在主動(dòng)脈夾層發(fā)病機(jī)制中的作用有了一定的了解,對(duì)于以后疾病的提早診斷及判斷預(yù)后有相當(dāng)大的幫助,可考慮將其作為一種生物標(biāo)志物甚至治療的一種方式。但鑒于目前對(duì)于miRNA研究仍處于起步階段,miRNA的具體調(diào)控位點(diǎn)及miRNA與長(zhǎng)鏈非編碼 RNA(Long non-coding RNA,lncRNA)間相互作用等仍未清楚,在未來(lái)的研究中仍需繼續(xù)探索。
[1]胡孜陽(yáng),羅建方,鐘詩(shī)龍,等.應(yīng)用基因芯片初步分析主動(dòng)脈夾層與正常主動(dòng)脈微小RNA的差異表達(dá).中華心血管病雜志,2012,40:406-410.
[2]丁旭,陳麗娟,金春杰,等.主動(dòng)脈夾層的臨床特征及治療進(jìn)展.中國(guó)醫(yī)藥,2012,7:247-249.
[3]張金良,荊全民.主動(dòng)脈夾層病因?qū)W進(jìn)展.中國(guó)心血管病研究,2009,7:152-155.
[4]Mohamed SA,Sievers HH,Hanke T,et al.Pathway analysis of differentially expressed genesIn patientswith acute aortic dissection.Biomark Insights,2009,4:81-90.
[5] PushparajPN, AarthiJJ, KumarSD, etal.RNAiand RNAs——the yin and yang of RNAome.Bioinformation,2008,2:235-357.
[6]Zhu L,Vranckx R,Khau van Kien P,et al.Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus.Nat Genet,2006,38:343-349.
[7] Ikonomidis JS,Jones JA,Barbour JR,et al.Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome.Circulation,2006,114:365-370.
[8]Liao M,Zou S,Weng J,et al.A microRNA profile comparisionbetween thoracic aortic dissection and normal thoracic aorta indicates the potential role of microRNAs in contributing to thoracic aortic dissection pathngenesi.J Vase Surg,2011,53:1341-1349.
[9]Rensen SS,Doevendans PA,Van Eys G,et al.Regulation and characteristics of Vascular smooth muscle cell phenotypic diversity.Neth Heart J,2007,15:100-108.
[10] Owens GK, Kumar MS, Wamhoff BR, et al.Molecular regulation of vascular smooth muscle cell differentiation in development and disease.Physiol Rev,2004,84:767-801.
[11]Cordes KR,Sheehy NT,White MP,et al.MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity.Nature,2009,460:705-710.
[12] Boettger T,Beetz N,Kostin S,et al.Acquisition of the contractile phenotype by murine arterial smooth muscle cells dependson the Mir143/145 gene cluster.JClin Invest,2009,119:2634-2647.
[13]Davis-Dusenbery BN,Wu C,Hata A.Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation.Arterioscler Thromb Vasc Biol,2011,31:2370-2377.
[14] Zhang Z,Zou J,Wang GK,et al.Uracils at nucleotide position 9-11 are required for the rapid turnover of miR-29 family.Nucleic Acids Res,2011,39:4387-4395.
[15]Elia L,Quintavelle M,Zhang J,et al.The knockout of miR-143/145 and miR-145 alters smooth muscel cell maintenance and vasculer homeostasis in mice:correlates with human disease.Cell Death Differ,2009,16:1590-1598.
[16]Leeper NJ,Raiesdana A,Kojima Y,et al.MicroRNA-26a is a novel regulator of vascular smooth muscle cell function.J Cell Physiol,2011,226:1035-1043.
[17]Thum T,Gross C,F(xiàn)iedler J,et al.MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts.Nature,2008,456:980-984.
[18]Ji R,Cheng Y,Yue J,et al.MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.Circ Res,2007,100:1579-1588.
[19]Weber M,Baker MB,Moore JP,et al.MIR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity.Biochem Biophys Res Commun,2010,393:643-648.
[20]Maegdefessel L,Azuma J,Toh R,et al.MicroRNA-21 blocks abdominal aortic aneurysm development and nicotineaugmented expansion.Science Translational Medicine,2012,4:122.
[21]Song JT,Hu B,Qu HY,et al.Mechanical stretch modulates microRNA-21 expression,participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.PLoS One,2012,7:e47657.
[22]Quintavalle M,Elia L,Condorelli G,et al.MicroRNA control of podosome formation in vascular smooth muscle cells in vivoand in vitro.J Cell Biol,2010,189:13-22.
[23]Xin M,Small EM,Sutherland LB,et al.MicroRNAs miR-143 and miR -145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury.Genes Dev,2009,23:2166-2178.
[24]Leeper NJ,Cooke JP.MicroRNA and mechanisms of impaired angiogenes is in diabetes mellitus.Circulation,2011,123:236-238.
[25] Ailawadi G,Moehle CW,Pei H,et al.Smooth muscle phenotypic modulation is an early event in aortic aneurysms.J Thorac Cardiovasc Surg,2009,138:1392-1399.
[26] Pacini D, Di Marco L, Fortuna D, et al.Acute aortic dissection:epidemiology and outcomes.Int J Cardiol,2013,167:2806-2812.
[27]Zhang X,Shen YH,Lemaire SA.Thoacic aortic dissection:are matrix metalloproteinases involved?Vascular,2009,17:147-157.
[28] MaegdefesselL, AzumaJ, Toh R, etal.Inhibition of microRNA-29b reducesmurineabdominalaorticaneurysm development.Clin Invest,2012,122:497-506.
[29]Boon RA,Seeger T,Heydt S,et al.MicroRNA-29 in aortic dilation:implications for aneurysm formation.Circ Res,109:1115-1119.
[30]Merk DR,Chin JT,Dake BA,et al.miR-29b Participates in Early Aneurysm Development in Marfan SyndromeNovelty and Significance.Circ Res,2012,110:312-324.
[31]Hanada K,Vermeji M,Garinis GA,et al.Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice.Circ Res,2007,100:738-746.
[32]Chen KC,Wang YS,Hu CY,et al.OxLDL up-regulates microRNA-29b,leading to epigenetic modifications of MMP-2/MMP-9 genes:a novel mechanism for cardiovascular diseases.FASEB J,2011,25:1718-1728.
[33]Van Rooij E,Sutherland LB,Liu N,et al.A signature pattern ofstress-responsive microRNAs thatcan evoke cardiac hypertrophy and heart failure.Proc Natl Acad Sci USA,2006,103:18255-18260.
[34]Zampetaki A,Attia R,Mayr U,et al.Role of miR-195 in aortic aneurysmal disease.Circ Res,2014,10:857-866.
[35]Guo DC,Papke CL,He RM,et al.Pathogenesis of thoracic and abdominalaortic aneurysms.Ann N Y Acad Sci,2006,1085:339-352.
[36]Sun X,Si A,F(xiàn)einberg MW,et al.Role of miR-181 family in regulating vascular inflammation and immunity. Trends Cardiovasc Med,2014,24:105-112.
[37] de Yebenes VG,Belver L,Pisano DG,et al.Mir-181b negatively regulates activation-induced cytidine deaminase in B cells.J Exp Med,2008,205:2199-206.
[38]Oettgen P.Regulation of vascular inflammation and remodeling by ETS factors.Circ Res,2006,99:1159-1166.
[39]Harris TA,Yamakuchi M,Kondo M,et al.Ets-1 and Ets-2 regulate the expression of MicroRNA-126 in endothelial cells.Arterioscler Thromb Vasc Biol,2010,30:1990-1997.
[40]Fish JE,Santoro MM,Morton SU,et al.MiR-126 regulates angiogenic signaling and vascular integrity.Dev Cell,2008,15:272-284.
[41]Harris TA,Yamakuchi M,F(xiàn)erlito M,et al.MicroRNA-126 regulates endothelialexpression ofvascular celladhesion molecule 1.Proc Natl Acad Sci USA,2008,105:1516-1521.
[42]Chen T,Huang Z,Wang L,et al.MicroRNA-125a-5p partly regulates the inflammatory response,lipid uptake,and ORP9 expression in oxLDL -stimulated monocyte/macrophages.Cardiovasc Res,2009,83:131-139.
[43]Zhu J,Chen T,Yang L,et al.Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10.PLoS One,2012,7:e46551.
[44] Kin K, Miyagawa S, Fukushima S, et al.Tissue-and plasmaspecific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm.J Am Heart Assoc,2012,1:e000745.
[45]Hamrah P,Alipour F,Jiang S,et al.Optimizing evaluation of Lissamine Green parametes for ocular surface staning.Eye,2011,25:1429-1434.
[46]潘蓀,洪濤,王春生.Stanford A型主動(dòng)脈夾層差異表達(dá)基因生物學(xué)通路分析.復(fù)旦學(xué)報(bào)(醫(yī)學(xué)版),2015,42:379-383.
[47]Li X,Li Z,Li N,et al.MAGI2 enhances the sensitivity of BEL -7404 human hepatocellular carcinoma cells to staurosporine-induced apoptosis by increasing PTEN stability.Int J Mol Med,2013,32:439-447.
Research progress of MicroRNA in the pathogenesis of aortic dissection
Aortic dissection; MicroRNA; Pathogenesis
421000 湖南省衡陽(yáng)市,南華大學(xué)醫(yī)學(xué)院(鄧鈞安);深圳市孫逸仙心血管醫(yī)院心血管外科(楊建安、鄧鈞安),檢驗(yàn)科(劉銀河)
楊建安,E-mail:yangjianan@hotmail.com
10.3969/j.issn.1672-5301.2016.05.004
R543.1
A
1672-5301(2016)05-0397-05
2016-01-15)