袁慎俊,陳濤
(三峽大學(xué)醫(yī)學(xué)院,湖北宜昌443002)
RNA干擾在腫瘤治療中的靶點(diǎn)研究
袁慎俊,陳濤
(三峽大學(xué)醫(yī)學(xué)院,湖北宜昌443002)
RNA干擾是一種轉(zhuǎn)錄后基因沉默機(jī)制。通過RNA干擾技術(shù)可以特異性剔除或關(guān)閉特定基因的表達(dá),進(jìn)而為惡性腫瘤的治療提供一種嶄新的手段。本文就RNA干擾的機(jī)制、作用靶標(biāo)及相關(guān)的臨床應(yīng)用做一綜述。
RNA干擾;基因沉默;微小RNAs;長(zhǎng)非編碼RNAs;腫瘤治療
RNA干擾(RNA interference,RNAi)是生物進(jìn)化過程中遺留下來的一種在轉(zhuǎn)錄后通過小RNA分子調(diào)控基因表達(dá)的現(xiàn)象[1]。其靶點(diǎn)特異性比小分子藥物更高,且不需要特殊的結(jié)合蛋白,可以直接作用于單克隆抗體無法到達(dá)的靶點(diǎn),直接阻止某些基因翻譯產(chǎn)生致病蛋白,在源頭阻斷疾病發(fā)生,從而避免了使用小分子藥物或其他生物制劑在分子級(jí)聯(lián)通路下游治療疾病。腫瘤的發(fā)生是多個(gè)基因相互調(diào)控作用“失靈”的結(jié)果,當(dāng)前對(duì)腫瘤的治療主要是通過物理和化學(xué)的方法抑制DAN復(fù)制及細(xì)胞增殖,進(jìn)而殺死癌細(xì)胞,然而這些方法不可能完全抑制或逆轉(zhuǎn)腫瘤的生長(zhǎng)。而RNA干擾可以利用同一基因家族中多個(gè)成員具有一段同源性很高的保守序列這一特性,設(shè)計(jì)針對(duì)這一序列的dsRNA分子,只導(dǎo)入一種dsRNA即可以使多個(gè)基因同時(shí)沉默,從而促使癌細(xì)胞生長(zhǎng)停滯。
RNA干擾是一種基因轉(zhuǎn)錄后沉默機(jī)制,它由雙鏈RNA(Doublestranded RNA,dsRNA)啟動(dòng),在Dicer酶的參與下,把RNA分子切割為小分子干擾RNA(Small interfering RNA/shortinterfering RNA,siRNA),并特異性地與mRNA的同源序列結(jié)合,從而產(chǎn)生相應(yīng)的功能表型缺失的現(xiàn)象。RNA干擾技術(shù)實(shí)質(zhì)是將siRNA通過不同方式導(dǎo)入到細(xì)胞或動(dòng)物體內(nèi),將相應(yīng)的目的基因沉默掉,進(jìn)而使相應(yīng)的功能表型缺失。在動(dòng)植物體中,轉(zhuǎn)錄后基因沉默是通過dsRNA介導(dǎo)的,dsRNA在序列上與靶基因具有同源性。RNA干擾能夠高效沉默具有調(diào)節(jié)特殊生理/病理通路功能的靶基因,并且能夠在轉(zhuǎn)錄水平上通過siRNA下調(diào)靶mRNA[2]。有研究表明,人類疾病相關(guān)基因的過度表達(dá)將成為基于RNA干擾治療的一個(gè)潛在靶點(diǎn)[3]。由于RNA干擾的高度特異性和低毒性,該技術(shù)已經(jīng)成為基因功能和基因治療方面的有效工具,并且可以治療傳統(tǒng)藥物無法治愈的各種人類疾病,比如高膽固醇血癥[4]、病毒性肝炎[5]、亨廷頓氏舞蹈癥[6]。
在惡性腫瘤中,RNA干擾可以沉默由基因擴(kuò)增、突變或者過表達(dá)而引發(fā)的癌基因。研究顯示,在腫瘤治療中,RNA干擾在細(xì)胞凋亡、自噬、腫瘤代謝和細(xì)胞衰老等方面取得了巨大成功[7]。目前,應(yīng)用基于RNA干擾的基因沉默來治療腫瘤已經(jīng)有了實(shí)質(zhì)性進(jìn)展,并且正在進(jìn)行中的藥物臨床試驗(yàn)有望替代傳統(tǒng)的腫瘤化療。
MicroRNA(miRNA)是一種小的內(nèi)源性非編碼RNA分子,由21~25個(gè)核苷酸組成。這些小的miRNAs通常靶向一個(gè)或者多個(gè)mRNAs,通過翻譯水平的抑制或斷裂靶標(biāo)mRNAs而調(diào)節(jié)基因的表達(dá)。最近有研究表明,miRNAs與癌癥有確切聯(lián)系,它們?cè)谀[瘤發(fā)生中扮演著癌基因或者抑癌基因的角色。進(jìn)一步的證據(jù)表明,miRNAs在腫瘤進(jìn)展方面也起著重要作用,包括腫瘤血管生成[8]、轉(zhuǎn)移[9-10]以及對(duì)干預(yù)治療的反應(yīng)性[11]。因此,鑒別具有致癌作用的miRNAs對(duì)腫瘤治療有著深遠(yuǎn)影響。有報(bào)道顯示抑制參與致癌作用的miRNAs可以阻斷許多癌癥相關(guān)的信號(hào)通路,如miR-21。Tomimaru等[12]證明轉(zhuǎn)染了抗miR-21的肝癌細(xì)胞對(duì)IFN-α/5-Fu的化療更加敏感了,而且在臨床患者的肝癌標(biāo)本中,miR-21的表達(dá)高低與患者對(duì)IFN-α/ 5-Fu聯(lián)合治療的反應(yīng)性和生存率有關(guān)。又如,全身給予肝癌移植瘤小鼠具有抗miR-221同工修飾的膽固醇或者抗miR-221的寡核苷酸可以增加小鼠的生存周期和顯著減少腫瘤結(jié)節(jié)的數(shù)目及大小[13-14]。在子宮內(nèi)膜癌中,miR-let-7是下調(diào)的,并且Let-7 miRNAs與子宮內(nèi)膜癌的發(fā)生高度相關(guān)。一項(xiàng)調(diào)查顯示Let-7a在提升癌細(xì)胞的增殖方面能對(duì)抗Aurora-B的功能,并且是通過下調(diào)Aurora-B蛋白水平介導(dǎo)的[15]。Zhang等[16]證明miR-125b能通過調(diào)節(jié)抑癌基因Bak1的表達(dá)來促進(jìn)急性早幼粒細(xì)胞白血病細(xì)胞的增殖和抑制細(xì)胞凋亡。miR-155的過量表達(dá)能夠減少SMAD5的表達(dá)和誘導(dǎo)TGF-β對(duì)淋巴瘤的生長(zhǎng)抑制[17]。Zhang等[18]構(gòu)建質(zhì)粒pSUPER-c-FLIP-siRNA并將其轉(zhuǎn)染U2OS細(xì)胞,發(fā)現(xiàn)由于c-FLIP-siRNA的干擾細(xì)胞FLICE抑制蛋白(c-FLIP)的表達(dá)明顯受到抑制。
除了miRNAs的多靶點(diǎn)受到調(diào)節(jié)外,其本身也可以受到體內(nèi)其他因子的影響。例如轉(zhuǎn)錄因子E2F1可以通過激活miR-17-92的表達(dá)來促進(jìn)各種腫瘤進(jìn)展。反過來miR-17-92也可以通過調(diào)控E2F的平衡使促凋亡的E2F1表達(dá)和促增殖的E2F3表達(dá)[19]。Egger等[20]一項(xiàng)新發(fā)現(xiàn)表明,表觀遺傳變異比如DNA甲基化和組蛋白修飾,能夠影響miRNAs的表達(dá)。例如,在5-Aza-CdR(一種DNA甲基化抑制劑)和苯基丁酸(一種組蛋白去乙酰酶抑制劑)治療的腫瘤中,miR-127在腫瘤細(xì)胞中顯著上調(diào)。Scott等用組蛋白去乙?;?Histone deacetylase,HDAC)抑制劑LAQ824處理乳腺癌細(xì)胞SKBr3,其miRNAs的轉(zhuǎn)錄受到明顯抑制[21]。這些發(fā)現(xiàn)表明多種致癌性miRNAs和表觀遺傳學(xué)藥物可以作為RNA干擾腫瘤治療的潛在靶點(diǎn)。
長(zhǎng)非編碼RNAs(Long noncoding RNAs,lncRNAs)是一組內(nèi)源性、長(zhǎng)度大于200個(gè)核苷酸、特異完整的開放閱讀框和無蛋白質(zhì)編碼功能的RNA[22]。參與了一些生物過程如表觀遺傳調(diào)控[23-24]、細(xì)胞凋亡和細(xì)胞周期調(diào)控[25]、細(xì)胞發(fā)育和分化[26]、基因轉(zhuǎn)錄調(diào)節(jié)[22]。研究表明,在人類癌癥中l(wèi)ncRNAs的失調(diào)是一個(gè)重要特征。最近,多種lncRNAs被認(rèn)為在癌癥的發(fā)生發(fā)展中扮演著關(guān)鍵作用[27-28]。因此,可以預(yù)見致癌性lncRNAs可用于癌癥的診斷和預(yù)后判斷,并且可以作為腫瘤治療的潛在靶點(diǎn)。目前,最常用的方法是利用RNA干擾來調(diào)節(jié)癌細(xì)胞的lncRNAs水平或功能。
肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄子1(MALAT1)是一個(gè)長(zhǎng)度大約8 000個(gè)核苷酸和位于染色體11q13上的核lncRNA,與腫瘤的轉(zhuǎn)移和復(fù)發(fā)相關(guān)[29-30]。MALAT1能誘發(fā)各種腫瘤細(xì)胞的惡性潛能,并且這種作用可以通過抑制MALAT1得以逆轉(zhuǎn)。在肺腺癌中,通過RNA干擾使MALAT1沉默來下調(diào)運(yùn)動(dòng)相關(guān)基因的表達(dá)從而破壞細(xì)胞的運(yùn)動(dòng)能力[31]。下調(diào)MALAT1也可以影響EMT相關(guān)基因的表達(dá),從而減少ZEB1、ZEB2和Slug的水平,增加E鈣黏附素的水平[30,32]。此外,低表達(dá)MALAT1的非小細(xì)胞肺癌細(xì)胞接種裸鼠可以影響腫瘤的形成和生長(zhǎng),并且高表達(dá)MALAT1的肺鱗癌預(yù)后不良[32]。
另一個(gè)屬于lncRNAs子類的是HOX基因轉(zhuǎn)錄反義RNA(HOTAIR),它是第一個(gè)與轉(zhuǎn)移相關(guān)的lncRNAs。有臨床研究顯示:HOTAIR表達(dá)水平與多種腫瘤(如乳腺癌、結(jié)直腸癌、肝癌、胰腺癌、喉癌等)的發(fā)生發(fā)展及轉(zhuǎn)移預(yù)后密切相關(guān)。高表達(dá)HOTAIR能抑制抑癌基因的表達(dá),促進(jìn)腫瘤復(fù)發(fā)轉(zhuǎn)移,而下調(diào)HOTAIR表達(dá)則降低腫瘤細(xì)胞的轉(zhuǎn)移侵襲能力[33-34]。這些預(yù)示HOTAIR在癌癥生物學(xué)中扮演著極其重要的角色和顯示出了重要的臨床意義。HOTAIR參與了多樣生物過程造成的惡性表型,并且這種改變可以通過抑制HOTAIR得以逆轉(zhuǎn)。乳腺癌中HOTAIR的高表達(dá)能夠抑制細(xì)胞增殖和侵襲[35]。在癌細(xì)胞中HOTAIR能夠通過抑制MMP-9和VEGF蛋白表達(dá)來減少細(xì)胞的運(yùn)動(dòng)和轉(zhuǎn)移[36]。HOTAIR低表達(dá)的胰腺癌細(xì)胞在小鼠異種移植瘤模型中能夠抑制腫瘤生長(zhǎng)[33]??傊?,大量的研究正在進(jìn)一步明確lncRNAs的分子功能,基于RNA干擾lncRNAs的腫瘤治療可能成為一種新的治療方法。
基于RNA干擾的腫瘤治療已經(jīng)成為了一項(xiàng)新技術(shù),正在以前所未有的速度應(yīng)用到臨床中。第一個(gè)基于RNA干擾的抗腫瘤藥物CALAA-01(CALAA-01為RONDELTM注射配方與瞄準(zhǔn)癌癥治療的siRNA序列),它是一類由環(huán)糊精分子包裹而成的納米顆粒,可以在實(shí)體瘤中累積,阻止其靶點(diǎn)RRM2(RRM2是核糖核酸酶的M2亞基,在細(xì)胞分裂過程中起重要作用)的翻譯,從而抑制癌細(xì)胞分裂。靜脈給藥CALAA-01對(duì)肝癌、黑色素瘤和尤因肉瘤異種移植瘤小鼠有顯著抗腫瘤效果,并且在非人靈長(zhǎng)類動(dòng)物中沒有觀察到肝毒性和免疫反應(yīng)[37]。
由美國(guó)奧尼蘭姆(Alnylam)生物技術(shù)公司開發(fā)的ALN-VSP02,借用脂質(zhì)納米顆粒包被兩種針對(duì)VEGF和紡錘體驅(qū)動(dòng)蛋白的siRNAs,通過沉默與腫瘤組織血管生成相關(guān)的生長(zhǎng)因子的蛋白合成,來抑制腫瘤區(qū)血管的生成,達(dá)到將癌細(xì)胞“餓死”的效果。人體試驗(yàn)表明全身性遞送siRNA能夠減少腫瘤的肝內(nèi)轉(zhuǎn)移和增強(qiáng)肝癌化療的敏感性,并且采用兩周一次的靜脈給藥ALN-VSP是安全的和耐受性良好[38]。siRNA的脂質(zhì)體復(fù)合物Atu027能夠靶向蛋白激酶N3,全身給藥時(shí),能夠顯著抑制腫瘤生長(zhǎng)及淋巴結(jié)或肺的轉(zhuǎn)移,并且沒有劑量依賴性毒性[39-40]。由穩(wěn)定核酸脂質(zhì)顆粒(SNALPs)制備的polo樣激酶I(PLK1)[41]或VEGF的siRNA已經(jīng)被開發(fā)用來評(píng)估基于RNA干擾治療原發(fā)性肝癌或肝轉(zhuǎn)移癌患者的安全性和有效性。這些臨床試驗(yàn)表明,RNA干擾的發(fā)現(xiàn)不僅為抗癌藥物的開發(fā)提供了快速和嶄新的方法,而且也有可能成為治療癌癥的下一個(gè)新手段。
RNA干擾技術(shù)可以特異性剔除或關(guān)閉特定基因的表達(dá),被廣泛用于探索基因功能和傳染性疾病及惡性腫瘤的治療。對(duì)于癌癥來說,RNA干擾或許可以成為一個(gè)強(qiáng)有力的武器,尤其是對(duì)于目前還沒有靶向藥物的致癌基因。以MYC為例,該基因同很多種癌癥發(fā)生有關(guān),但是目前還沒有對(duì)抗這個(gè)基因的有效藥物,RNA干擾則給研究者提供了一個(gè)有力工具,它不像小分子藥物和生物制劑通過抑制突變蛋白來控制癌癥,而是直接阻斷蛋白產(chǎn)生過程。隨著RNA干擾技術(shù)的不斷研究深入及基礎(chǔ)研究向臨床應(yīng)用的轉(zhuǎn)化,相信在不久的將來,RNA干擾將成為腫瘤治療的又一新手段。
[1]Fire A,Xu S,Montgomerym K,et al.Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans[J].Nature,1998,391(6669):806-811.
[2]Montgomery MK,Xu S,Fire A.RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans[J]. Proc NatlAcad Sci USA,1998,95(26):15502-15507.
[3]Dykxhoorn DM,Lieberman J.Knocking down disease with siRNAs [J].Cell,2006,126(2):231-235.
[4]Soutschek J,Akinc A,Bramlage B,et al.Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs[J]. Nature,2004,432(7014):173-178.
[5]Chen CC,Chang CM,Sun CP,et al.Use of RNA interference to modulate liver adenoma development in a murine model transgenic for hepatitis B virus[J].Gene Ther,2012,19(1):25-33.
[6]Xia H,Mao Q,Eliason SL,et al.RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia[J]. Nat Med,2004,10(8):816-820.
[7]Yang WQ,Zhang Y.RNAi-mediated gene silencing in cancer therapy [J].Expert Opin Biol Ther,2012,12(11):1495-1504.
[8]Dews M,HomayouniA,Yu D,et al.Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster[J].Nat Genet,2006,38 (9):1060-1065.
[9]Valastyan S,Reinhardt F,Benaich N,et al.A pleiotropically acting microRNA,miR-31,inhibits breast cancer metastasis[J].Cell,2009, 137(6):1032-1046.
[10]Tavazoie SF,Alarcon C,Oskarsson T,et al.Endogenous human microRNAs that suppress breast cancer metastasis[J].Nature,2008,451 (7175):147-152.
[11]Calin GA,Ferracin M,Cimmino A,et al.A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia[J].N Engl J Med,2005,353(17):1793-1801.
[12]Tomimaru Y,Eguchi H,Nagano H,et al.MicroRNA-21 induces resistance to the anti-tumour effect of interferonalpha/5-fluorouracil in hepatocellular carcinoma cells[J].Br J Cancer,2010,103(10):1617-1626.
[13]Park JK,Kogure T,Nuovo GJ,et al.miR-221 silencing blocks hepatocellular carcinoma and promotes survival[J].Cancer Res,2011,71 (24):7608-7616.
[14]Callegari E,Elamin BK,Giannone F,et al.Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model[J].Hepatology,2012,56(3):1025-1033.
[15]Liu P,Qi M,Ma C,et al.Let7a inhibits the growth of endometrial carcinoma cells by targeting Aurora-B[J].FEBS Lett,2013,587(16): 2523-2529.
[16]Zhang H,Luo XQ,Feng DD,et al.Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia[J].Mol Cancer,2011,10:108.
[17]Rai D,Kim SW,McKeller MR,et al.Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis[J]. Proc NatlAcad Sci USA,2010,107(7):3111-3116.
[18]Zhang YP,Kong QH,Huang Y,et al.Inhibition of c-FLIP by RNAi Enhances Sensitivity of the Human Osteogenic Sarcoma Cell Line U2OS to TRAIL-Induced Apoptosis[J].Asian Pac J-Cancer Prev, 2015,16(6):2251-2256.
[19]Zhang Y,Chen L,Yang S,Fang D.E2F1:a potential negative regulator of hTERT transcription in normal cells upon activation of oncogenic c-Myc[J].Med Sci Monit,2012,18(1):RA12-15.
[20]Egger G,Liang G,Aparicio A,Jones PA.Epigenetics in human disease and prospects for epigenetic therapy[J].Nature,2004,429 (6990):457-463.
[21]Ferreira AC,Robaina MC,Rezende LM,et al.Histone deacetylase inhibitor prevents cell growth in Burkitt's lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143,miR-145, and miR-101[J].Ann Hematol,2014,93(6):983-993.
[22]?rom UA,Derrien T,Beringer M,et al.Long noncoding RNAs with enhancer-like function in human cells[J].Cell,2010,143(1):46-58.
[23]Spadaro PA,Flavell CR,Widagdo J,et al.Long noncoding RNA-Directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice[J].Biol Psychiatry,2015,pii: S0006-3223(15)00095-5.
[24]Li CH,Chen Y.Targeting long non-coding RNAs in cancers:progress and prospects[J].Int J Biochem Cell Biol,2013,45(8):1895-1910.
[25]Wapinski O,Chang HY.Long noncoding RNAs and human disease [J].Trends Cell Biol,2011,21:354-361.
[26]Clark MB,Mattick JS.Long noncoding RNAs in cell biology[J]. Semin Cell Dev Biol,2011,22(4):366-376.
[27]Gibb EA,Brown CJ,Lam WL.The functional role of long non-coding RNAin human carcinomas[J].Mol Cancer,2011,10:38.
[28]Isin M,Dalay N.LncRNAs and neoplasia[J].Clin Chim Acta,2015, 444:280-288.
[29]Lai MC,Yang Z,Zhou L,et al.Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation[J].Med Oncol,2012,29(3):1810-1816.
[30]Schmidt LH,Spieker T,Koschmieder S,et al.The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth[J].J Thorac Oncol, 2011,6(12):1984-1992.
[31]Tano K,Mizuno R,Okada T,et al.MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes[J].FEBS Lett,2010,584(22):4575-4580.
[32]Ying L,Chen Q,Wang Y,et al.Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition[J].Mol Biosyst,2012,8(9):2289-2294.
[33]Kim K,Jutooru I,Chadalapaka G,et al.HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer [J].Oncogene,2013,32(13):1616-1625.
[34]Yang Z,Zhou L,Wu LM,et al.Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation[J].Ann Surg Oncol, 2011,18(5):1243-1250.
[35]Gupta RA,Shah N,Wang KC,et al.Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J].Nature, 2010,464(7291):1071-1076.
[36]Geng YJ,Xie SL,Li Q,et al.Large intervening non-coding RNAHOTAIR is associated with hepatocellular carcinoma progression[J].J Int Med Res,2011,39(6):2119-2128.
[37]Davis ME,Zuckerman JE,Choi CH,et al.Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles[J].Nature,2010,464(7291):1067-1070.
[38]Tabernero J,Shapiro GI,LoRusso PM,et al.First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement[J].Cancer Discov,2013,3(4):406-417.
[39]Leenders F,Mopert K,Schmiedeknecht A,et al.PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase [J].EMBO J,2004,23(16):3303-3313.
[40]Strumberg D,Schultheis B,Traugott U,et al.Phase I clinical development of Atu027,a siRNA formulation targeting PKN3 in patients with advanced solid tumors[J].Int J Clin Pharmacol Ther,2012,50 (1):76-78.
[41]Craig SN,Wyatt MD,McInnes C.Current assessment of polo-like kinases as anti-tumor drug targets[J].Expert Opin Drug Discov,2014, 9(7):773-789.
Application of RNA interference in cancer therapy.
YUAN Shen-jun,CHEN Tao.Medical College of Three Gorges University,Yichang 443002,Hubei,CHINA
RNA interference(RNAi)is a post-transcriptional gene silencing.With RNAi technique,we can specially reject or shut off the expression of certain genes and thereby provide a new therapy for maligant tumors.In this paper,the mechanism of RNAi,the target and related clinical applications are reviewed.
RNAi;Gene silencing;miRNAs;lncRNAs;Cancer therapy
R730.5
A
1003—6350(2016)01—0085—03
10.3969/j.issn.1003-6350.2016.01.030
2015-05-07)
國(guó)家自然科學(xué)基金(編號(hào):81173612)
陳濤。E-mail:chentao@ctgu.edu.cn