国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Gal3ST-2基因表達(dá)與惡性腫瘤細(xì)胞轉(zhuǎn)移關(guān)系的研究進(jìn)展

2016-03-08 23:25李華英黃守國(guó)
海南醫(yī)學(xué) 2016年1期
關(guān)鍵詞:?;?/a>半乳糖基轉(zhuǎn)移酶

李華英,黃守國(guó)

(中南大學(xué)湘雅醫(yī)學(xué)院附屬??卺t(yī)院婦產(chǎn)科,海南海口570208)

Gal3ST-2基因表達(dá)與惡性腫瘤細(xì)胞轉(zhuǎn)移關(guān)系的研究進(jìn)展

李華英,黃守國(guó)

(中南大學(xué)湘雅醫(yī)學(xué)院附屬??卺t(yī)院婦產(chǎn)科,海南???70208)

惡性腫瘤轉(zhuǎn)移是一個(gè)多步驟、多因素綜合參與的極其復(fù)雜的過(guò)程,而惡性腫瘤細(xì)胞轉(zhuǎn)移也是惡性腫瘤致死性的主要原因。研究表明,惡性腫瘤細(xì)胞的轉(zhuǎn)移與轉(zhuǎn)移基因的分布及表達(dá)密切相關(guān)。半乳糖:3-O-磺?;D(zhuǎn)移酶-2(Gal3ST-2)是1989年發(fā)現(xiàn)的磺?;D(zhuǎn)移基因,其特定的結(jié)構(gòu)與廣泛的組織分布以及明顯的促惡性腫瘤轉(zhuǎn)移作用尤為引人注目。

磺?;D(zhuǎn)移酶;腫瘤;惡性;轉(zhuǎn)移;基因;表達(dá)

隨著長(zhǎng)期以來(lái)對(duì)惡性腫瘤細(xì)胞轉(zhuǎn)移機(jī)制的深入研究發(fā)現(xiàn),惡性腫瘤的轉(zhuǎn)移是轉(zhuǎn)移基因與抑制轉(zhuǎn)移基因參與調(diào)節(jié)的復(fù)雜過(guò)程,通過(guò)腫瘤轉(zhuǎn)移相關(guān)基因表達(dá)的改變,以及一系列相關(guān)因子的參與,對(duì)腫瘤轉(zhuǎn)移整個(gè)過(guò)程進(jìn)行調(diào)控。轉(zhuǎn)移基因是指直接促進(jìn)轉(zhuǎn)移發(fā)生的關(guān)鍵基因,其存在或表達(dá)增強(qiáng)會(huì)引起侵襲轉(zhuǎn)移的發(fā)生。半乳糖:3-O-磺?;D(zhuǎn)移酶-2(Gal3ST-2)基因是近年來(lái)研究較熱的腫瘤轉(zhuǎn)移基因,是半乳糖:3-O-磺?;D(zhuǎn)移酶基因家族(Gal3STs)中的一員,此基因家族已克隆出有四個(gè)成員,分別為腦苷脂磺酰基轉(zhuǎn)移酶基因Gal3ST-1(CST)、Gal3ST-2(GP3ST)、Gal3ST-3、Gal3ST-4,它們?cè)谌梭w的分布具有組織特異性。Gal3ST-2(GP3ST)分布廣泛,在心臟、胃、結(jié)腸、肝臟和脾臟中表達(dá)相對(duì)較高[1]。Gal3ST-3主要表達(dá)在甲狀腺、腎臟和腦中[2];Gal3ST-4主要表達(dá)在胎盤(pán)、胸腺、睪丸、卵巢、脊髓、氣管、腎上腺中[3]。在國(guó)內(nèi)外近年來(lái)的研究發(fā)現(xiàn)Gal3ST-2在多種腫瘤組織中表達(dá)具有差異性,以及催化所形成的磺?;擎溑c腫瘤轉(zhuǎn)移潛能密切相關(guān)[4-7]。

1 Gal3 ST-2 的結(jié)構(gòu)與功能

半乳糖:3-O-磺?;D(zhuǎn)移酶-2(Gal:3-O-Sulfotransferase-2,Gal3ST-2或GP3ST)是一個(gè)磺?;D(zhuǎn)移酶,于1989年首先在甲狀腺微粒體中發(fā)現(xiàn)[8]。Gal3ST-2于2001年成功克隆,該基因位于人類(lèi)染色體的2q37.3位點(diǎn),編碼由398個(gè)氨基酸殘基組成的Ⅱ型跨膜蛋白[1]?;酋;D(zhuǎn)移酶的主要作用是使糖復(fù)合物磺?;?,其中磺基可附著在半乳糖(Gal)的3號(hào)和6號(hào)位置,n-乙酰葡糖胺(GalNAc)的3號(hào)和6號(hào)位置,以及GlcNAc的4號(hào)位置[9]。Gal3ST-2基因是3-O-磺?;D(zhuǎn)移酶基因家族中的一員,家族中各個(gè)基因的氨基酸序列的一致性為30%~40%[10]。

磺?;亩嗵菂⑴c多個(gè)生物過(guò)程,其中包括細(xì)胞附著和腫瘤的轉(zhuǎn)移[10]。Gal3ST-2通常使用3'-磷酸腺苷-5'-磷酰硫酸(PAPS)作為供體,將PAPS上的磺?;D(zhuǎn)移到多種糖聚合物的半乳糖殘基的C-3位置[11]。包含3'-磺基-β-半乳糖連接的糖鏈結(jié)構(gòu)存在于糖蛋白中的N-聚糖和O-聚糖,在對(duì)Gal3ST-2酶在不同物種之間的研究發(fā)現(xiàn),Gal3ST-2在不同物種之間底物的特異性具有差異,其中以人類(lèi)的Gal3ST-2的作用范圍最廣,可以分別作用于Galβ 1-3GlcNAc-R(typeⅠ)、Gal β 1-4GlcNAc-R(typeⅡ)和Galβ 1→3GalNAc(Core I)結(jié)構(gòu)[12]。另外,值得注意的是,除了β半乳糖殘基,Gal3ST-2還能作用于Gal-alpha-o-pNP,其中Galβ 1→3GlcNAcβ 1→3Galβ 1→4Glc(LNT)只能被Gal3ST-2催化[11]。

2 al3 ST-2 與腫瘤細(xì)胞轉(zhuǎn)移的關(guān)系

腫瘤細(xì)胞的轉(zhuǎn)移分為多個(gè)階段[13-14],目前的研究表明,Gal3ST-2至少參與其中兩個(gè)重要的階段,即腫瘤細(xì)胞從實(shí)體瘤的脫離以及在目標(biāo)組織的種植。

2.1 Gal3ST-2參與腫瘤細(xì)胞從實(shí)體瘤的脫離單個(gè)腫瘤細(xì)胞脫離與實(shí)體瘤的黏連,從實(shí)體瘤中分離出來(lái),標(biāo)志著腫瘤轉(zhuǎn)移的開(kāi)始[13]。細(xì)胞間的黏附主要由E-鈣黏蛋白/連環(huán)蛋白混合物構(gòu)成[15],細(xì)胞黏附分子是細(xì)胞表面的一類(lèi)蛋白,主要分為三類(lèi):免疫球蛋白超家族(Ig)、整合素以及選凝蛋白,細(xì)胞間的黏附主要由E-鈣黏蛋白負(fù)責(zé),E-鈣黏蛋白是由700~750個(gè)氨基酸殘基組成的橫跨膜糖蛋白,主要負(fù)責(zé)細(xì)胞間親同種抗原的細(xì)胞間黏附[13]。E-鈣連蛋白的減少能夠促進(jìn)腫瘤細(xì)胞的分化和轉(zhuǎn)移,被認(rèn)為是導(dǎo)致膀胱癌、胰腺癌以及胃癌細(xì)胞轉(zhuǎn)移及病灶?lèi)盒赃M(jìn)展的重要因素[16-18]。整合素連接激酶(ILK)是一種胞內(nèi)蛋白,能夠通過(guò)調(diào)節(jié)E-鈣黏蛋白的激活子的活性調(diào)節(jié)E-鈣黏蛋白的表達(dá)[19]。研究表明,Gal3ST-2的表達(dá)被干擾后,ILK的表達(dá)也下降,但是E-鈣黏蛋白的表達(dá)卻升高了。另外,整合素蛋白亞基alpha-v的表達(dá)能夠促進(jìn)腫瘤細(xì)胞在裸鼠中的種植轉(zhuǎn)移,隨后也有相關(guān)文獻(xiàn)報(bào)道[20],alpha-v的在高轉(zhuǎn)移潛能的腫瘤細(xì)胞中表達(dá)更明顯,通過(guò)RNAi/ Gal3ST-2質(zhì)粒轉(zhuǎn)染肝癌細(xì)胞株SMMC7721,發(fā)現(xiàn)整合素蛋白亞基alpha-v的表達(dá)受到了抑制,這表明Gal3ST-2可以通過(guò)調(diào)節(jié)E-鈣黏蛋白和整合素蛋白亞基alpha-v的表達(dá)促進(jìn)腫瘤細(xì)胞從實(shí)體瘤的脫離及向遠(yuǎn)處的轉(zhuǎn)移。

2.2 Gal3ST-2參與腫瘤細(xì)胞在目標(biāo)組織中的種植腫瘤細(xì)胞轉(zhuǎn)移到目標(biāo)組織,并與目標(biāo)組織的內(nèi)皮細(xì)胞黏附,這標(biāo)志著腫瘤實(shí)現(xiàn)了到目標(biāo)組織的遠(yuǎn)處轉(zhuǎn)移[13]。眾多研究表明,在血液中傳播的腫瘤細(xì)胞與血小板,白細(xì)胞相互作用形成的微栓能夠促進(jìn)腫瘤細(xì)胞在血管壁的黏附[11]。參與腫瘤細(xì)胞與血管壁相互作用的選凝蛋白(Selectin)是哺乳類(lèi)血管中一類(lèi)細(xì)胞粘附分子,包含E-選凝蛋白、P-選凝蛋白和L-選凝蛋白,能夠介導(dǎo)補(bǔ)充血液中白細(xì)胞的凝集素[21]。實(shí)驗(yàn)證明,E-選凝蛋白配體表達(dá)的腫瘤細(xì)胞株表現(xiàn)出了高轉(zhuǎn)移的能力[22]。而P-選凝蛋白和L-選凝蛋白也能夠通過(guò)協(xié)同的方式促進(jìn)腫瘤轉(zhuǎn)移[11]。選凝蛋白具有識(shí)別含有唾液酸化Lewisx/a的糖蛋白的白細(xì)胞或血小板細(xì)胞的能力[4],因此若腫瘤細(xì)胞表面包含唾液酸化的Lewisx/a也將被識(shí)別,這為腫瘤細(xì)胞在遠(yuǎn)處轉(zhuǎn)移種植提供了可能。Gal3ST-2催化后的產(chǎn)物能夠能夠進(jìn)一步被巖藻基轉(zhuǎn)移酶催化,合成3'-磺?;?Lewis抗原。有學(xué)者于2001發(fā)現(xiàn)Gal3ST-2與巖藻糖基轉(zhuǎn)移酶Ⅲ共同合成3'-磺?;?Lex抗原,而Gal3ST-2與巖藻糖基轉(zhuǎn)移酶Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ和Ⅺ參與了3-磺酰基-Lea的合成[9,23]。與唾液酸基-LeX和唾液酸基-Lea比較,磺酰基-LeX和磺?;?Lea能夠與E-選凝蛋白和L-選凝蛋白更好地結(jié)合[6,24-26],這與腫瘤細(xì)胞的轉(zhuǎn)移潛能密切相關(guān)。

3 Gal3 ST-2 在不同腫瘤中的表達(dá)

Gal3ST-2在人體組織中分布十分廣泛,其中在心臟、胃、結(jié)腸、肺以及脾組織中均有較高表達(dá)水平[1]。用反轉(zhuǎn)錄RT-PCR的方法對(duì)直腸腺癌和正常直腸黏膜中的Gal3ST-2基因的轉(zhuǎn)錄水平進(jìn)行量化,發(fā)現(xiàn)Gal3ST-2在非黏膜腺癌中的轉(zhuǎn)錄水平明顯低于在正常黏膜組織的轉(zhuǎn)錄水平[11,27]。在肺癌、喉癌及肝癌中Gal3ST-2在轉(zhuǎn)移性的腫瘤組織中表達(dá)比在非轉(zhuǎn)移性的腫瘤組織中的表達(dá)更為強(qiáng)烈[28]。為了評(píng)估DNA甲基化對(duì)早期胃癌組織亞型的意義,在38例早期胃癌(18例腸性,12例混合型,8例彌散性)進(jìn)行焦磷酸測(cè)序?qū)嶒?yàn)后發(fā)現(xiàn),Gal3ST-2與混合型早期胃癌相關(guān)(P=0.015 8)[29]。

乳房的上皮乳腺細(xì)胞能夠產(chǎn)生Gal3ST-2酶[5]。在前體脂肪細(xì)胞株3T3-L1的實(shí)驗(yàn)顯示,Gal3ST-2能夠通過(guò)抑制脂肪細(xì)胞轉(zhuǎn)錄時(shí)的調(diào)控因子,如C/EBPβ和FABP4等基因的表達(dá),以此干擾前體脂肪細(xì)胞3T3-L1的分化,因此Gal3ST-2被認(rèn)為可能干擾前體脂肪細(xì)胞的正常分化[5]。前體脂肪細(xì)胞能夠分化為脂肪細(xì)胞,而脂肪細(xì)胞的去分化被認(rèn)為是腫瘤產(chǎn)生的一個(gè)重要因素[30]。以往的實(shí)驗(yàn)證實(shí)了成脂特定基的轉(zhuǎn)錄因子(C/EBPs和PPARr)具有調(diào)控甘油三酯在細(xì)胞中含量的功能[31],且C/EBPB和PPAR的表達(dá)受到TgIF(甘油三酯抑制因子)的抑制。有文獻(xiàn)報(bào)道用MALDI-tof證實(shí)了Gal3ST-2的表達(dá)與TgIF呈正相關(guān),且在NMMMG培養(yǎng)基中檢測(cè)到了小鼠前脂肪細(xì)胞(3T3-1L)中的甘油三酯的含量減少了70%。Gal3ST-2通過(guò)減少乳腺前脂肪細(xì)胞中甘油三酯的積累,干擾乳腺成脂細(xì)胞的分化過(guò)程。此外,Gal3ST-2在轉(zhuǎn)移性乳腺乳腺癌上皮細(xì)胞系中比在非轉(zhuǎn)移性乳腺癌上皮細(xì)胞系中表達(dá)更為強(qiáng)烈[7]。

總之,腫瘤是全球疾病致死的重要元兇之一。據(jù)世界衛(wèi)生組織統(tǒng)計(jì):惡性腫瘤早期發(fā)現(xiàn)和早期治療,可降低大約三分之一的腫瘤負(fù)擔(dān)。隨著分子生物學(xué)的不斷發(fā)展,腫瘤的發(fā)生發(fā)展的分子學(xué)機(jī)制也逐步被闡明,為腫瘤的早期實(shí)驗(yàn)室診斷提供了重要的基礎(chǔ)。腫瘤細(xì)胞的轉(zhuǎn)移與轉(zhuǎn)移基因的分布及表達(dá)密切相關(guān)。

Gal3ST-2是一個(gè)新近研究的腫瘤轉(zhuǎn)移基因,由于其在轉(zhuǎn)移性腫瘤中的普遍存在和高表達(dá),有望成為這些腫瘤的診斷標(biāo)志及臨床靶向治療的新靶點(diǎn)。在腫瘤的早期診斷和臨床的實(shí)踐應(yīng)用中具有一定的前景。

[1]Honke K,Tsuda M,Koyota S,et al.Molecular cloning and characterization of a human beta-Gal-3'-sulfotransferase that acts on both type 1 and type 2(Gal beta 1-3/1-4GlcNAc-R)oligosaccharides[J]. The Journal of biological chemistry,2001,276(1):267-274.

[2]Suzuki a,Hiraoka N,Suzuki M,et al.Molecular cloning and expression of a novel human beta-Gal-3-O-sulfotransferase that acts preferentially on N-acetyllactosamine in N-and O-glycans[J].The Journalof Biological Chemistry,2001,276(26):24388-24395.

[3]Seko A,Hara-Kuge S,Yamashita K.Molecular cloning and characterization of a novel human galactose 3-O-sulfotransferase that transfers sulfate to gal beta 1-->3galNAc residue in O-glycans[J].The Journal of Biological Chemistry,2001,276(28):25697-25704.

[4]Scipioni A,Cavaliere V,Gargiulo G,et al.Heparin and cancer revisited:Mechanistic connections involving platelets,P-selectin,carcinoma mucins,and tumor metastasis[J].Clinical&Translational Oncology,2001,98(6):3352-3357.

[5]Guerra LN,Suarez C,Soto D,et al.GAL3ST2 from mammary gland epithelial cells affects differentiation of 3T3-L1 preadipocytes[J]. Clinical&Translational Oncology,2014,16(13):1-10.

[6]De Graffenried CL,Bertozzi CR.Golgi localization of carbohydrate sulfotransferases is a determinant of L-selectin ligand biosynthesis[J]. The Journal of Biological Chemistry,2003,278(41):40282-40295.

[7]Aires B,Mallorca PD,Baleares I.Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells[J].Mol Med Rep,2010,3(3):433-439.

[8]Katos Y,Spirog RG.Characterization of a Thyroid Sulfotransferase Responsible for the 3-O-Sulfation of Terminal 8-D-Galactosyl Residues in N-Linked Carbohydrate'Units[J].Journal of Biological Chemistry,1989,264(6):3364-3371.

[9]Ikeda N,Eguchi H,Nishihara S,et al.A remodeling system of the 3'-sulfo-Lewis a and 3'-sulfo-Lewis x epitopes[J].The Journal of Biological Chemistry,2001,276(42):38588-38594.

[10]Chandrasekaran EV,Lakhaman SS,Chawda R,et al.Identification of physiologically relevant substrates for cloned Gal:3-O-sulfotransferases(Gal3STs):distinct high affinity of Gal3ST-2 and LS180 sulfotransferase for the globo H backbone,Gal3ST-3 for N-glycan multiterminal Galbeta1,4GlcNAcbeta units[J].The Journal of Biological Chemistry,2004,279(11):10032-10041.

[11]Borsig L,Wong R,Hynes RO,et al.Synergistic effects of L-and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis[J].Proc NatlAcad Sci USA,2002,99(4):2193-2198.

[12]Seko A,Sumiya J,Yamashita K.Porcine,mouse and human galactose 3-O-sulphotransferase-2 enzymes have different substrate specificities;the porcine enzyme requires basic compounds for its catalytic activity[J].The Biochemical Journal,2005,391(Pt 1):77-85.

[13]B?hlea S,Kalthoff H.Molecular mechanisms of tumor metastasis and angiogenesis[J].Langenbeck’s Archives of Surgery,1999,384 (2):133-140.

[14]Engers R,Gabbert HE.Mechanisms of tumor metastasis:cell biological aspects and clinical implications[J].Journal of Cancer Research and Clinical Oncology,2000,126(12):682-692.

[15]Takeichi M.Cadherin cell adhesion receptors as a morphogenetic[J]. Science(New York),1991,251(5000):1451-1455.

[16]Imao T,Koshida K,Endo Y,et al.Dominant role of E-cadherin in the progression of bladder cancer[J].The Journal of Urology,1999,161: 692-698.

[17]Karayiannakis AJ,Syrigos KN,Chatzigianni E,et al.Aberrant E-cadherin expression associated with loss of differentiation and advanced stage in human pancreatic cancer[J].Anticancer Research,1997,18 (6A):4177-4180.

[18]Dai D,Chen J,Xu L.Quantitative analysis of E-cadherin expression and clinicopathologic evaluation in gastric cancer[J].Chinese Medical Journal,1997,77:668-671.

[19]Bravou V,Klironomos G,Papadaki E,et al.ILK over-expression in human colon cancer progression correlates with activation of β-catenin, down-regulation of E-cadherin and activation of the Akt FKHR pathway[J].The Journal of Pathology,2006,208(1):91-99.

[20]Zhang CY,Hu P,Fu D,et al.3'-Sulfo-Le(x)is important for regulation of integrin subunit alphaV[J].Biochemistry,2010,49(36): 7811-7820.

[21]Jain RK,Piskorz CF,Huang B,et al.Inhibition of L-and P-selectin by a rationally synthesized novel core 2-ike branched structure containing GalNAc-Lewis x and Neu5Ac α 2-3Gal β 1-3GalNAc sequences[J].Glycobiology,1998,8(7):707-717.

[22]Mannori G,Santoro D,Carter L,et al.Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin[J].The American Journal of Pathology,1997,151:233-243.

[23]De WP,Koorevaar A,Kamerling P,et al.Structure determination by 1H NMR spectroscopy of(sulfated)sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase-F[J].Journal of Biological Chemistry,1991,226(7):4237-4243.

[24]Yuen CT,Lawson AM,Chai W,et al.Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharides on an ovarian cystadenoma glycoprotein[J].Biochemistry,1992,31:9126-9131.

[25]Grinnell BW,Hermann RB,Yan SB.Human protein C inhibits selectin-mediated cell adhesion:role of unique fucosylated oligosaccharide[J].Glycobiology,1994,4:221-225.

[26]Imai Y,Lasky LA,Rosen SD.Sulphation requirement for GlyCAM-1,an endothelial ligand for L-selectin[J].Nature,1993,361: 555-557.

[27]Seko A,Nagata K,Yonezawa S,et al.Down-regulation of Gal 3-O-sulfotransferase-2(Gal3ST-2)expression in human colonic non-mucinous adenocarcinoma[J].Jpn J Cancer Res,2002,93(5): 507-515.

[28]Shi BZ,Hu P,Geng F,et al.Gal3ST-2 involved in tumor metastasis process by regulation of adhesion ability to selectins and expression of integrins[J].Biochemical and Biophysical Research Communications,2005,332(4):934-940.

[29]Chong Y,Mia-Jan K,Ryu H,et al.DNA methylation status of a distinctively different subset of genes is associated with each histologic Lauren classification subtype in early gastric carcinogenesis[J].Oncology Reports,2014,31(6):2535-2544.

[30]Martinez J,Cifuentes M.Adipose tissue and desmoplastic response in breast cancer[M].INTECH OpenAccess Publisher,2011:447-456.

[31]Calzadilla P,Sapochnik D,Cosentino S,et al.N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes[J].International Journal of Molecular Sciences,2011,12:6936-6951.

Research progress on the relationship between Gal3ST-2 gene expression and malignant tumor metastasis.

LI Hua-ying,HUANG Shou-guo.Department of Obstetrics and Gynaecology,Haikou People's Hospital Affiliated to Xiangya Medical School of Central South University,Haikou 570208,Hainan,CHINA

Tumor metastasis is an extremely complex process which involves multi-steps and multi-factors,and it is also the primary cause of death.Previous researches show that tumor metastasis is closely correlated to the distribution and expression of metastasis genes.And Gal:3-O-sulfotransferase-2(Gal3ST-2),a sulfo-transferase gene first discovered in 1989,is especially noteworthy for its special structure,broad distribution in tissues and obvious effect on promoting tumor metastasis.

Sulfo-transferase;Tumor;Malignant;Matastasis;Gene;Expression

R73-37

A

1003—6350(2016)01—0088—03

10.3969/j.issn.1003-6350.2016.01.031

2015-01-28)

黃守國(guó)。E-mail:shouguohuang@126.com

猜你喜歡
酰基半乳糖基轉(zhuǎn)移酶
氨基轉(zhuǎn)移酶升高真有這么可怕嗎
氨基轉(zhuǎn)移酶升高代表肝臟受損嗎
法尼基化修飾與法尼基轉(zhuǎn)移酶抑制劑
海藻酸鈉固定化重組川芎咖啡酸-3-O-甲基轉(zhuǎn)移酶
澤蘭多糖對(duì)D-半乳糖致衰老小鼠的抗氧化作用
黃芩-黃連藥對(duì)防治D-半乳糖癡呆小鼠的作用機(jī)制
N-月桂酰基谷氨酸鹽性能的pH依賴(lài)性
半乳糖凝集素-3與心力衰竭相關(guān)性
N-脂肪酰基氨基酸鹽的合成、性能及應(yīng)用
1-O-[3-(2-呋喃基)丙烯?;鵠-β-D-吡喃果糖的合成及應(yīng)用