曾林川,鄧慧敏,陳 君,竇茗瀚,徐 冶.吉林醫(yī)藥學(xué)院公共衛(wèi)生學(xué)院,吉林 吉林 303;.吉林醫(yī)藥學(xué)院醫(yī)學(xué)科研實(shí)驗(yàn)室,吉林 吉林 303
?
Ca2+在順鉑誘導(dǎo)人卵巢癌SKOV3細(xì)胞自噬反應(yīng)中的作用
曾林川1,鄧慧敏2,陳 君2,竇茗瀚2,徐 冶2
1.吉林醫(yī)藥學(xué)院公共衛(wèi)生學(xué)院,吉林 吉林 132013;2.吉林醫(yī)藥學(xué)院醫(yī)學(xué)科研實(shí)驗(yàn)室,吉林 吉林 132013
[摘要]背景與目的:Ca2+在維持細(xì)胞生物活性方面扮演著很重要的角色,其在細(xì)胞內(nèi)的儲(chǔ)存、釋放和攝取主要受內(nèi)質(zhì)網(wǎng)調(diào)節(jié),細(xì)胞內(nèi)Ca2+濃度的穩(wěn)態(tài)是維持細(xì)胞生物能量代謝、蛋白質(zhì)折疊和分泌的基礎(chǔ)條件。本研究探討Ca2+在順鉑誘導(dǎo)SKOV3細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激-自噬反應(yīng)中的作用機(jī)制。方法:取人卵巢癌SKOV3細(xì)胞系為研究對(duì)象,按以下步驟分組:① 探討順鉑誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激與自噬反應(yīng),用6 μg/mL的順鉑處理SKOV3細(xì)胞0、6、12和24 h;② 了解順鉑和毒胡蘿卜內(nèi)酯(thapsigargin,TG)誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激釋放的Ca2+與自噬的關(guān)系,分別用TG和順鉑處理SKOV3細(xì)胞0、9和12 h;③ 探究Ca2+對(duì)自噬的作用機(jī)制,分成對(duì)照組、順鉑組、TG組、BAPTA-AM組、順鉑聯(lián)合BAPTA-AM組和TG聯(lián)合BAPTA-AM組。用蛋白[質(zhì)]印跡法(Western blot)檢測內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白GRP78和自噬標(biāo)志性蛋白LC3蛋白的表達(dá)水平;用Fluo-4鈣離子熒光探針檢測細(xì)胞質(zhì)中的Ca2+濃度變化;間接免疫熒光染色后,用共聚焦顯微鏡檢測LC3蛋白的表達(dá)情況。結(jié)果:SKOV3細(xì)胞經(jīng)6 μg/mL順鉑作用6 h時(shí)GRP78灰度值(1.393±0.004)與其對(duì)照組(0.679±0.011)相比顯著提高(t=113.2,P=0.000),在12 h時(shí)LC3灰度值(0.072±0.002)與其對(duì)照組(0.038±0.000)相比顯著提高(t=25.5,P=0.000)。間接免疫熒光結(jié)果顯示,順鉑(6 μg/mL)組和TG(3 μmol/L)組隨作用時(shí)間的延長,細(xì)胞內(nèi)LC3熒光斑點(diǎn)會(huì)逐漸增多,并伴隨著細(xì)胞質(zhì)Ca2+濃度上升。后經(jīng)鈣離子絡(luò)合劑BAPTA-AM干預(yù)后,細(xì)胞內(nèi)LC3熒光強(qiáng)度進(jìn)一步增強(qiáng)。Westren blot結(jié)果顯示,順鉑組LC3灰度值(0.039±0.000)小于順鉑聯(lián)合BAPTA-AM組(0.071±0.001),TG組(0.035±0.001)小于TG聯(lián)合BAPTA-AM組(0.065±0.001),差異有統(tǒng)計(jì)學(xué)意義(P=0.000)。結(jié)論:順鉑誘導(dǎo)SKOV3細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激和自噬的發(fā)生,并伴隨著細(xì)胞質(zhì)內(nèi)Ca2+濃度的上升。絡(luò)合細(xì)胞質(zhì)內(nèi)Ca2+能增強(qiáng)順鉑誘導(dǎo)的自噬反應(yīng)。
[關(guān)鍵詞]順鉑;Ca2+;內(nèi)質(zhì)網(wǎng)應(yīng)激;自噬
Correspondence to:XU YeE-mail:xuye_9707@163.com
卵巢癌是臨床上常見的婦科惡性腫瘤之一,發(fā)病率高居女性最常見癌癥的第3位,嚴(yán)重威脅女性的生命健康。由于卵巢癌早期沒有具體的臨床癥狀,再加上很多女性忽視了定期體檢,造成絕大多數(shù)女性到卵巢癌晚期才被發(fā)現(xiàn)[1-2]。目前,卵巢癌在我國的死亡率高達(dá)3.13/10萬[3]。臨床上治療卵巢癌的主要手段是化療,順鉑是臨床上治療癌癥的主要化療藥物之一,它的主要抗癌機(jī)制是抑制癌癥細(xì)胞的DNA復(fù)制過程[4]。已有研究報(bào)道,順鉑在誘導(dǎo)卵巢癌細(xì)胞凋亡過程中促發(fā)了內(nèi)質(zhì)網(wǎng)應(yīng)激和自噬,抑制自噬增加了卵巢癌細(xì)胞對(duì)順鉑的敏感性[5]。
自噬是細(xì)胞吞噬自身蛋白質(zhì)或細(xì)胞器并使之包被進(jìn)入囊泡,最終與溶酶體融合降解其內(nèi)容物的過程,自噬在細(xì)胞器的更新、體內(nèi)蛋白質(zhì)的平衡和細(xì)胞內(nèi)環(huán)境的穩(wěn)定方面發(fā)揮著主要的作用。同時(shí),自噬也是程序性細(xì)胞死亡的一種形式。因此,自噬是細(xì)胞內(nèi)的一把雙刃劍,但自噬在細(xì)胞內(nèi)的作用以前者為主[6]。最近,越來越多的文獻(xiàn)表明,Ca2+在自噬發(fā)生過程中發(fā)揮重要的作用[7-8]。Ca2+是細(xì)胞的重要第二信使之一,在維持細(xì)胞代謝、增殖、分化和凋亡過程中發(fā)揮著重要的作用。細(xì)胞內(nèi)的Ca2+濃度依賴于內(nèi)質(zhì)網(wǎng)中Ca2+的釋放和細(xì)胞外Ca2+的攝入。內(nèi)質(zhì)網(wǎng)應(yīng)激會(huì)誘導(dǎo)細(xì)胞內(nèi)Ca2+濃度的增高和自噬的增強(qiáng)[9-10]。本文旨在探討Ca2+在順鉑誘導(dǎo)卵巢癌細(xì)胞發(fā)生自噬中的作用。
1.1實(shí)驗(yàn)材料
本研究所用的人卵巢癌細(xì)胞株SKOV3購自中國科學(xué)院,RPMI 1640培養(yǎng)基和胎牛血清由Hyclone公司提供,BAPTA-AM、鈣離子探針Fluo-4和順鉑均購自美國Sigma公司,LC3B抗體、GRP78抗體和β-actin抗體均購自美國Santa Cruz公司,PVDF膜(0.45 μm)購自Millipore公司。其他試劑為進(jìn)口或國產(chǎn)分析純。
1.2細(xì)胞培養(yǎng)
人卵巢癌細(xì)胞株SKOV3用含10%胎牛血清、青霉素(100 U/mL)和鏈霉素(100 U/mL)的RPMI 1640培養(yǎng)液培養(yǎng),置于37℃、CO2體積分?jǐn)?shù)為5%、飽和濕度的培養(yǎng)箱中培養(yǎng)。每天換液1次,待細(xì)胞生長至對(duì)數(shù)生長期時(shí),用0.25%胰酶進(jìn)行消化,按1∶4比例進(jìn)行傳代,待細(xì)胞傳至第3代后進(jìn)行實(shí)驗(yàn)。實(shí)驗(yàn)分組:① 探討順鉑誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激與自噬的關(guān)系,按順鉑給藥時(shí)間分成0、6、12和24 h 4組;② 觀察順鉑和毒胡蘿卜內(nèi)酯(thapsigargin,TG)誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激釋放的Ca2+與自噬的關(guān)系,分別檢測0、9和12 h 3個(gè)時(shí)間點(diǎn);③ 探討Ca2+對(duì)自噬的影響,實(shí)驗(yàn)分為對(duì)照組、順鉑組、TG組、BAPTA-AM組、順鉑聯(lián)合BAPTA-AM組和TG聯(lián)合BAPTA-AM組。每次實(shí)驗(yàn)重復(fù)3次。
1.3Fluo-4檢測細(xì)胞質(zhì)內(nèi)Ca2+
將SKOV3細(xì)胞用不含乙二胺四乙酸的胰蛋白酶消化,收集總細(xì)胞。計(jì)數(shù)后,按每孔5×104個(gè)細(xì)胞鋪在24孔板內(nèi),放置在恒溫培養(yǎng)箱中過夜。第2天,細(xì)胞長至80%密度,實(shí)驗(yàn)組分為順鉑(6 μg/mL)和TG(3 μmol/L)9、12 h兩組和無藥物作用的陰性對(duì)照組,每組設(shè)3個(gè)對(duì)照組。吸出每孔藥物,并加入D-Hanks液洗3次,然后各加入稀釋后的Fluo-4(5 μmol/L)。30 min后用D-Hanks液洗3次,處理完后在激光掃描共聚焦顯微鏡下觀察并取圖分析。
1.4間接免疫熒光法檢測自噬標(biāo)志性蛋白LC3
高壓消毒后無菌蓋玻片置于24孔板中,取細(xì)胞密度1×105/mL,每孔500 μL接種過夜,第2天,細(xì)胞長至80%密度,實(shí)驗(yàn)組分別用順鉑6 μg /mL處理9、12 h,同時(shí)設(shè)置未加順鉑的陰性對(duì)照組。棄去培養(yǎng)基,加入200 μL固定液(4%多聚甲醛)作用10 min,吸去固定液加0.01 mol/L 的PBS洗滌后,爬片固定后經(jīng)0.1%的PBS-Triton作用5 min,用0.01mol/L的PBS洗滌,非免疫山羊血清封閉30 min,加入預(yù)混的一抗4 ℃過夜,用0.01mol/L的PBS洗滌,加入預(yù)混的熒光二抗Alexa Fluor 488抗兔的IgG抗體作用30 min,用0.01 mol/L的PBS洗滌,抗熒光淬滅劑封片,用激光共聚焦顯微鏡觀察并取圖分析。
1.5蛋白[質(zhì)]印跡法(Western blot)檢測
通過Western blot檢測人卵巢癌SKOV3細(xì)胞中內(nèi)質(zhì)網(wǎng)應(yīng)激和自噬反應(yīng)中相關(guān)蛋白的表達(dá)。提取細(xì)胞總蛋白,不同的藥物處理后,經(jīng)消化收集到離心管中,175×g離心取上清液轉(zhuǎn)移到1.5 mL離心管中,進(jìn)一步混勻,4 ℃,900×g再次離心。吸凈上清液,每管加入200~300 μL 的RIPA蛋白裂解液(含1%PMSF),超聲5 s左右打碎基因組后4 ℃放置45 min(以上全程冰上操作)。Bradford法測蛋白濃度,-20 ℃?zhèn)溆?。取待測樣本按30~60 μg上樣,10%十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳常規(guī)電泳、半干轉(zhuǎn)膜法將蛋白轉(zhuǎn)移至PVDF膜,5%脫脂奶粉封閉、一抗4 ℃過夜,二抗溫育2 h,用0.01 mol/L的PBS洗膜3次,1次15 min,2次5 min,加ECL顯色液進(jìn)行顯影結(jié)果。數(shù)據(jù)采用天能圖像分析系統(tǒng)以及Quantity One軟件進(jìn)行分析。
1.6統(tǒng)計(jì)學(xué)處理
2.1順鉑誘導(dǎo)SKOV3細(xì)胞內(nèi)GRP78表達(dá)和LC3的活化
用順鉑6 μg/mL處理SKOV3細(xì)胞0、6、12和24 h。Western blot檢測結(jié)果表明,順鉑能夠誘導(dǎo)SKOV3細(xì)胞GRP78和LC3高表達(dá),且GRP78表達(dá)增強(qiáng)早于LC3,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖1)。
2.2順鉑誘導(dǎo)SKOV3細(xì)胞細(xì)胞質(zhì)內(nèi)Ca2+水平的增加和LC3的活化
根據(jù)上述實(shí)驗(yàn)結(jié)果,用共聚焦顯微鏡觀察細(xì)胞質(zhì)中Fluo-4所標(biāo)記的Ca2+熒光,通過間接免疫熒光法檢測自噬標(biāo)記蛋白LC3。結(jié)果顯示,TG和順鉑處理9 h后,SKOV3細(xì)胞內(nèi)熒光強(qiáng)度增強(qiáng),表明細(xì)胞質(zhì)中的Ca2+水平增加;與此同時(shí),LC3熒光結(jié)果顯示,細(xì)胞質(zhì)中出現(xiàn)熒光斑點(diǎn),說明順鉑和TG在誘導(dǎo)自噬的活化過程中,可能與細(xì)胞質(zhì)中Ca2+濃度變化有關(guān)(圖2)。2.3BAPTA-AM增強(qiáng)順鉑和TG所誘導(dǎo)LC3的表達(dá)免疫熒光結(jié)果顯示,10 μmol/L BAPTA-AM作用于SKOV3細(xì)胞后出現(xiàn)LC3熒光小斑點(diǎn)。分別用6 μg/mL順鉑和3 μmol/L TG聯(lián)合鈣離子絡(luò)合劑BAPTA-AM時(shí),LC3的綠色熒光要明顯強(qiáng)于各自的單獨(dú)作用組(圖3)。此外,采用Western blot對(duì)順鉑和TG的單獨(dú)作用組及各自聯(lián)合鈣離子絡(luò)合劑后的LC3蛋白表達(dá)結(jié)果進(jìn)行驗(yàn)證,結(jié)果顯示,LC3的蛋白表達(dá)情況與LC3免疫熒光結(jié)果一致,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖4)。
圖1 Western blot檢測順鉑對(duì)SKOV3細(xì)胞GRP78、LC3蛋白表達(dá)的影響Fig. 1 Western blot detection of the expression of GRP78 and LC3 in SKOV3 cells treated with 6 μg/mL cisplatin
圖2 共聚焦顯微鏡觀察順鉑和TG處理不同時(shí)間后SKOV3細(xì)胞細(xì)胞質(zhì)中Ca2+濃度變化和LC3蛋白的表達(dá)Fig. 2 Observation of the distribution of Ca2+and LC3 in the cytoplasm of SKOV3 cells treated with 6 μg/mL cisplatin or 3 μmol/L TG for 0,9,and 12 h by confocal microscopy
圖3 免疫熒光染色檢測順鉑、TG、BAPTA-AM及聯(lián)合用藥組中LC3蛋白的表達(dá)情況Fig. 3 Immunofuorescence staining for the LC3 expressions in SKOV3 cells treated with cisplatin,TG and/or BAPTA-AM
(×1 200)
圖4 Western blot檢測順鉑、TG、BAPTA-AM以及聯(lián)合用藥組中LC3蛋白的表達(dá)情況Fig. 4 Western blot analysis for the protein expressions of LC3Ⅱ/LC3Ⅰin SKOV3 cells treated with cisplatin,TG and/or BAPTA-AM
內(nèi)質(zhì)網(wǎng)應(yīng)激與自噬之間復(fù)雜的調(diào)控機(jī)制,具有促進(jìn)細(xì)胞存活和死亡的雙向選擇效應(yīng)[11-12]。通過揭秘內(nèi)質(zhì)網(wǎng)應(yīng)激與自噬復(fù)雜網(wǎng)絡(luò),有可能提高化療藥物的治療效果和克服腫瘤的耐藥性[13-14]。GRP78作為一種內(nèi)質(zhì)網(wǎng)伴侶蛋白,在內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài)下會(huì)高表達(dá),被視為內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)的標(biāo)志性蛋白[15]。細(xì)胞發(fā)生自噬時(shí),參與自噬體形成的LC3蛋白活化,由LC3-Ⅰ轉(zhuǎn)化為脂質(zhì)化的LC3-Ⅱ。LC3-Ⅱ/ LC3-Ⅰ比值的多少在某種程度上反映了細(xì)胞的自噬活性[16]。本實(shí)驗(yàn)結(jié)果顯示,順鉑作用SKOV3細(xì)胞6 h時(shí),GRP78蛋白就已經(jīng)明顯上調(diào),然而,LC3蛋白的表達(dá)發(fā)生12 h左右。這說明順鉑能誘導(dǎo)SKOV3細(xì)胞發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激和自噬反應(yīng),且自噬的發(fā)生可能是內(nèi)質(zhì)網(wǎng)應(yīng)激所介導(dǎo)的下游效應(yīng)。
已有研究表明,刺激內(nèi)質(zhì)網(wǎng)內(nèi)的Ca2+進(jìn)入細(xì)胞質(zhì)會(huì)促發(fā)自噬反應(yīng)的活化[17-18],如維生素D3、離子霉素和三磷酸腺苷,TG誘導(dǎo)細(xì)胞中的Ca2+水平升高,通過激活Ca2+/鈣調(diào)蛋白依賴激酶β使下游AMPK興奮而誘導(dǎo)自噬。也有研究顯示,Ca2+進(jìn)入細(xì)胞質(zhì)具有抑制自噬活化的作用[19],如Xestospongin B/siRNA阻滯劑,抑制內(nèi)質(zhì)網(wǎng)的Ca2+釋放通道1,4,5-三磷酸肌醇受體后,會(huì)促發(fā)自噬。L型鈣通道阻滯劑通過抑制鈣蛋白酶活性也能誘導(dǎo)自噬。以上資料表明,鈣信號(hào)對(duì)自噬活化起著重要的調(diào)節(jié)作用,但是具體的作用機(jī)制一直存在爭議。這可能是由于探究的腫瘤細(xì)胞種類不同及技術(shù)條件限制,導(dǎo)致很多機(jī)制都未被闡明所引起的。隨著對(duì)細(xì)胞內(nèi)鈣信號(hào)檢測手段的完善,我們選擇目前靈敏度較高的Fluo-4作為鈣離子探針,檢測細(xì)胞質(zhì)中的Ca2+濃度的變化,運(yùn)用國際公認(rèn)的標(biāo)準(zhǔn)Ca2+絡(luò)合工具藥BAPTA-AM,探究順鉑誘導(dǎo)SKOV3內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)的自噬反應(yīng)與細(xì)胞質(zhì)中的Ca2+濃度波動(dòng)的關(guān)系,并以TG作為內(nèi)質(zhì)網(wǎng)應(yīng)激模型組。實(shí)驗(yàn)結(jié)果表明,單獨(dú)順鉑或TG可以誘導(dǎo)SKOV3發(fā)生自噬,在聯(lián)合鈣離子絡(luò)合劑BAPTA-AM后,自噬標(biāo)志性蛋白LC3的表達(dá)明顯上調(diào)。這說明緩沖順鉑和TG所誘導(dǎo)的細(xì)胞質(zhì)中的Ca2+上升后,能夠增強(qiáng)其下游的自噬反應(yīng)。這一過程可能與溶酶體的功能有關(guān),由于絡(luò)合細(xì)胞質(zhì)中的Ca2+,使得溶酶體對(duì)自噬體的降解被抑制,從而抑制了自噬的降解[20]。也有可能是由于絡(luò)合了細(xì)胞質(zhì)中的Ca2+,使得進(jìn)入線粒體內(nèi)的Ca2+減少,導(dǎo)致通過線粒體內(nèi)呼吸鏈的電子流減少,三磷酸腺苷生成被抑制,激活下游AMPK途徑誘導(dǎo)的自噬反應(yīng)等[21]。
綜上所述,順鉑能誘導(dǎo)SKOV3細(xì)胞發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激和自噬反應(yīng),并伴隨著細(xì)胞質(zhì)中的Ca2+濃度上升,絡(luò)合細(xì)胞質(zhì)中的Ca2+,增強(qiáng)其下游自噬反應(yīng)的強(qiáng)度,說明細(xì)胞質(zhì)中的Ca2+對(duì)自噬的發(fā)生具有抑制效應(yīng)。這一結(jié)果有助于進(jìn)一步探索Ca2+對(duì)自噬的調(diào)節(jié)機(jī)制,為腫瘤的治療及藥物開發(fā)提供新的思路。
[參 考 文 獻(xiàn)]
[1] WU X, ZHI X, JI M, et al. Midkine as a potential diagnostic marker in epithelial ovarian cancer for cisplatin/paclitaxel combination clinical therapy[J]. Am J Cancer Res, 2015, 5(2):629-638.
[2] XIAO K, SUBY N, LI Y, et al. Telodendrimer-based nanocarriers for the treatment of ovarian cancer [J]. Ther Deliv, 2013, 4(10):1279-1292.
[3] DONG H, ZHANG Y, XI H. The effects of epidural anaesthesia and analgesia on natural killer cell cytotoxicity and cytokine response in patients with epithelial ovarian cancer undergoing radical resection [J]. J Int Med Res, 2012, 40(5):1822-1829.
[4] VAN HAAFTEN C, BOOT A, CORVER W E, et al. Synergistic effects of the sesquiterpene lactone, EPD, with cisplatin and paclitaxel in ovarian cancer cells [J]. J Exp Clin Cancer Res, 2015, 34(1):3-8.
[5] HE J, YU J J, XU Q, et al. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatininduced apoptosis by inhibiting cyto-protective autophagy [J]. Autophagy, 2015, 11(2):373-384.
[6] TAIT S W, ICHIM G, GREEN D R. Die another way-nonapoptotic mechanisms of cell death [J]. J Cell Sci, 2014, 127(Pt 10):2135-2144.
[7] VICENCIO J M, LAVANDERO S, SZABADKAI G. Ca2+, autophagy and protein degradation:thrown off balance in neurodegenerative disease [J]. Cell Calcium, 2010, 47(2):112-121.
[8] MEDINA D L, DI PAOLA S, PELUSO I. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB [J]. Nat Cell Biol, 2015, 17(3):288-299.
[9] BITTREMIEUX M, BULTYNCK G. p53 and Ca(2+) signaling from the endoplasmic reticulum:partners in anti-cancer therapies [J]. Oncoscience, 2015, 2(3):233-238.
[10] SHEN S, ZHANG Y, ZHANG R, et al. Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress [J]. Chem Biol Interact, 2014, 21(8):28-41.
[11] MALLICK A, MORE P, GHOSH S, et al. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells [J]. ACS Appl Mater Interfaces, 2015, 7(14):7584-7598.
[12] DECUYPERE J P, BULTYNCK G, PARYS J B. A dual role for Ca(2+) in autophagy regulation[J]. Cell Calcium, 2011, 236(1):163-170.
[13] HART L S, CUNNINGHAM J T, DATTA T, et al. ER stressmediated autophagy promotes Myc-dependent transformation and tumor growth [J]. J Clin Invest, 2012, 122(12):4621-4634.
[14] SCHONTHAL A H. Endplasmic reticulum stress and autophagy as targets for cancer therapy [J]. Cancer Lett, 2008, 275(2):163-169.
[15] MATSUMURA K, SAKAI C, KAWAKAMI S, et al. Inhibition of cancer cell growth by GRP78 siRNA lipoplex via activation of unfolded protein response [J]. Biol Pharm Bull, 2014, 37(4):648-653.
[16] KLIONSKY D J, ABDALLA F C, ABELIOVICH H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy [J]. Autophagy, 2012, 48(4):445-544.
[17] HOYER-HANSEN M, BASTHOLM L, SZYNIAROWSKI P, et al. Control of macroautophagy by calcium, calmodulindependent kinase kinase-beta, and Bcl-2 [J]. Mol Cell, 2007, 25(2):193-205.
[18] GAO W, DING W X, STOLZ D B, et al. Induction of macroautophagy by exogenously introduced calcium [J]. Autophagy, 2008, 4(6):754-761.
[19] WILLIAMS A, SARKAR S, CUDDON P, et al. Novel targets for Huntington’s disease in an TOR-independent autophagy pathway[J]. Nat Chem Biol, 2008, 4(5):295-305.
[20] WILLIAMS J A, HOU Y, NI H M, et al. Role of intracellular calcium in proteasome inhibitor-induced endoplasmic reticulum stress, autophagy, and cell death [J]. Pharm Res, 2013, 30(9):2279-2289.
[21] RIZZUTO R, DE STEFANI D, RAFFAELLO A, et al. Mitochondria as sensors and regulators of calcium signaling [J]. Nat Rev Mol Cell Biol, 2012, 13(9):566-578.
The effect of cytoplasmic Ca2+on cisplatin-induced autophagy in ovarian carcinoma SKOV3 cells and its mechanism
ZENG Linchuan1,DENG Huimin2,CHEN Jun2,DOU Minghan2,XU Ye2(1.School of Public Health,Jilin Medical University,Jilin 132013,Jilin Province,China;2.Medical Research Laboratory,Jilin Medical University,Jilin 132013,Jilin Province,China)
[Key words]Cisplatin;Ca2+;ER Stress;Autophagy
[Abstract]Background and purpose:Ca2+plays a very important role in the maintenance of cell biological functions. The storage,release and uptake capacity of Ca2+is controlled by endoplasmic reticulum (ER). Ca2+homeostasis is essential for cellular energy metabolism and proper protein folding. This study aimed to investigate the effect of cytoplasmic Ca2+on cisplatin induced ER stress-mediated autophagy in ovarian carcinoma SKOV3 and its underlying mechanism. Methods:The ovarian cancer SKOV3 was used as a study object. The experiment consisted of three parts:① To explore the possible relationship between cisplatin-induced ER stress and autophagy,SKOV3 cells were treated with cisplatin for 0,6,12 and 24 h,respectively;② To explore the possible relationship between ER stress induced Ca2+efux and autophagy,SKOV3 cells were treated with cisplatin for 0,9 and 12 h,respectively,and TG was used asa positive control;③ To explore the effects of blocking calcium efux on autophagy,SKOV3 cells were divided into control group,cisplatin group,TG group,BAPTA-AM group,cisplatin combined with BAPTA-AM group and TG combined with BAPTA-AM group. Western blot was used to detect the protein levels of GRP78 and LC3. Fluo-4 calcium fluorescent probe was used to examine cytoplasmic Ca2+levels. Confocal microscopy was used to detect LC3 level by immunoflurescence staining. Results:Compared to control group (0.679±0.011),GRP78 was significantly accumulated at 6,12 and 24 h after cisplatin treatment and reached the maximum value at 6 h (1.393±0.004,P=0.000). Similarly,compared to control group (0.038±0.000),LC3 puncta were clearly seen after cisplatin treatment and reached the maximum value at 12 h (0.072±0.002,P=0.000). Using confocal microscopy,we found that cisplatin and TG increased LC3 punctate accumulation and cytoplasmic Ca2+levels in a time-dependent manner. Immunofluorescent method showed that treatment with cisplatin combined with BAPTA-AM or TG combined with BAPTA-AM increased LC3 punctate accumulation induced by cisplatin or TG. The results of Western blot showed that cisplatin combined with BAPTA-AM (0.071±0.001) or TG combined with BAPTA-AM (0.065±0.001) significantly increased LC3Ⅱ/LC3Ⅰ ratio induced by cisplatin (0.039±0.000,P=0.000) or TG (0.035±0.001,P=0.000). Conclusion:Cisplatin induces intracellular ER stress and autophagy in SKOV3 cells,accompanied by increased cytoplasmic Ca2+levels. Chelating cytoplasmic Ca2+enhances cisplatin-induced autophagy.
DOI:10.3969/j.issn.1007-3969.2016.04.005
中圖分類號(hào):R737.31
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-3639(2016)04-0313-07
基金項(xiàng)目:國家自然科學(xué)基金面上項(xiàng)目(81372793);吉林省教育廳十三五科技項(xiàng)目(2016237);2014吉林省大學(xué)生創(chuàng)新創(chuàng)業(yè)項(xiàng)目(2014001)。
通信作者:徐 冶 E-mail:xuye_9707@163.com
收稿日期:(2015-04-24修回日期:2015-06-07)