楊二平, 彭 飛, 梁 杰, 杜遠(yuǎn)立
1三峽大學(xué)人民醫(yī)院,宜昌市第一人民醫(yī)院骨科,宜昌4430002武漢大學(xué)人民醫(yī)院骨科,武漢430060
?
敲低LRP1基因?qū)NF-α誘導(dǎo)的大鼠軟骨細(xì)胞損傷的影響*
楊二平1,彭飛2,梁杰1,杜遠(yuǎn)立1
1三峽大學(xué)人民醫(yī)院,宜昌市第一人民醫(yī)院骨科,宜昌4430002武漢大學(xué)人民醫(yī)院骨科,武漢430060
目的探討大鼠軟骨細(xì)胞膜蛋白低密度脂蛋白受體相關(guān)蛋白1(LRP1)對炎癥因子腫瘤壞死因子-α(TNF-α)誘導(dǎo)的大鼠軟骨細(xì)胞損傷的影響。方法將慢病毒包裝的LRP1-shRNA轉(zhuǎn)染原代培養(yǎng)的軟骨細(xì)胞。轉(zhuǎn)染3 d后使用ERK磷酸化抑制劑PD098059(10 μmol/L)和P38磷酸化抑制劑SB203580(10 μmol/L)分別預(yù)處理對照組和shLRP1組軟骨細(xì)胞30 min,再以TNF-α(30 ng/mL)作用軟骨細(xì)胞30 min,收集總蛋白行Western blot檢測軟骨細(xì)胞MAPKs通路蛋白和凋亡蛋白表達。收集經(jīng)TNF-α(30 ng/mL)作用12 h的軟骨細(xì)胞培養(yǎng)液,采用ELISA法檢測MMP-13表達水平。結(jié)果經(jīng)TNF-α作用后,shLRP1組軟骨細(xì)胞MAPKs通路蛋白ERK、P38活性、MMP-13表達均較對照組明顯提高,且可以被PD098059和SB203580所拮抗(均P<0.05);凋亡蛋白Caspase-3和Bax表達較對照組有明顯提高,抑凋亡蛋白p-Akt和Bcl-2表達較對照組明顯降低(均P<0.05)。結(jié)論在TNF-α誘導(dǎo)的大鼠軟骨細(xì)胞損傷中,敲低LRP1表達可激活MAPK通路,上調(diào)MMP-13表達和促進細(xì)胞凋亡,LRP1有望成為骨關(guān)節(jié)炎治療的靶點。
骨關(guān)節(jié)炎;軟骨細(xì)胞;低密度脂蛋白受體相關(guān)蛋白1;MAPKs信號通路;細(xì)胞凋亡;MMP-13;腫瘤壞死因子-α
骨關(guān)節(jié)炎(osteoarthritis,OA)是一種慢性退行性骨關(guān)節(jié)疾病,是中老年人常見、多發(fā)的骨關(guān)節(jié)病,據(jù)統(tǒng)計世界范圍內(nèi)因此有超過10%的60歲以上的老年人身體健康受到影響[1]。該病以局灶性關(guān)節(jié)軟骨的退行性變、骨贅形成和軟骨下骨質(zhì)硬化為病理特點。骨關(guān)節(jié)炎的滑膜組織可產(chǎn)生促炎性細(xì)胞因子和其他炎性介質(zhì),IL-1β和腫瘤壞死因子-α(TNF-α)是其中2個主要的炎性因子[2],TNF-α被認(rèn)為是軟骨退變的關(guān)鍵炎性調(diào)節(jié)因子。這些炎性因子通過滑液擴散到關(guān)節(jié)軟骨表面,激活軟骨細(xì)胞產(chǎn)生多種酶降解軟骨基質(zhì),這些酶包括基質(zhì)金屬蛋白酶(MMPs)和去整合素金屬蛋白酶(ADAMTS)[3],MMP-13是其中重要的軟骨組織降解酶。骨關(guān)節(jié)炎軟骨退變的另一種表現(xiàn)是軟骨細(xì)胞凋亡,但軟骨細(xì)胞凋亡在軟骨退變過程中發(fā)揮多大作用仍未明確。最近的研究表明低密度脂蛋白受體相關(guān)蛋白(LRP)除了參與脂質(zhì)代謝外,還參與調(diào)節(jié)炎癥反應(yīng)[4]。LRP被認(rèn)為有可能參與調(diào)節(jié)骨關(guān)節(jié)炎發(fā)病進程。本研究擬通過敲低LRP1表達,探討其在炎癥因子TNF-α誘導(dǎo)的大鼠軟骨細(xì)胞損傷中的作用機制。
1.1主要實驗材料
抗大鼠LRP1單克隆抗體購自美國Epitomics公司;DMEM/F12細(xì)胞培養(yǎng)液、胎牛血清購自Gibco公司;重組TNF-α購自Peprotech公司。一抗P38、p-P38、Akt、p-Akt、Bax、Bcl-2、Caspase-3購自美國Bioworld公司,ERK、p-ERK購自美國賽信通公司;GAPDH購自美國Epitomics公司;二抗horseradish peroxidase(HRP)conjugated抗兔IgG、抗山羊IgG抗體購自武漢博士德公司。ERK磷酸化抑制劑PD098059購自美國Sigma-Aldrich公司,P38磷酸化抑制劑SB203580購自上海碧云天生物公司。大鼠基質(zhì)金屬蛋白酶-13(MMP-13)ELISA試劑盒購自武漢伊萊瑞特生物科技有限公司。
1.2實驗方法
1.2.1軟骨細(xì)胞的培養(yǎng)原代細(xì)胞來自1周齡大鼠膝關(guān)節(jié)軟骨經(jīng)過酶消化法獲得,以3×106/mL細(xì)胞密度接種于含10%胎牛血清的DMEM/F12細(xì)胞培養(yǎng)液中,置于37℃、5%CO2孵箱內(nèi)培養(yǎng),細(xì)胞生長至約80%融合時傳代。
1.2.2shLRP1構(gòu)建利用PUBMED網(wǎng)站提供的LRP1基因編碼mRNA堿基序列(序號001130490.1),設(shè)計LRP1目的靶位點序列5′-GCATTGGCGTGCAGCTTAA-3′,并根據(jù)文獻[5]提供的靶點序列驗證RNA干擾序列有效性。同時還采用RNA干擾實驗中公認(rèn)序列如siRNA陰性對照(negative control,NC)Scramble序列(5′-TTCTCCGAACGTGTCACGT-3′)作為實驗對照。以慢病毒為載體的shRNA由上海吉凱基因化學(xué)技術(shù)有限公司構(gòu)建。
1.2.3軟骨細(xì)胞的轉(zhuǎn)染選擇傳代1次的細(xì)胞為轉(zhuǎn)染細(xì)胞,細(xì)胞計數(shù)并以2.0×105/mL接種于6孔板。8 h后觀察細(xì)胞貼壁良好,根據(jù)接種前細(xì)胞計數(shù)加入適量的慢病毒載體,MOI值為20。12 h更換新鮮培養(yǎng)液。轉(zhuǎn)染3 d后熒光顯微鏡下觀察報告基因GFP的表達情況,根據(jù)轉(zhuǎn)染效率,進入后續(xù)實驗。待6孔板中軟骨細(xì)胞鋪滿后更換無血清培養(yǎng)液DMEM過夜,將PD098059(10 μmol/L)和SB203580(10 μmol/L)分別加入培養(yǎng)液中預(yù)處理30 min,再加入TNF-α(30 ng/mL)作用軟骨細(xì)胞30 min,收集細(xì)胞行Western blot檢測。TNF-α(30 ng/mL)作用軟骨細(xì)胞12 h后收集培養(yǎng)液行ELISA檢測。
1.2.4Western blot檢測TBS沖洗細(xì)胞后加入適當(dāng)體積的RIPA裂解細(xì)胞。12 000 g離心5 min,收集上清,即為總蛋白溶液。測蛋白含量,計算含40 μg蛋白的溶液體積即為上樣量。在蛋白標(biāo)本中加入適當(dāng)體積的5×蛋白上樣緩沖液。沸水浴5 min。SDS-PAGE電泳(濃縮膠電壓75 V,分離膠電壓120 V),轉(zhuǎn)膜(200 mA,1 h),用5%的脫脂牛奶(0.5%TBST配)封閉1 h。加入稀釋一抗(TBST溶解的5%脫脂牛奶,磷酸化蛋白使用TBST溶解的5%BSA),4℃孵育過夜。TBST室溫下洗3次,每次5 min。將二抗用TBST稀釋3 000倍,室溫下孵育30 min后,用TBST洗3次,每次5 min。顯色曝光。掃描顯影后所得條帶,采用BandScan圖像分析軟件分析膠片灰度值。
1.2.5ELISA檢測收集經(jīng)過TNF-α(30 ng/mL)作用12 h后的培養(yǎng)液,10 000 r/min離心20 min,小心吸取上清至EP管。分別設(shè)空白孔、標(biāo)準(zhǔn)孔、待測樣品孔。分別加入樣品稀釋液、標(biāo)準(zhǔn)品、待測樣品各100 μL。37℃孵育90 min。棄去液體,甩干,每個孔中加入Detection Ab工作液100 μL(在使用前15 min內(nèi)配制),37℃溫育1 h。加HRP Conjugate工作液(臨用前15 min內(nèi)配制)100 μL,37℃溫育30 min。加底物溶液90 μL,酶標(biāo)37℃避光孵育15 min。加終止液50 μL,終止反應(yīng),此時藍(lán)色立轉(zhuǎn)黃色。立即用酶標(biāo)儀在450 nm波長測量各孔的吸光度(A)值。
1.3統(tǒng)計學(xué)方法
2.1大鼠關(guān)節(jié)軟骨細(xì)胞轉(zhuǎn)染shLRP1后LRP1的表達水平
軟骨細(xì)胞轉(zhuǎn)染3 d后鏡下觀察報告基因GFP的表達情況,發(fā)現(xiàn)軟骨細(xì)胞狀態(tài)良好,GFP的表達陽性率大于70%。收集總蛋白行Western blot檢測目的基因表達,結(jié)果顯示在MOI值為20時,目的靶位點能有效抑制LRP1蛋白表達水平。確認(rèn)干擾序列可有效干擾LRP1蛋白表達(圖1)。
圖1 RNA干擾后關(guān)節(jié)軟骨細(xì)胞中LRP1蛋白表達Fig.1 LRP1 expression in chondrocytes transfected with shRNA
2.2低表達LRP1對MAPKs通路蛋白表達的影響
2.2.1軟骨細(xì)胞ERK信號通路相關(guān)蛋白表達Western blot檢測TNF-α作用于轉(zhuǎn)染與未轉(zhuǎn)染
shLRP1的軟骨細(xì)胞后,信號通路蛋白ERK、p-ERK的表達,以及兩組細(xì)胞在ERK磷酸化抑制劑PD098059預(yù)處理后p-ERK的表達變化。結(jié)果如圖2所示:在TNF-α作用后,shLRP1+TNF-α組細(xì)胞中p-ERK表達較control+TNF-α組明顯增加,該增加可被PD098059抑制。
2.2.2軟骨細(xì)胞P38信號通路相關(guān)蛋白表達Western blot檢測TNF-α作用于轉(zhuǎn)染與未轉(zhuǎn)染shLRP1的軟骨細(xì)胞后,P38信號通路蛋白P38、p-P38的表達,以及兩組細(xì)胞在P38磷酸化抑制劑SB203580預(yù)處理后p-P38的表達情況。如圖3所示,在TNF-α作用后,shLRP1+TNF-α組細(xì)胞中p-P38表達較control+TNF-α組明顯增加,且該增加可被SB203580抑制。
1:control;2:control+TNF-α;3:control+TNF-α+PD098059;4:shLRP1+TNF-α;5:shLRP1+TNF-α+PD098059;與shLRP1+TNF-α組比較,*P<0.05圖2 LRP1對軟骨細(xì)胞在TNF-α作用下ERK磷酸化表達的影響Fig.2 Effect of LRP1 on the phosphorylation of ERK in chondrocytes induced by TNF-α
1:control;2:control+TNF-α;3:control+TNF-α+SB203580;4:shLRP1+TNF-α;5:shLRP1+TNF-α+SB203580;與shLRP1+TNF-α組比較,*P<0.05圖3 LRP1對軟骨細(xì)胞在TNF-α作用下P38磷酸化表達的影響Fig.3 Effect of LRP1 on the phosphorylation of P38 in chondrocytes induced by TNF-α
2.3低表達LRP1對MMP-13水平的影響
ELISA檢測顯示,經(jīng)TNF-α誘導(dǎo)的軟骨細(xì)胞,shLRP1+TNF-α組的細(xì)胞外MMP-13水平明顯高于相應(yīng)的control+TNF-α組,而這種變化可被PD098059和SB203580拮抗(圖4)。
2.4低表達LRP1對凋亡相關(guān)蛋白表達的影響
Western blot檢測TNF-α作用前后shLRP1組和未轉(zhuǎn)染對照組軟骨細(xì)胞凋亡相關(guān)蛋白Akt、p-Akt、Caspase-3、Bcl-2、Bax的表達。結(jié)果如圖5所示:在TNF-α作用前后shLRP1組p-Akt/Akt、Bcl-2/Bax均低于相應(yīng)的control組,Caspase-3/GAPDH均明顯高于相應(yīng)control組,差異均有統(tǒng)計學(xué)意義(均P<0.05)。
與shLRP1+TNF-α組比較,*P<0.05圖4 ELISA檢測軟骨細(xì)胞LRP1低表達前后MMP-13分泌的變化Fig.4 ELISA for the defection of effect of LRP1 on the expression level of MMP-13 in chondrocytes
A、B:Western blot電泳圖;C~E:灰度值比分析;*P<0.05;1:control;2:control+TNF-α;3:shLRP1;4:shLRP1+TNF-α圖5 兩組細(xì)胞經(jīng)TNF-α作用后Akt、p-Akt、Caspase-3、Bcl-2、Bax的表達變化Fig.5 Changes of the expression levels of Akt,p-Akt,Caspase-3,Bcl-2 and Bax in chondrocytes in the two groups
與骨關(guān)節(jié)炎相關(guān)的炎癥介質(zhì)中,TNF-α是主要的促炎性因子之一,在骨關(guān)節(jié)炎患者關(guān)節(jié)滑液中的含量增加,它能通過激活MAPKs通路而誘導(dǎo)MMP-13的表達,在關(guān)節(jié)軟骨退變中發(fā)揮重要作用[6-9],還可通過直接和間接方式誘導(dǎo)軟骨細(xì)胞凋亡。本研究在大鼠軟骨細(xì)胞培養(yǎng)時加入TNF-α以模擬骨關(guān)節(jié)炎時的軟骨細(xì)胞損傷。低密度脂蛋白受體相關(guān)蛋白(LRP1)不僅參與識別和內(nèi)吞脂質(zhì),而且能識別大量非脂質(zhì)體,參與不同生理過程[10-11]。LRP1可識別尿激酶和組織纖溶酶原激活物及相應(yīng)抑制劑,通過調(diào)節(jié)細(xì)胞膜尿激酶受體(uPAR),LRP1控制uPAR下游信號因子的活性,包括胞外信號調(diào)節(jié)激酶/絲裂原活化蛋白激酶(ERK/MAP)[11]。LRP1通過多種機制實現(xiàn)對細(xì)胞信號通路的調(diào)控作用,MAPKs通路是其中重要通路之一。同時LRP1也可調(diào)節(jié)MMPs水平[12],其中MMP-13是骨關(guān)節(jié)炎軟骨組織重要降解酶。軟骨細(xì)胞受到炎癥因子刺激時,MAPKs通路(ERK-1/2和P38)對維持軟骨細(xì)胞分化和穩(wěn)定起著重要作用[13-15],抑制ERK的活性可以延緩軟骨細(xì)胞肥大骨化[16-18]。炎癥反應(yīng)和細(xì)胞因子水平在骨關(guān)節(jié)炎病變過程起著重要作用,可以誘導(dǎo)蛋白多糖激酶和MMPs合成與活性[19-20]。在本研究中我們分別選用MAPKs通路中P38和ERK的磷酸化抑制劑SB203580和PD098059來驗證LRP1對該通路信號蛋白磷酸化以及MMP-13表達的作用。軟骨細(xì)胞在敲低LRP1表達后,在TNF-α誘導(dǎo)下P38和ERK磷酸化水平明顯提高,同樣軟骨細(xì)胞分泌MMP-13增加,SB203580和PD098059可明顯抑制P38和ERK磷酸化,并通過抑制P38和ERK磷酸化來抑制軟骨細(xì)胞分泌MMP-13。故LRP1可能通過抑制MAPKs通路來調(diào)低TNF-α的炎癥反應(yīng),減少軟骨細(xì)胞外基質(zhì)MMP-13表達。
為了驗證LRP1對TNF-α誘導(dǎo)的凋亡反應(yīng)的影響,我們采用Western blot檢測凋亡蛋白和抑凋亡蛋白的表達,結(jié)果顯示LRP1低表達的軟骨細(xì)胞經(jīng)TNF-α作用后凋亡蛋白Bax和Caspase-3表達明顯增加,而Akt的磷酸化和Bcl-2表達明顯降低,提示LRP1通過抑制多種凋亡蛋白的表達來促細(xì)胞生存和抗凋亡作用。包括MAPKs通路在內(nèi),有多種信號通路參與凋亡調(diào)節(jié)。LRP1低表達的軟骨細(xì)胞有可能是通過激活MAPKs通路來增強TNF-α誘導(dǎo)的凋亡反應(yīng)[21-23]。
綜上所述,基于我們對體外培養(yǎng)的軟骨細(xì)胞的研究,發(fā)現(xiàn)LRP1可抑制TNF-α誘導(dǎo)的軟骨細(xì)胞的炎癥反應(yīng)和凋亡反應(yīng),其對骨關(guān)節(jié)炎樣反應(yīng)的軟骨細(xì)胞具有保護作用,LRP1有望成為骨關(guān)節(jié)炎治療的靶點。因LRP1分子量較大,并含有多個亞基,將來需進一步探討LRP1保護機制是否有其他重要的通路參與。
[1]Hunter D J,Schofield D,Callander E.The individual and socioeconomic impact of osteoarthritis[J].Nat Rev Rheumatol,2014,10(7):437-441.
[2]Kapoor M,Martel-Pelletier J,Lajeunesse D,et al.Role of proinflammatory cytokines in the pathophysiology of osteoarthritis[J].Nat Rev Rheumatol,2011,7(1):33-42.
[3]Goldring M B,Marcu K B.Cartilage homeostasis in health and rheumatic diseases[J].Arthritis Res Ther,2009,11(3):224-239.
[4]Mengshol J A,Vincenti M P,Coon C I,et al.Interleukin-1 induction of collagenase3(matrix metalloproteinase 13)gene expression in chondrocytes requires p38,c-Jun N-terminal kinase,and nuclear factor kappaB:differential regulation of collagenase 1 and collagenase 3[J].Arthritis Rheum,2000,43(4):801-811.
[5]Campana W M,Li X,Dragojlovic N,et al.The low-density lipoprotein receptor-related protein is a pro-survival receptor in Schwann cells:possible implications in peripheral nerve injury[J].J Neurosci,2006,26(43):11197-11207.
[6]Gaultier A,Arandjelovic S,Niessen S,et al.Regulation of tumor necrosis factor receptor-1 and the IKK-NF-κB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor[J].Blood,2008,111(11):5316-5325.
[7]Raggatt L J,Jefcoat S C Jr,Choudhury I,et al.Matrix metalloproteinase-13 inuences ERK signalling in articular rabbit chondrocytes[J].Osteoarthritis Cartilage,2006,14(7):680-689.
[8]Manicourt D H,Poilvache P,Van Egeren A,et al.Synovialuid levels of tumor necrosis factor alpha and oncostatin M correlate with levels of markers of the degradation of crosslinked collagen and cartilage aggrecan in rheumatoid arthritis but not in osteoarthritis[J].Arthritis Rheum,2000,43(2):281-288.
[9]Lawrence M C,Jivan A,Shao C,et al.The roles of MAPKs in disease[J].Cell Res,2008,18(4):436-442.
[10]Herz J,Dudley K.Strickland:LRP:a multifunctional scavenger and signaling receptor[J].J Clin Invest,2001,108(6):779-784.
[11]Gaultier A,Simon G,Niessen S,et al.LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome[J].J Proteome Res,2010,9(12):6689-6695.
[12]Barmina O Y,Walling H W,F(xiàn)iacco G J,et al.Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization[J].J Biol Chem,1999,274(42):30087-30093.
[13]Liacini A,Sylvester J,Li W Q,et al.Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated by MAP kinases,AP-1,and NF-κB transcription factors in articular chondrocytes[J].Exp Cell Res,2003,288(1):208-217.
[14]Greenblatt M B,Shim J H,Glimcher L H.Mitogen-activated protein kinase pathways in osteoblasts[J].Annu Rev Cell Dev Biol,2013,29:63-79.
[15]Zhen X,Wei L,Wu Q,et al.Mitogen-activated protein kinase p38 mediates regulation of chondrocyte differentiation by parathyroid hormone[J].J Biol Chem,2001,276(7):4879-4885.
[16]Bobick B E,Kulyk W M.Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling[J].Birth Defects Res C Embryo Today,2008,84(2):131-154.
[17]Han Y S,Bang O S,Jin E J,et al.High dose of glucose promotes chondrogenesis via PKC and MAPK signaling pathways in chick mesenchymal cells[J].Cell Tissue Res,2004,318(3):571-578.
[18]Stanton L A,Beier F.Inhibition of p38 MAPK signaling in chondrocyte cultures results in enhanced osteogenic differentiation of perichondral cells[J].Exp Cell Res,2007,313(1):146-155.
[19]Abramson S B,Attur M,Yazici Y.Prospects for disease modication in osteoarthritis[J].Nat Clin Pract Rheumatol,2006,2(6):304-312.
[20]Pelletier J P,Martel-Pelletier J,Abramson S B.Osteoarthritis,an inammatory disease:potential implication for the selection of new therapeutic targets[J].Arthritis Rheum,2001,44(6):1237-1247.
[21]阮麗萍,劉健,葛瑤,等.:骨關(guān)節(jié)炎大鼠軟骨PI3K/Akt-mTOR及Beclin-1自噬通路的表達及相關(guān)性分析[J].華中科技大學(xué)學(xué)報:醫(yī)學(xué)版,2015,44(4):429-433,439.
[22]Cagnol S,Chambard J C.ERK and cell death:mechanisms of ERK-induced cell death--apoptosis,autophagy and senescence[J].FEBS J,2010,277(1):2-21.
[23]Li T,Xu X H,Tang Z H,et al.Platycodin D induces apoptosis and triggers ERK-and JNK-mediated autophagy in human hepatocellular carcinoma BEL-7402 cells[J].Acta Pharmacol Sin,2015,36(12):1503-1513.
(2015-10-12收稿)
Effects of LRP1 Knockdown on the TNF-α-induced Chondrocyte Injury in Rats
Yang Erping1,Peng Fei2,Liang Jie1etal
1DepartmentofOrthopedics,YichangFirstPeople’sHospital,ThreeGorgesUniversity,Yichang443000,China2DepartmentofOrthopedics,RenminHospitalofWuhanUniversity,Wuhan430060,China
Objective To examine the effect of low-density lipoprotein receptor-related protein 1(LRP1)on TNF-α-induced chondrocyte injuries in rats.MethodsLentivirus-packaged LRP1-shRNA was transfected into the primary chondrocytes to knock down the LRP1 gene.Three days after the transfection,chondrocytes were treated with the ERK inhibitor(PD098059)(10 μmol/L)or the P38 kinase inhibitor(SB203580)(10 μmol/L)for 30 min prior to the treatment of TNF-α(30 ng/mL)for 30 min.Total proteins were extracted for the detection of MAPKs pathway-related and apoptosis-related proteins by using Western blotting.The culture medium of chondrocytes treated with TNF-α for 12 h was collected for the detection of MMP13 levels by ELISA.ResultsThe expression levels of ERK,P38 and MMP-13 were significantly increased in chondrocytes in shLRP1 group as compared with those in control group after treatment with TNF-α.The expression levels of these proteins could be inhibited by PD098059 or SB203580(P<0.05).The expression levels of apoptosis proteins Caspase-3 and Bax were much increased and those of anti-apoptosis proteins p-Akt and Bcl-2 profoundly decreased in shLRP1 group as compared with those in control group(P<0.05).ConclusionThe knockdown of LRP1 can activate the MAPKs pathway,up-regulate the expression of MMP-13 and promote the apoptosis of chondrocytes treated with TNF-α.LRP1 is expected to become a therapeutic target for osteoarthritis.
osteoarthritis;chondrocytes;low-density lipoprotein receptor-related protein 1;MAPKs pathway;apoptosis;MMP-13;TNF-α
R681.3
10.3870/j.issn.1672-0741.2016.04.004
*國家自然科學(xué)基金青年基金資助項目(No.61308110)
楊二平,男,1972年生,主治醫(yī)師,E-mail:517078267@qq.com